Update unsuper minist.
This commit is contained in:
parent
1bb41f0ee7
commit
df05002c90
|
@ -21,12 +21,20 @@ array([[4.3121886e+00, 3.2778070e-07, 8.9907879e-01, 2.1270120e+00,
|
||||||
1. 重复的权重,虽然权重看起来都一样,但是有稍微的不同,不是完全一样
|
1. 重复的权重,虽然权重看起来都一样,但是有稍微的不同,不是完全一样
|
||||||
2. 3x3太小了导致了样本的信噪比太低,大部分的样本切出来都是0
|
2. 3x3太小了导致了样本的信噪比太低,大部分的样本切出来都是0
|
||||||
2. 5x5的时候会有网格状重复
|
2. 5x5的时候会有网格状重复
|
||||||
|
1. 通过比较小的loss不断得训练(epoch很大),最终还是会变成所有kernel都一样的“网格布”
|
||||||
|
1. 每个kernel都是数值很低的,很接近的结果
|
||||||
3. 7x7的时候边框区域问题
|
3. 7x7的时候边框区域问题
|
||||||
|
|
||||||
## 发现的原因
|
## 问题的调试
|
||||||
1. 几个卷积核都是重复的,网格状的
|
1. 几个卷积核都是重复的,网格状的
|
||||||
1. grad太大,learning rate 太大
|
1. grad太大,learning rate 太大,grad太小,训练的epoch不合适
|
||||||
2. grad太小,训练的epoch不合适
|
2. 网格状,就是为了尽量降低最终输出的绝对值,降低loss
|
||||||
|
1. 形成4个一组,一共2组,的形式,交替成为最大值,把另外一组的输出降低,最后都输出最低的绝对值
|
||||||
|
2. 需要类似batchnormal的方式对各个conv核心之间进行归一化
|
||||||
|
3. 采用label不改变原来sample output的 abs均值的限制
|
||||||
|
1. 生成2个分别交替充当最大值的极端(只有2个像素不是0)的卷积核,其他的卷积核都是输出接近0的网格
|
||||||
|
4. 多个卷积核之间需要有差异,同一个卷积核的不同样本输入也要有差异,卷积核的分布要有要求
|
||||||
|
5. 每个卷积核尽量平摊权重到所有像素,而不是集中一个像素?提高鲁棒性?
|
||||||
|
|
||||||
## 可能的策略
|
## 可能的策略
|
||||||
1. 每个卷积核的改变权重(grad)能量守恒
|
1. 每个卷积核的改变权重(grad)能量守恒
|
||||||
|
|
|
@ -117,7 +117,7 @@ for epoch in range(epochs):
|
||||||
images = images.to(device)
|
images = images.to(device)
|
||||||
|
|
||||||
# images = torch.ones((1, 1, 5, 5), device=device)
|
# images = torch.ones((1, 1, 5, 5), device=device)
|
||||||
# type = random.randint(0, 10)
|
# type = random.randint(0, 7)
|
||||||
# if type == 0:
|
# if type == 0:
|
||||||
# rand = random.randint(0, 4)
|
# rand = random.randint(0, 4)
|
||||||
# images[:, :, rand, :] = images[:, :, rand, :] * 0.5
|
# images[:, :, rand, :] = images[:, :, rand, :] * 0.5
|
||||||
|
@ -130,32 +130,45 @@ for epoch in range(epochs):
|
||||||
# images[:, :, 2, 2] = images[:, :, 2, 2] * 0.5
|
# images[:, :, 2, 2] = images[:, :, 2, 2] * 0.5
|
||||||
# images[:, :, 3, 3] = images[:, :, 3, 3] * 0.5
|
# images[:, :, 3, 3] = images[:, :, 3, 3] * 0.5
|
||||||
# images[:, :, 4, 4] = images[:, :, 4, 4] * 0.5
|
# images[:, :, 4, 4] = images[:, :, 4, 4] * 0.5
|
||||||
|
# if type == 3:
|
||||||
|
# randx = random.randint(0, 2)
|
||||||
|
# randy = random.randint(0, 2)
|
||||||
|
# images[:, :, randx, randy] = images[:, :, randx, randy] * 0.5
|
||||||
|
# images[:, :, randx, randy + 1] = images[:, :, randx, randy + 1] * 0.5
|
||||||
|
# images[:, :, randx, randy - 1] = images[:, :, randx, randy - 1] * 0.5
|
||||||
|
# images[:, :, randx + 1, randy] = images[:, :, randx + 1, randy] * 0.5
|
||||||
|
# images[:, :, randx - 1, randy] = images[:, :, randx - 1, randy] * 0.5
|
||||||
|
|
||||||
outputs = model.forward_unsuper(images)
|
outputs = model.forward_unsuper(images)
|
||||||
|
|
||||||
outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
||||||
sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8
|
sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8
|
||||||
|
|
||||||
|
|
||||||
|
# sample = outputs.reshape(-1, 8,24*24) # -> 36864 8
|
||||||
|
# sample = torch.mean(sample,dim=2) # -> 36864 8
|
||||||
|
|
||||||
abs = torch.abs(sample).detach()
|
abs = torch.abs(sample).detach()
|
||||||
max, max_index = torch.max(abs, dim=1)
|
max, max_index = torch.max(abs, dim=1)
|
||||||
mean = torch.mean(abs, dim=1)
|
mean = torch.mean(abs, dim=1)
|
||||||
mean = torch.expand_copy(mean.reshape(-1, 1), sample.shape)
|
mean = torch.expand_copy(mean.reshape(-1, 1), abs.shape)
|
||||||
max = torch.expand_copy(max.reshape(-1, 1), sample.shape)
|
max = torch.expand_copy(max.reshape(-1, 1), abs.shape)
|
||||||
|
ratio = torch.pow(abs / mean, 2)
|
||||||
|
|
||||||
all = range(0, sample.shape[0])
|
ratio = torch.where(torch.isnan(ratio), 0.0, ratio)
|
||||||
# ratio_max = abs / mean
|
label = ratio * abs
|
||||||
# ratio_nor = (max - abs) / max
|
label_mean = torch.expand_copy(torch.mean(label, dim=1).reshape(-1, 1), abs.shape)
|
||||||
# ratio_nor[all, max_index] = ratio_max[all, max_index].clone()
|
label = label - label_mean + mean
|
||||||
ratio_nor = torch.pow(abs / mean, 4)
|
sample = torch.abs(sample)
|
||||||
ratio_nor = torch.where(torch.isnan(ratio_nor), 1.0, ratio_nor)
|
|
||||||
label = sample * ratio_nor
|
|
||||||
|
|
||||||
loss = F.l1_loss(sample, label)
|
sample_nz = sample[abs > 0]
|
||||||
|
label_nz = label[abs > 0]
|
||||||
|
loss = F.l1_loss(sample_nz, label_nz)
|
||||||
model.conv1.weight.grad = None
|
model.conv1.weight.grad = None
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
# if epoch >= (epochs - 1):
|
# if epoch >= (epochs - 1):
|
||||||
# continue
|
# continue
|
||||||
model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 0.001
|
model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 0.1
|
||||||
model.conv1.weight.data = model.normal_conv1_weight()
|
model.conv1.weight.data = model.normal_conv1_weight()
|
||||||
|
|
||||||
if (i + 1) % 100 == 0:
|
if (i + 1) % 100 == 0:
|
||||||
|
@ -168,10 +181,7 @@ w = model.conv1.weight.data
|
||||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png", Value2Log=True)
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png", Value2Log=True)
|
||||||
|
|
||||||
# model.conv1.weight.data = torch.rand(model.conv1.weight.data.shape, device=device)
|
# model.conv1.weight.data = torch.rand(model.conv1.weight.data.shape, device=device)
|
||||||
|
# model.conv2.weight.data = torch.ones(model.conv2.weight.data.shape, device=device)
|
||||||
# loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
|
||||||
# images, labels = next(iter(loader))
|
|
||||||
# images = images.to(device)
|
|
||||||
|
|
||||||
# Train the model
|
# Train the model
|
||||||
model.conv1.weight.requires_grad = False
|
model.conv1.weight.requires_grad = False
|
||||||
|
|
Loading…
Reference in New Issue