Refine train.py for train.
This commit is contained in:
parent
4c7fdbe817
commit
d10e7a8396
16
wit/train.py
16
wit/train.py
|
@ -17,7 +17,7 @@ pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||||
learning_rate = 0.0001
|
learning_rate = 0.0001
|
||||||
use_tril_attention_mask = None
|
use_tril_attention_mask = None
|
||||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||||
train_batch_size = 32
|
train_batch_size = 16
|
||||||
val_batch_size = 32
|
val_batch_size = 32
|
||||||
num_proc = 8
|
num_proc = 8
|
||||||
max_epochs = 1000
|
max_epochs = 1000
|
||||||
|
@ -39,7 +39,7 @@ if __name__ == "__main__":
|
||||||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||||
|
|
||||||
level_ratio = 4
|
level_ratio = 6
|
||||||
start = vocab_size * level_ratio * level_ratio
|
start = vocab_size * level_ratio * level_ratio
|
||||||
end = start * level_ratio
|
end = start * level_ratio
|
||||||
size = end * level_ratio
|
size = end * level_ratio
|
||||||
|
@ -47,15 +47,15 @@ if __name__ == "__main__":
|
||||||
train_dataset, val_dataset = raw_dataset.Split(0.95)
|
train_dataset, val_dataset = raw_dataset.Split(0.95)
|
||||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
||||||
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
|
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
|
||||||
it = iter(train_dataloader)
|
# it = iter(train_dataloader)
|
||||||
print("data samples:")
|
# print("data samples:")
|
||||||
for i in range(10):
|
# for i in range(10):
|
||||||
print(next(it)["input_ids"].numpy().tolist())
|
# print(next(it)["input_ids"].numpy().tolist())
|
||||||
|
|
||||||
torch.set_float32_matmul_precision("medium")
|
torch.set_float32_matmul_precision("medium")
|
||||||
lit_trainer = pl.Trainer(
|
lit_trainer = pl.Trainer(
|
||||||
accelerator="gpu",
|
accelerator="cuda",
|
||||||
# devices=[0],
|
devices=[0, 1],
|
||||||
precision=precision,
|
precision=precision,
|
||||||
logger=TBLogger("./", default_hp_metric=False),
|
logger=TBLogger("./", default_hp_metric=False),
|
||||||
strategy=strategy,
|
strategy=strategy,
|
||||||
|
|
Loading…
Reference in New Issue