Refine model define.
This commit is contained in:
parent
bff65b189d
commit
e3b63f4635
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -1,26 +1,23 @@
|
|||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
from model.qwen_module import QwenModule
|
||||
from model.modeling_wit import QwenRunner
|
||||
from model.tokenization_qwen import QWenTokenizer
|
||||
from model.qwen_module import ModelRunner
|
||||
import numpy as np
|
||||
|
||||
import configuration
|
||||
import dataset.dataset as ds
|
||||
import dataset.node_tree as nt
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# checkpoint_path = "log/bigger/version_0/checkpoints/epoch=19-step=98720.ckpt"
|
||||
checkpoint_path = "log/bigger/version_1/checkpoints/epoch=14-step=74040.ckpt"
|
||||
checkpoint_path = "log/bigger/version_3/checkpoints/epoch=46-step=231992.ckpt"
|
||||
|
||||
qwen = QwenModule.load_from_checkpoint(checkpoint_path=checkpoint_path)
|
||||
qwen.eval()
|
||||
conf = qwen.config
|
||||
torch.manual_seed(conf.seed)
|
||||
np.random.seed(conf.seed)
|
||||
runner = QwenRunner(qwen.llm)
|
||||
runner = ModelRunner(qwen.llm)
|
||||
|
||||
# batch = torch.tensor([[11, 0, 3, 7, 15, 8, 10, 7, 14, 13, 1, 12, 13]], dtype=torch.int64)
|
||||
# sorted_logits, sorted_indices = runner.ChatTokens(batch, sample=False)
|
||||
|
@ -43,4 +40,4 @@ if __name__ == "__main__":
|
|||
if item[i] != next_token:
|
||||
node.set_seq_prop(i, "ERR_" + str(next_token))
|
||||
print(str(item[i]) + " " + str(next_token) + " ERROR")
|
||||
node.print()
|
||||
# node.print()
|
||||
|
|
|
@ -1,10 +1,3 @@
|
|||
import copy
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import gc
|
||||
from tqdm import auto as tqdm_lib
|
||||
import json
|
||||
from typing import Optional, Tuple, Union, Callable, List, Any, Generator
|
||||
from einops import rearrange
|
||||
|
||||
|
@ -13,92 +6,73 @@ import torch.nn.functional as F
|
|||
import torch.utils.checkpoint
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from torch import nn
|
||||
from safetensors.torch import load_file as safe_load_file
|
||||
from safetensors.torch import save_file as safe_save_file
|
||||
|
||||
from model.qwen_generation_utils import (
|
||||
make_context,
|
||||
decode_tokens,
|
||||
)
|
||||
|
||||
sys.path.append("..")
|
||||
from tools import show
|
||||
from tools import mem_tracker
|
||||
|
||||
# tracker = mem_tracker.MemTracker()
|
||||
# tracker.track()
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
return self._norm(x.float()).type_as(x) * self.weight
|
||||
|
||||
|
||||
class QWenAttention(nn.Module):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.split_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.c_attn = nn.Linear(config.hidden_size, 3 * self.hidden_size)
|
||||
self.c_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=not config.no_bias)
|
||||
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
||||
self.index = index
|
||||
|
||||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||||
tensor = tensor.view(new_shape)
|
||||
return tensor
|
||||
|
||||
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
||||
tensor = tensor.contiguous()
|
||||
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
||||
return tensor.view(new_shape)
|
||||
|
||||
|
||||
class QWenMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
ff_dim_in = config.intermediate_size // 2
|
||||
self.w1 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
|
||||
self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
|
||||
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
||||
|
||||
|
||||
class QWenBlock(nn.Module):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
self.ln_1 = RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.attn = QWenAttention(config, index)
|
||||
self.ln_2 = RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.mlp = QWenMLP(config)
|
||||
self.index = index
|
||||
|
||||
|
||||
class QWenModel(nn.Module):
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
norm = x.float() * torch.rsqrt(x.float().pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
return norm.type_as(x) * self.weight
|
||||
|
||||
class Block(nn.Module):
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.split_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.c_attn = nn.Linear(config.hidden_size, 3 * self.hidden_size)
|
||||
self.c_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=not config.no_bias)
|
||||
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
||||
self.index = index
|
||||
|
||||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||||
tensor = tensor.view(new_shape)
|
||||
return tensor
|
||||
|
||||
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
||||
tensor = tensor.contiguous()
|
||||
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
||||
return tensor.view(new_shape)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
ff_dim_in = config.intermediate_size // 2
|
||||
self.w1 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
|
||||
self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
|
||||
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
||||
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
self.ln_1 = QWenModel.RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.attn = QWenModel.Block.Attention(config, index)
|
||||
self.ln_2 = QWenModel.RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.mlp = QWenModel.Block.MLP(config)
|
||||
self.index = index
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.drop = nn.Dropout(config.emb_dropout_prob)
|
||||
self.dim = config.hidden_size // config.num_attention_heads
|
||||
|
||||
self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
|
||||
self.ln_f = RMSNorm(
|
||||
self.h = nn.ModuleList([QWenModel.Block(config, i) for i in range(config.num_hidden_layers)])
|
||||
self.ln_f = QWenModel.RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
|
@ -141,201 +115,7 @@ class QWenLMHeadModel(nn.Module):
|
|||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
runner = QwenRunner(self)
|
||||
return runner.forwardQWen(input_ids, labels)
|
||||
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
||||
print(f"loading weights file {resolved_archive_file}")
|
||||
with open(resolved_archive_file, "r") as f:
|
||||
index = json.loads(f.read())
|
||||
shard_filenames = sorted(set(index["weight_map"].values()))
|
||||
resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
|
||||
model = cls._load_pretrained_model(resolved_archive_file)
|
||||
return model
|
||||
|
||||
def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
|
||||
metadata = getattr(state_dict, "_metadata", None)
|
||||
state_dict = state_dict.copy()
|
||||
if metadata is not None:
|
||||
state_dict._metadata = metadata
|
||||
error_msgs = []
|
||||
|
||||
def load(module: nn.Module, state_dict, prefix=""):
|
||||
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||||
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||||
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
||||
module._load_from_state_dict(*args)
|
||||
|
||||
for name, child in module._modules.items():
|
||||
if child is not None:
|
||||
load(child, state_dict, prefix + name + ".")
|
||||
|
||||
load(model_to_load, state_dict, prefix=start_prefix)
|
||||
del state_dict
|
||||
return error_msgs
|
||||
|
||||
def _load_pretrained_model(cls, resolved_archive_file):
|
||||
start_prefix = ""
|
||||
model_to_load = cls
|
||||
if len(resolved_archive_file) > 1:
|
||||
resolved_archive_file = tqdm_lib.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
||||
for shard_file in resolved_archive_file:
|
||||
state_dict = safe_load_file(shard_file)
|
||||
cls._load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||||
del state_dict # force memory release
|
||||
gc.collect()
|
||||
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
|
||||
return cls
|
||||
|
||||
|
||||
class QwenRunner:
|
||||
def __init__(self, qwen):
|
||||
self.qwen = qwen
|
||||
# torch.backends.cuda.enable_flash_sdp(True)
|
||||
|
||||
@torch.no_grad()
|
||||
def ChatTokens(self, input_ids, sample=True):
|
||||
qwen = self.qwen
|
||||
input_ids = input_ids.to(next(qwen.parameters()).device)
|
||||
outputs, loss = self.forwardQWen(input_ids)
|
||||
next_token_scores = outputs[:, -1, :]
|
||||
next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
|
||||
if sample:
|
||||
next_token_scores = self.top_p(next_token_scores)
|
||||
return self.sample(next_token_scores)
|
||||
else:
|
||||
return torch.sort(next_token_scores, descending=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def Chat(
|
||||
self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
query_assistant: str,
|
||||
gen_length=0,
|
||||
system: str = "You are a helpful assistant.",
|
||||
history=[],
|
||||
):
|
||||
qwen = self.qwen
|
||||
history = copy.deepcopy(history)
|
||||
self.qwen.config.pad_token_id = tokenizer.eod_id
|
||||
self.qwen.config.eos_token_id = tokenizer.eod_id
|
||||
raw_text, context_tokens = self.prepareInput(tokenizer, query, query_assistant, history, system)
|
||||
input_ids = torch.tensor([context_tokens]).to(next(qwen.parameters()).device)
|
||||
self.unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
||||
input_length = input_ids.shape[1]
|
||||
while True:
|
||||
outputs, loss = self.forwardQWen(input_ids)
|
||||
next_token_scores = outputs[:, -1, :]
|
||||
|
||||
next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
|
||||
next_token_scores = self.top_p(next_token_scores)
|
||||
next_tokens = self.sample(next_token_scores)
|
||||
finish, next_tokens = self.isFinish(next_tokens)
|
||||
if finish:
|
||||
break
|
||||
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
if gen_length != 0 and (input_length + gen_length) < input_ids.shape[1]:
|
||||
break
|
||||
|
||||
decoded, response, end_reason = decode_tokens(
|
||||
input_ids[0],
|
||||
tokenizer,
|
||||
raw_text_len=len(raw_text),
|
||||
context_length=len(context_tokens),
|
||||
errors="replace",
|
||||
)
|
||||
history.append((query, response))
|
||||
return input_ids[0].cpu().tolist(), history, decoded
|
||||
|
||||
def _rotate_half(self, x):
|
||||
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
||||
x1, x2 = x.unbind(dim=-2)
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
def apply_rotary_pos_emb(self, t, freqs):
|
||||
rot_dim = freqs[0].shape[-1]
|
||||
cos, sin = freqs
|
||||
t_float = t.float()
|
||||
t_rot = t_float[..., :rot_dim]
|
||||
t_pass = t_float[..., rot_dim:]
|
||||
t_rot = (t_rot * cos) + (self._rotate_half(t_rot) * sin)
|
||||
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
|
||||
|
||||
def split_heads(
|
||||
self,
|
||||
attention,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
):
|
||||
atten = attention
|
||||
mixed_x_layer = atten.c_attn(hidden_states)
|
||||
query, key, value = mixed_x_layer.split(atten.split_size, dim=2)
|
||||
query = atten._split_heads(query, atten.num_heads, atten.head_dim)
|
||||
key = atten._split_heads(key, atten.num_heads, atten.head_dim)
|
||||
value = atten._split_heads(value, atten.num_heads, atten.head_dim)
|
||||
return query, key, value
|
||||
|
||||
def pos_emb(self, query, key, rotary_pos_emb_list):
|
||||
rotary_pos_emb = rotary_pos_emb_list[0]
|
||||
rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
|
||||
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||||
query = self.apply_rotary_pos_emb(query, rotary_pos_emb[0])
|
||||
key = self.apply_rotary_pos_emb(key, rotary_pos_emb[1])
|
||||
return query, key
|
||||
|
||||
def attention(self, attention, query, key, value, causal_mask):
|
||||
query = query.permute(0, 2, 1, 3)
|
||||
key = key.permute(0, 2, 1, 3)
|
||||
value = value.permute(0, 2, 1, 3)
|
||||
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
|
||||
context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim)
|
||||
attn_output = attention.c_proj(context_layer)
|
||||
return attn_output
|
||||
|
||||
def build_mask(self, query):
|
||||
size = query.size(1)
|
||||
causal_mask = torch.tril(torch.ones((size, size), dtype=torch.bool, device=query.device)).view(1, 1, size, size)
|
||||
return causal_mask
|
||||
|
||||
def forwardAttention(
|
||||
self,
|
||||
attention,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
query, key, value = self.split_heads(attention, hidden_states)
|
||||
query, key = self.pos_emb(query, key, rotary_pos_emb_list)
|
||||
causal_mask = self.build_mask(query)
|
||||
return self.attention(attention, query, key, value, causal_mask)
|
||||
|
||||
def forwardQWenBlock(
|
||||
self,
|
||||
block,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
layernorm_output = block.ln_1(hidden_states)
|
||||
|
||||
attn_outputs = self.forwardAttention(block.attn, layernorm_output, rotary_pos_emb_list)
|
||||
layernorm_input = attn_outputs + hidden_states
|
||||
|
||||
layernorm_output = block.ln_2(layernorm_input)
|
||||
a1 = block.mlp.w1(layernorm_output)
|
||||
a2 = block.mlp.w2(layernorm_output)
|
||||
intermediate_parallel = a1 * F.silu(a2)
|
||||
mlp_output = block.mlp.c_proj(intermediate_parallel)
|
||||
|
||||
hidden_states = layernorm_input + mlp_output
|
||||
return hidden_states
|
||||
|
||||
def forwardQWen(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
transfm = self.qwen.transformer
|
||||
transfm = self.transformer
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
hidden_states = transfm.wte(input_ids)
|
||||
|
@ -349,12 +129,12 @@ class QwenRunner:
|
|||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
for block in transfm.h:
|
||||
hidden_states = self.forwardQWenBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
|
||||
hidden_states = self.forwardBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
|
||||
|
||||
hidden_states = transfm.ln_f(hidden_states)
|
||||
hidden_states = hidden_states.view(output_shape)
|
||||
|
||||
lm_logits = self.qwen.lm_head(hidden_states)
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
|
@ -362,7 +142,7 @@ class QwenRunner:
|
|||
shift_labels = labels[..., 1:].contiguous().view(-1)
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
||||
mask = shift_labels < self.qwen.config.vocab_size
|
||||
mask = shift_labels < self.config.vocab_size
|
||||
shift_labels = shift_labels[mask]
|
||||
shift_logits = shift_logits[mask]
|
||||
# m = torch.max(shift_logits, 1).indices.cpu().numpy()
|
||||
|
@ -371,43 +151,60 @@ class QwenRunner:
|
|||
|
||||
return lm_logits, loss
|
||||
|
||||
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
||||
return make_context(tokenizer, query, query_assistant, history=history, system=system)
|
||||
def apply_rotary_pos_emb(self, t, freqs):
|
||||
rot_dim = freqs[0].shape[-1]
|
||||
cos, sin = freqs
|
||||
t_float = t.float()
|
||||
t_rot = t_float[..., :rot_dim]
|
||||
t_pass = t_float[..., rot_dim:]
|
||||
|
||||
def repetition_penalty(self, input_ids, next_token_scores):
|
||||
penalty = self.qwen.config.repetition_penalty
|
||||
score = torch.gather(next_token_scores, 1, input_ids)
|
||||
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
||||
score = torch.where(score < 0, score * penalty, score / penalty)
|
||||
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
||||
return next_token_scores
|
||||
x = rearrange(t_rot, "... (j d) -> ... j d", j=2)
|
||||
x1, x2 = x.unbind(dim=-2)
|
||||
_rotate_half = torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
def top_p(self, next_token_scores):
|
||||
top_p = self.qwen.config.top_p
|
||||
filter_value = -float("Inf")
|
||||
min_tokens_to_keep = 1
|
||||
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
||||
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||||
# Keep at least min_tokens_to_keep
|
||||
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
||||
return next_token_scores
|
||||
t_rot = (t_rot * cos) + (_rotate_half * sin)
|
||||
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
|
||||
|
||||
def sample(self, next_token_scores):
|
||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
return next_tokens
|
||||
def forwardBlock(
|
||||
self,
|
||||
block,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
layernorm_output = block.ln_1(hidden_states)
|
||||
|
||||
def isFinish(self, next_tokens):
|
||||
pad_token_id = self.qwen.config.pad_token_id
|
||||
eos_token_id_tensor = torch.tensor([self.qwen.config.eos_token_id]).to(next_tokens.device)
|
||||
# split_heads
|
||||
atten = block.attn
|
||||
mixed_x_layer = atten.c_attn(layernorm_output)
|
||||
query, key, value = mixed_x_layer.split(atten.split_size, dim=2)
|
||||
query = atten._split_heads(query, atten.num_heads, atten.head_dim)
|
||||
key = atten._split_heads(key, atten.num_heads, atten.head_dim)
|
||||
value = atten._split_heads(value, atten.num_heads, atten.head_dim)
|
||||
# pos_emb
|
||||
rotary_pos_emb = rotary_pos_emb_list[0]
|
||||
rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
|
||||
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||||
query = self.apply_rotary_pos_emb(query, rotary_pos_emb[0])
|
||||
key = self.apply_rotary_pos_emb(key, rotary_pos_emb[1])
|
||||
|
||||
next_tokens = next_tokens * self.unfinished_sequences + pad_token_id * (1 - self.unfinished_sequences)
|
||||
self.unfinished_sequences = self.unfinished_sequences.mul(
|
||||
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
||||
)
|
||||
return self.unfinished_sequences.max() == 0, next_tokens[:, None]
|
||||
# build_mask
|
||||
size = query.size(1)
|
||||
causal_mask = torch.tril(torch.ones((size, size), dtype=torch.bool, device=query.device)).view(1, 1, size, size)
|
||||
|
||||
# attention
|
||||
q = query.permute(0, 2, 1, 3)
|
||||
k = key.permute(0, 2, 1, 3)
|
||||
v = value.permute(0, 2, 1, 3)
|
||||
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask=causal_mask).transpose(1, 2)
|
||||
context_layer = block.attn._merge_heads(attn_output, block.attn.num_heads, block.attn.head_dim)
|
||||
attn_outputs = block.attn.c_proj(context_layer)
|
||||
|
||||
layernorm_input = attn_outputs + hidden_states
|
||||
layernorm_output = block.ln_2(layernorm_input)
|
||||
a1 = block.mlp.w1(layernorm_output)
|
||||
a2 = block.mlp.w2(layernorm_output)
|
||||
intermediate_parallel = a1 * F.silu(a2)
|
||||
mlp_output = block.mlp.c_proj(intermediate_parallel)
|
||||
|
||||
hidden_states = layernorm_input + mlp_output
|
||||
return hidden_states
|
||||
|
|
|
@ -1,5 +1,13 @@
|
|||
import os
|
||||
import gc
|
||||
import json
|
||||
from tqdm import auto as tqdm_lib
|
||||
from torch import nn
|
||||
from safetensors.torch import load_file as safe_load_file
|
||||
from safetensors.torch import save_file as safe_save_file
|
||||
|
||||
from functools import cache
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
@ -9,6 +17,154 @@ from model.modeling_wit import QWenLMHeadModel
|
|||
from configuration import ModelConfig, TrainConfig
|
||||
|
||||
|
||||
class LoadModule:
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
||||
print(f"loading weights file {resolved_archive_file}")
|
||||
with open(resolved_archive_file, "r") as f:
|
||||
index = json.loads(f.read())
|
||||
shard_filenames = sorted(set(index["weight_map"].values()))
|
||||
resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
|
||||
model = LoadModule._load_pretrained_model(cls, resolved_archive_file)
|
||||
return model
|
||||
|
||||
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
|
||||
metadata = getattr(state_dict, "_metadata", None)
|
||||
state_dict = state_dict.copy()
|
||||
if metadata is not None:
|
||||
state_dict._metadata = metadata
|
||||
error_msgs = []
|
||||
|
||||
def load(module: nn.Module, state_dict, prefix=""):
|
||||
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||||
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||||
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
||||
module._load_from_state_dict(*args)
|
||||
|
||||
for name, child in module._modules.items():
|
||||
if child is not None:
|
||||
load(child, state_dict, prefix + name + ".")
|
||||
|
||||
load(model_to_load, state_dict, prefix=start_prefix)
|
||||
del state_dict
|
||||
return error_msgs
|
||||
|
||||
def _load_pretrained_model(cls, resolved_archive_file):
|
||||
start_prefix = ""
|
||||
model_to_load = cls
|
||||
if len(resolved_archive_file) > 1:
|
||||
resolved_archive_file = tqdm_lib.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
||||
for shard_file in resolved_archive_file:
|
||||
state_dict = safe_load_file(shard_file)
|
||||
LoadModule._load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||||
del state_dict # force memory release
|
||||
gc.collect()
|
||||
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
|
||||
return cls
|
||||
|
||||
|
||||
class ModelRunner:
|
||||
def __init__(self, qwen):
|
||||
self.qwen = qwen
|
||||
|
||||
@torch.no_grad()
|
||||
def ChatTokens(self, input_ids, sample=True):
|
||||
qwen = self.qwen
|
||||
input_ids = input_ids.to(next(qwen.parameters()).device)
|
||||
outputs, loss = qwen.forward(input_ids)
|
||||
next_token_scores = outputs[:, -1, :]
|
||||
next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
|
||||
if sample:
|
||||
next_token_scores = self.top_p(next_token_scores)
|
||||
return self.sample(next_token_scores)
|
||||
else:
|
||||
return torch.sort(next_token_scores, descending=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def Chat(
|
||||
self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
query_assistant: str,
|
||||
gen_length=0,
|
||||
system: str = "You are a helpful assistant.",
|
||||
history=[],
|
||||
):
|
||||
qwen = self.qwen
|
||||
history = copy.deepcopy(history)
|
||||
self.qwen.config.pad_token_id = tokenizer.eod_id
|
||||
self.qwen.config.eos_token_id = tokenizer.eod_id
|
||||
raw_text, context_tokens = qwen.prepareInput(tokenizer, query, query_assistant, history, system)
|
||||
input_ids = torch.tensor([context_tokens]).to(next(qwen.parameters()).device)
|
||||
self.unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
||||
input_length = input_ids.shape[1]
|
||||
while True:
|
||||
outputs, loss = self.forward(input_ids)
|
||||
next_token_scores = outputs[:, -1, :]
|
||||
|
||||
next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
|
||||
next_token_scores = self.top_p(next_token_scores)
|
||||
next_tokens = self.sample(next_token_scores)
|
||||
finish, next_tokens = self.isFinish(next_tokens)
|
||||
if finish:
|
||||
break
|
||||
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
if gen_length != 0 and (input_length + gen_length) < input_ids.shape[1]:
|
||||
break
|
||||
|
||||
decoded, response, end_reason = decode_tokens(
|
||||
input_ids[0],
|
||||
tokenizer,
|
||||
raw_text_len=len(raw_text),
|
||||
context_length=len(context_tokens),
|
||||
errors="replace",
|
||||
)
|
||||
history.append((query, response))
|
||||
return input_ids[0].cpu().tolist(), history, decoded
|
||||
|
||||
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
||||
return make_context(tokenizer, query, query_assistant, history=history, system=system)
|
||||
|
||||
def repetition_penalty(self, input_ids, next_token_scores):
|
||||
penalty = self.qwen.config.repetition_penalty
|
||||
score = torch.gather(next_token_scores, 1, input_ids)
|
||||
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
||||
score = torch.where(score < 0, score * penalty, score / penalty)
|
||||
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
||||
return next_token_scores
|
||||
|
||||
def top_p(self, next_token_scores):
|
||||
top_p = self.qwen.config.top_p
|
||||
filter_value = -float("Inf")
|
||||
min_tokens_to_keep = 1
|
||||
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
||||
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||||
# Keep at least min_tokens_to_keep
|
||||
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
||||
return next_token_scores
|
||||
|
||||
def sample(self, next_token_scores):
|
||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
return next_tokens
|
||||
|
||||
def isFinish(self, next_tokens):
|
||||
pad_token_id = self.qwen.config.pad_token_id
|
||||
eos_token_id_tensor = torch.tensor([self.qwen.config.eos_token_id]).to(next_tokens.device)
|
||||
|
||||
next_tokens = next_tokens * self.unfinished_sequences + pad_token_id * (1 - self.unfinished_sequences)
|
||||
self.unfinished_sequences = self.unfinished_sequences.mul(
|
||||
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
||||
)
|
||||
return self.unfinished_sequences.max() == 0, next_tokens[:, None]
|
||||
|
||||
|
||||
class QwenModule(pl.LightningModule):
|
||||
def __init__(self, conf: TrainConfig = None):
|
||||
self.config = conf
|
||||
|
@ -24,7 +180,7 @@ class QwenModule(pl.LightningModule):
|
|||
if pretrained_model_dir != None:
|
||||
from modelscope import snapshot_download
|
||||
|
||||
model = model.from_pretrained(snapshot_download(pretrained_model_dir))
|
||||
model = LoadModule.from_pretrained(snapshot_download(pretrained_model_dir))
|
||||
self.llm = self.register_core_module(model)
|
||||
self.learning_rate = learning_rate
|
||||
self.use_tril_attention_mask = use_tril_attention_mask
|
||||
|
|
|
@ -2,7 +2,7 @@ import pytorch_lightning as pl
|
|||
import torch
|
||||
|
||||
from model.qwen_module import QwenModule
|
||||
from model.modeling_wit import QwenRunner
|
||||
from model.modeling_wit import ModelRunner
|
||||
from model.tokenization_qwen import QWenTokenizer
|
||||
import numpy as np
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ if __name__ == "__main__":
|
|||
conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
conf.learning_rate = 0.0001
|
||||
conf.use_tril_attention_mask = None
|
||||
conf.precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
conf.precision = "16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
conf.train_batch_size = 16
|
||||
conf.val_batch_size = 2
|
||||
conf.num_proc = 8
|
||||
|
@ -38,7 +38,7 @@ if __name__ == "__main__":
|
|||
config.vocab_size = 32
|
||||
config.hidden_size = 128 # 128 1024 2048 32
|
||||
config.num_hidden_layers = 3 # 6 12 24 3
|
||||
config.num_attention_heads = 16 # 8 8 16
|
||||
config.num_attention_heads = 8 # 8 8 16
|
||||
|
||||
torch.manual_seed(conf.seed)
|
||||
np.random.seed(conf.seed)
|
||||
|
|
Loading…
Reference in New Issue