Regine wit config method.

This commit is contained in:
Colin 2025-02-17 19:41:40 +08:00
parent cdee69bf54
commit e635ce0df4
19 changed files with 404 additions and 240 deletions

4
.gitignore vendored
View File

@ -9,4 +9,6 @@ checkpoints
build build
log log
logs logs
data data
mlruns

View File

@ -1,2 +0,0 @@
from qwen.modeling_qwen import QWenLMHeadModel
from qwen.configuration_qwen import QWenConfig

View File

@ -1,7 +1,3 @@
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
class ModelConfig: class ModelConfig:
@ -40,3 +36,37 @@ class ModelConfig:
self.top_p = 0.8 self.top_p = 0.8
self.repetition_penalty = 1.1 self.repetition_penalty = 1.1
self.model_max_length = 8192 self.model_max_length = 8192
class MeaningDatasetConfig:
def __init__(self):
self.level_ratio = 5
self.level = 5
self.dataset_level = 3
self.min_subitem = 2
self.mask_level = [0, 1, 2]
self.mask_idx = [0, 0, -1]
class DatasetConfig:
def __init__(self):
self.name = "meaning"
self.meaning = MeaningDatasetConfig()
class TrainConfig:
def __init__(self):
self.name = "bigger" # current train process name
self.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
self.learning_rate = 0.0001
self.use_tril_attention_mask = None
self.precision = "16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
self.train_batch_size = 4
self.val_batch_size = 4
self.num_proc = 8
self.max_epochs = 1000
self.strategy = "auto"
self.resume_from_ckpt_path = None
self.seed = 42
self.dataloader_works = 2
self.model_config = ModelConfig()
self.dataset = DatasetConfig()

42
wit/dataset.py Normal file
View File

@ -0,0 +1,42 @@
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
from special_dataset import SpecialDataset
from torch.utils.data import random_split, DataLoader
def InitDataset(config):
train_batch_size = config.train_batch_size
val_batch_size = config.val_batch_size
num_proc = config.num_proc
if config.dataset.name == "special":
raw_dataset = SpecialDataset()
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
train_dataloader = DataLoader(
train_dataset,
batch_size=train_batch_size,
num_workers=num_proc,
persistent_workers=True,
shuffle=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=val_batch_size,
num_workers=num_proc,
persistent_workers=True,
)
return train_dataloader, val_dataloader
if config.dataset.name == "meaning":
conf = config.dataset.meaning
vocab = config.model_config.vocab_size
start = vocab * (conf.level_ratio**conf.level)
size = vocab * int((conf.level_ratio**conf.dataset_level))
raw_dataset = MeaningDataset(start, start + size, vocab, None, conf.level_ratio, conf.min_subitem)
# print(raw_dataset.token_frequency())
raw_dataset.set_mask(conf.mask_level, conf.mask_idx)
train_dataset, val_dataset = raw_dataset.split(0.9)
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size).dataloader(
config.dataloader_works
)
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size).dataloader(config.dataloader_works)
return train_dataloader, val_dataloader

View File

@ -2,13 +2,13 @@ import torch
import sys import sys
from modelscope import snapshot_download from modelscope import snapshot_download
from modeling_wit import QWenLMHeadModel from wit.model.modeling_wit import QWenLMHeadModel
from modeling_wit import QwenRunner from wit.model.modeling_wit import QwenRunner
from wit.configuration import ModelConfig from wit.configuration import ModelConfig
from tokenization_qwen import QWenTokenizer from wit.model.tokenization_qwen import QWenTokenizer
from qwen_generation_utils import ( from wit.model.qwen_generation_utils import (
make_context, make_context,
decode_tokens, decode_tokens,
) )

View File

@ -9,10 +9,9 @@ import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from lit_module import LitModule from lit_module import LitModule
from tokenization_qwen import QWenTokenizer from wit.model.tokenization_qwen import QWenTokenizer
from logger import TBLogger from logger import TBLogger
from special_dataset import SpecialDataset
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
from wit.configuration import ModelConfig from wit.configuration import ModelConfig

View File

@ -5,10 +5,8 @@ import pytorch_lightning as pl
import torch import torch
import torchmetrics import torchmetrics
from modeling_wit import QWenLMHeadModel from model.modeling_wit import QWenLMHeadModel
from wit.configuration import ModelConfig from configuration import ModelConfig
from transformers import AutoConfig
class LitModule(pl.LightningModule): class LitModule(pl.LightningModule):
@ -63,7 +61,7 @@ class LitModule(pl.LightningModule):
logits = logits.contiguous().view(-1, logits.size(-1)) logits = logits.contiguous().view(-1, logits.size(-1))
labels = batch["labels"][..., 1:] labels = batch["labels"][..., 1:]
labels = labels.contiguous().view(-1) labels = labels.contiguous().view(-1)
if batch["mask"] != None: if "mask" in batch and batch["mask"] != None:
label_mask = batch["mask"][..., 1:] label_mask = batch["mask"][..., 1:]
label_mask = label_mask.contiguous().view(-1) label_mask = label_mask.contiguous().view(-1)
logits = logits[label_mask] logits = logits[label_mask]

View File

@ -16,7 +16,7 @@ from torch import nn
from safetensors.torch import load_file as safe_load_file from safetensors.torch import load_file as safe_load_file
from safetensors.torch import save_file as safe_save_file from safetensors.torch import save_file as safe_save_file
from qwen_generation_utils import ( from model.qwen_generation_utils import (
make_context, make_context,
decode_tokens, decode_tokens,
) )

View File

@ -0,0 +1,294 @@
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Generation support."""
from typing import Tuple, List, Union, Iterable
import numpy as np
import torch
import torch.nn.functional as F
from transformers import PreTrainedTokenizer
from transformers import logging
from transformers.generation import LogitsProcessor
logger = logging.get_logger(__name__)
# Types.
HistoryType = List[Tuple[str, str]]
TokensType = List[int]
BatchTokensType = List[List[int]]
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
for tokens in batch:
context_length = len(tokens)
if context_length < seq_length:
tokens.extend([pad_id] * (seq_length - context_length))
return batch
def get_ltor_masks_and_position_ids(
data,
eod_token,
reset_position_ids,
reset_attention_mask,
eod_mask_loss,
):
"""Build masks and position id for left to right model."""
# Extract batch size and sequence length.
micro_batch_size, seq_length = data.size()
# Attention mask (lower triangular).
if reset_attention_mask:
att_mask_batch = micro_batch_size
else:
att_mask_batch = 1
attention_mask = torch.tril(torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view(
att_mask_batch, 1, seq_length, seq_length
)
# Loss mask.
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
if eod_mask_loss:
loss_mask[data == eod_token] = 0.0
# Position ids.
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
# We need to clone as the ids will be modifed based on batch index.
if reset_position_ids:
position_ids = position_ids.clone()
if reset_position_ids or reset_attention_mask:
# Loop through the batches:
for b in range(micro_batch_size):
# Find indecies where EOD token is.
eod_index = position_ids[b, data[b] == eod_token]
# Detach indecies from positions if going to modify positions.
if reset_position_ids:
eod_index = eod_index.clone()
# Loop through EOD indecies:
prev_index = 0
for j in range(eod_index.size()[0]):
i = eod_index[j]
# Mask attention loss.
if reset_attention_mask:
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
# Reset positions.
if reset_position_ids:
position_ids[b, (i + 1) :] -= i + 1 - prev_index
prev_index = i + 1
# Convert attention mask to binary:
attention_mask = attention_mask < 0.5
return attention_mask, loss_mask, position_ids
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
"""Generate batch from context tokens."""
# Move to GPU.
tokens = context_tokens.contiguous().to(context_tokens.device)
# Get the attention mask and postition ids.
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
tokens,
eod_id,
reset_position_ids=False,
reset_attention_mask=False,
eod_mask_loss=False,
)
return tokens, attention_mask, position_ids
def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
query_assistant: str = "",
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
):
if history is None:
history = []
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [tokenizer.im_start_id]
im_end_tokens = [tokenizer.im_end_id]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
return f"{role}\n{content}", tokenizer.encode(role, allowed_special=set()) + nl_tokens + tokenizer.encode(
content, allowed_special=set()
)
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
assistant_tokens = tokenizer.encode(query_assistant, allowed_special=set())
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
response_text, response_tokens_part = _tokenize_str("assistant", turn_response)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
current_context_size = len(system_tokens) + len(next_context_tokens) + len(context_tokens)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", query)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
+ assistant_tokens
)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n{query_assistant}"
return raw_text, context_tokens
def decode_tokens(
tokens: Union[torch.LongTensor, TokensType],
tokenizer: PreTrainedTokenizer,
raw_text_len: int = 0,
context_length: int = 0,
errors: str = "replace",
) -> str:
if torch.is_tensor(tokens):
tokens = tokens.cpu().numpy().tolist()
end_reason = f"Gen length {len(tokens)}"
eod_token_idx = context_length
for eod_token_idx in range(context_length, len(tokens)):
if tokens[eod_token_idx] in [tokenizer.im_start_id, tokenizer.im_end_id]:
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
break
decoded = tokenizer.decode(tokens, errors=errors)
decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)
trim_decode_tokens = decode_tokens[raw_text_len:]
trim_decode_tokens = trim_decode_tokens.strip()
return decoded, trim_decode_tokens, end_reason
class StopWordsLogitsProcessor(LogitsProcessor):
"""
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
Args:
stop_words_ids (:obj:`List[List[int]]`):
List of list of token ids of stop ids. In order to get the tokens of the words
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
add_prefix_space=True).input_ids`.
eos_token_id (:obj:`int`):
The id of the `end-of-sequence` token.
"""
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
raise ValueError(f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}.")
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
raise ValueError(f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in stop_word_ids)
for stop_word_ids in stop_words_ids
):
raise ValueError(
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
)
self.stop_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids))
self.eos_token_id = eos_token_id
for stop_token_seq in self.stop_words_ids:
assert len(stop_token_seq) > 0, "Stop words token sequences {} cannot have an empty list".format(
stop_words_ids
)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
stopped_samples = self._calc_stopped_samples(input_ids)
for i, should_stop in enumerate(stopped_samples):
if should_stop:
scores[i, self.eos_token_id] = float(2**15)
return scores
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
elif len(tokens) > len(prev_tokens):
# if bad word tokens are longer then prev input_ids they can't be equal
return False
elif prev_tokens[-len(tokens) :].tolist() == tokens:
# if tokens match
return True
else:
return False
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
stopped_samples = []
for prev_input_ids_slice in prev_input_ids:
match = False
for stop_token_seq in self.stop_words_ids:
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
# if tokens do not match continue
match = True
break
stopped_samples.append(match)
return stopped_samples
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
"""This function has been mostly taken from huggingface conversational
ai code at
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
conversational-ai-with-transfer-learning-2d818ac26313"""
if top_k > 0:
# Remove all tokens with a probability less than the
# last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
# Cconvert to 1D
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token
# above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
for i in range(sorted_indices.size(0)):
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
logits[i][indices_to_remove] = filter_value
return logits
def switch(val1, val2, boolean):
boolean = boolean.type_as(val1)
return (1 - boolean) * val1 + boolean * val2

View File

@ -1,82 +0,0 @@
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader, Dataset, random_split
from lit_module import LitModule
from logger import TBLogger
from wit.configuration import ModelConfig
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 4
val_batch_size = 8
num_proc = 8
max_epochs = 1000
strategy = "auto"
resume_from_ckpt_path = None
seed = 42
class StressDataset(Dataset):
def __init__(self, start=1, end=128, size=32768): # 1048576 32768
self.size = size
self.features = []
self.data = torch.randint(start, end, [size, 2048]).long()
def __len__(self):
return self.size
def __getitem__(self, idx):
output = {}
data = self.data[idx]
output["input_ids"] = data
output["labels"] = data.clone()
output["token_type_ids"] = torch.zeros(data.shape)
return output
if __name__ == "__main__":
torch.manual_seed(seed)
config = ModelConfig()
config.vocab_size = 4096
config.hidden_size = 1024 # 128 1024 2048 32
config.num_hidden_layers = 6 # 6 12 24 3
config.num_attention_heads = 8 # 8 8 16
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
raw_dataset = StressDataset()
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
train_dataloader = DataLoader(
train_dataset,
batch_size=train_batch_size,
num_workers=num_proc,
persistent_workers=True,
shuffle=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=val_batch_size,
num_workers=num_proc,
persistent_workers=True,
)
lit_trainer = pl.Trainer(
accelerator="gpu",
devices=2,
precision=precision,
logger=TBLogger("./", default_hp_metric=False),
strategy=strategy,
max_epochs=max_epochs,
)
lit_trainer.fit(
lit_module,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
ckpt_path=resume_from_ckpt_path,
)

View File

@ -1,83 +1,45 @@
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lit_module import LitModule from model.lit_module import LitModule
from tokenization_qwen import QWenTokenizer from wit.model.tokenization_qwen import QWenTokenizer
from logger import TBLogger from logger import MLFLogger
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader import configuration
from wit.configuration import ModelConfig import dataset as ds
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 1
val_batch_size = 1
num_proc = 8
max_epochs = 1000
strategy = "auto"
resume_from_ckpt_path = None
seed = 42
dataloader_works = 2
vocab_size = 256
level_ratio = 5
level = 5
dataset_level = 3
min_subitem = 2
hidden_size = 128 # 128 1024 2048 32
num_attention_heads = 16 # 8 8 16
num_hidden_layers = 6 # 6 12 24 3
mask_level = [0, 1, 2]
mask_idx = [0, 0, -1]
# name = "vocab_ratio_level_data_hidden_head_layer"
# name = "mask_level_idx"
name = "bigger"
ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{min_subitem}" + "_" + f"{dataset_level}"
ver = ver + "_" + f"{hidden_size}" + "_" + f"{num_attention_heads}" + "_" + f"{num_hidden_layers}"
ver = ver + "_" + f"{mask_level}" + "_" + f"{mask_idx}"
if __name__ == "__main__": if __name__ == "__main__":
torch.manual_seed(seed)
config = ModelConfig() train_config = configuration.TrainConfig()
config.vocab_size = vocab_size config = train_config.model_config
config.hidden_size = hidden_size
config.num_hidden_layers = num_hidden_layers
config.num_attention_heads = num_attention_heads
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask) torch.manual_seed(train_config.seed)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
start = vocab_size * (level_ratio**level) config.vocab_size = 256
size = vocab_size * int((level_ratio**dataset_level)) config.hidden_size = 128 # 128 1024 2048 32
config.num_hidden_layers = 6 # 6 12 24 3
config.num_attention_heads = 16 # 8 8 16
raw_dataset = MeaningDataset(start, start + size, vocab_size, None, level_ratio, min_subitem) lit_module = LitModule(
# print(raw_dataset.token_frequency()) train_config.pretrain_model_name, train_config.learning_rate, config, train_config.use_tril_attention_mask
raw_dataset.set_mask(mask_level, mask_idx) )
train_dataset, val_dataset = raw_dataset.split(0.9) tokenizer = QWenTokenizer("./model/wit_b64.tiktoken", "./model/wit_char.tiktoken")
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size).dataloader(dataloader_works)
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size).dataloader(dataloader_works)
train_dataloader, val_dataloader = ds.InitDataset(train_config)
# for i in range(len(train_dataloader)): # for i in range(len(train_dataloader)):
# print(train_dataloader.print_mapping(i)) # print(train_dataloader.print_mapping(i))
torch.set_float32_matmul_precision("medium") torch.set_float32_matmul_precision("medium")
lit_trainer = pl.Trainer( lit_trainer = pl.Trainer(
accelerator="cuda", accelerator="cuda",
precision=precision, precision=train_config.precision,
logger=TBLogger("./log/", name=name, version=ver, default_hp_metric=False), logger=MLFLogger("./log/", run_name=train_config.name),
strategy=strategy, strategy=train_config.strategy,
max_epochs=max_epochs, max_epochs=train_config.max_epochs,
) )
lit_trainer.fit( lit_trainer.fit(
lit_module, lit_module,
train_dataloaders=train_dataloader, train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader, val_dataloaders=val_dataloader,
ckpt_path=resume_from_ckpt_path, ckpt_path=train_config.resume_from_ckpt_path,
) )

View File

@ -1,79 +0,0 @@
import argparse
from functools import partial
from itertools import chain
from typing import Dict, Tuple
import datasets
import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from lit_module import LitModule
from tokenization_qwen import QWenTokenizer
from logger import TBLogger
from special_dataset import SpecialDataset
from meaning_dataset import MeaningDataset
from wit.configuration import ModelConfig
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 128
val_batch_size = 128
num_proc = 8
max_epochs = 1000
strategy = "auto"
resume_from_ckpt_path = None
seed = 42
vocab_size = 256
if __name__ == "__main__":
torch.manual_seed(seed)
config = ModelConfig()
config.vocab_size = vocab_size
config.hidden_size = 128 # 128 1024 2048 32
config.num_hidden_layers = 3 # 6 12 24 3
config.num_attention_heads = 8 # 8 8 16
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
raw_dataset = SpecialDataset()
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
it = iter(train_dataset)
print("data samples:")
for i in range(10):
print(next(it)["input_ids"].numpy().tolist())
train_dataloader = DataLoader(
train_dataset,
batch_size=train_batch_size,
num_workers=num_proc,
persistent_workers=True,
shuffle=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=val_batch_size,
num_workers=num_proc,
persistent_workers=True,
)
torch.set_float32_matmul_precision("medium")
lit_trainer = pl.Trainer(
accelerator="gpu",
precision=precision,
logger=TBLogger("./", default_hp_metric=False),
strategy=strategy,
max_epochs=max_epochs,
)
lit_trainer.fit(
lit_module,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
ckpt_path=resume_from_ckpt_path,
)