Regine wit config method.
This commit is contained in:
parent
cdee69bf54
commit
e635ce0df4
|
@ -10,3 +10,5 @@ build
|
|||
log
|
||||
logs
|
||||
data
|
||||
|
||||
mlruns
|
|
@ -1,2 +0,0 @@
|
|||
from qwen.modeling_qwen import QWenLMHeadModel
|
||||
from qwen.configuration_qwen import QWenConfig
|
|
@ -1,7 +1,3 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
class ModelConfig:
|
||||
|
@ -40,3 +36,37 @@ class ModelConfig:
|
|||
self.top_p = 0.8
|
||||
self.repetition_penalty = 1.1
|
||||
self.model_max_length = 8192
|
||||
|
||||
|
||||
class MeaningDatasetConfig:
|
||||
def __init__(self):
|
||||
self.level_ratio = 5
|
||||
self.level = 5
|
||||
self.dataset_level = 3
|
||||
self.min_subitem = 2
|
||||
self.mask_level = [0, 1, 2]
|
||||
self.mask_idx = [0, 0, -1]
|
||||
|
||||
class DatasetConfig:
|
||||
def __init__(self):
|
||||
self.name = "meaning"
|
||||
self.meaning = MeaningDatasetConfig()
|
||||
|
||||
class TrainConfig:
|
||||
def __init__(self):
|
||||
self.name = "bigger" # current train process name
|
||||
self.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
self.learning_rate = 0.0001
|
||||
self.use_tril_attention_mask = None
|
||||
self.precision = "16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
self.train_batch_size = 4
|
||||
self.val_batch_size = 4
|
||||
self.num_proc = 8
|
||||
self.max_epochs = 1000
|
||||
self.strategy = "auto"
|
||||
self.resume_from_ckpt_path = None
|
||||
self.seed = 42
|
||||
self.dataloader_works = 2
|
||||
|
||||
self.model_config = ModelConfig()
|
||||
self.dataset = DatasetConfig()
|
|
@ -0,0 +1,42 @@
|
|||
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
|
||||
from special_dataset import SpecialDataset
|
||||
from torch.utils.data import random_split, DataLoader
|
||||
|
||||
|
||||
def InitDataset(config):
|
||||
|
||||
train_batch_size = config.train_batch_size
|
||||
val_batch_size = config.val_batch_size
|
||||
num_proc = config.num_proc
|
||||
if config.dataset.name == "special":
|
||||
raw_dataset = SpecialDataset()
|
||||
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=train_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
shuffle=True,
|
||||
)
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=val_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
)
|
||||
return train_dataloader, val_dataloader
|
||||
|
||||
if config.dataset.name == "meaning":
|
||||
conf = config.dataset.meaning
|
||||
vocab = config.model_config.vocab_size
|
||||
start = vocab * (conf.level_ratio**conf.level)
|
||||
size = vocab * int((conf.level_ratio**conf.dataset_level))
|
||||
raw_dataset = MeaningDataset(start, start + size, vocab, None, conf.level_ratio, conf.min_subitem)
|
||||
# print(raw_dataset.token_frequency())
|
||||
raw_dataset.set_mask(conf.mask_level, conf.mask_idx)
|
||||
train_dataset, val_dataset = raw_dataset.split(0.9)
|
||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size).dataloader(
|
||||
config.dataloader_works
|
||||
)
|
||||
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size).dataloader(config.dataloader_works)
|
||||
return train_dataloader, val_dataloader
|
|
@ -2,13 +2,13 @@ import torch
|
|||
import sys
|
||||
from modelscope import snapshot_download
|
||||
|
||||
from modeling_wit import QWenLMHeadModel
|
||||
from modeling_wit import QwenRunner
|
||||
from wit.model.modeling_wit import QWenLMHeadModel
|
||||
from wit.model.modeling_wit import QwenRunner
|
||||
from wit.configuration import ModelConfig
|
||||
from tokenization_qwen import QWenTokenizer
|
||||
from wit.model.tokenization_qwen import QWenTokenizer
|
||||
|
||||
|
||||
from qwen_generation_utils import (
|
||||
from wit.model.qwen_generation_utils import (
|
||||
make_context,
|
||||
decode_tokens,
|
||||
)
|
||||
|
|
|
@ -9,10 +9,9 @@ import torch
|
|||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
|
||||
|
||||
from lit_module import LitModule
|
||||
from tokenization_qwen import QWenTokenizer
|
||||
from wit.model.tokenization_qwen import QWenTokenizer
|
||||
from logger import TBLogger
|
||||
|
||||
from special_dataset import SpecialDataset
|
||||
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
|
||||
from wit.configuration import ModelConfig
|
||||
|
||||
|
|
|
@ -5,10 +5,8 @@ import pytorch_lightning as pl
|
|||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from modeling_wit import QWenLMHeadModel
|
||||
from wit.configuration import ModelConfig
|
||||
|
||||
from transformers import AutoConfig
|
||||
from model.modeling_wit import QWenLMHeadModel
|
||||
from configuration import ModelConfig
|
||||
|
||||
|
||||
class LitModule(pl.LightningModule):
|
||||
|
@ -63,7 +61,7 @@ class LitModule(pl.LightningModule):
|
|||
logits = logits.contiguous().view(-1, logits.size(-1))
|
||||
labels = batch["labels"][..., 1:]
|
||||
labels = labels.contiguous().view(-1)
|
||||
if batch["mask"] != None:
|
||||
if "mask" in batch and batch["mask"] != None:
|
||||
label_mask = batch["mask"][..., 1:]
|
||||
label_mask = label_mask.contiguous().view(-1)
|
||||
logits = logits[label_mask]
|
|
@ -16,7 +16,7 @@ from torch import nn
|
|||
from safetensors.torch import load_file as safe_load_file
|
||||
from safetensors.torch import save_file as safe_save_file
|
||||
|
||||
from qwen_generation_utils import (
|
||||
from model.qwen_generation_utils import (
|
||||
make_context,
|
||||
decode_tokens,
|
||||
)
|
|
@ -0,0 +1,294 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Generation support."""
|
||||
|
||||
from typing import Tuple, List, Union, Iterable
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import PreTrainedTokenizer
|
||||
from transformers import logging
|
||||
from transformers.generation import LogitsProcessor
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
# Types.
|
||||
HistoryType = List[Tuple[str, str]]
|
||||
TokensType = List[int]
|
||||
BatchTokensType = List[List[int]]
|
||||
|
||||
|
||||
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
||||
for tokens in batch:
|
||||
context_length = len(tokens)
|
||||
if context_length < seq_length:
|
||||
tokens.extend([pad_id] * (seq_length - context_length))
|
||||
return batch
|
||||
|
||||
|
||||
def get_ltor_masks_and_position_ids(
|
||||
data,
|
||||
eod_token,
|
||||
reset_position_ids,
|
||||
reset_attention_mask,
|
||||
eod_mask_loss,
|
||||
):
|
||||
"""Build masks and position id for left to right model."""
|
||||
|
||||
# Extract batch size and sequence length.
|
||||
micro_batch_size, seq_length = data.size()
|
||||
|
||||
# Attention mask (lower triangular).
|
||||
if reset_attention_mask:
|
||||
att_mask_batch = micro_batch_size
|
||||
else:
|
||||
att_mask_batch = 1
|
||||
attention_mask = torch.tril(torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view(
|
||||
att_mask_batch, 1, seq_length, seq_length
|
||||
)
|
||||
|
||||
# Loss mask.
|
||||
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
||||
if eod_mask_loss:
|
||||
loss_mask[data == eod_token] = 0.0
|
||||
|
||||
# Position ids.
|
||||
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
||||
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
||||
# We need to clone as the ids will be modifed based on batch index.
|
||||
if reset_position_ids:
|
||||
position_ids = position_ids.clone()
|
||||
|
||||
if reset_position_ids or reset_attention_mask:
|
||||
# Loop through the batches:
|
||||
for b in range(micro_batch_size):
|
||||
# Find indecies where EOD token is.
|
||||
eod_index = position_ids[b, data[b] == eod_token]
|
||||
# Detach indecies from positions if going to modify positions.
|
||||
if reset_position_ids:
|
||||
eod_index = eod_index.clone()
|
||||
|
||||
# Loop through EOD indecies:
|
||||
prev_index = 0
|
||||
for j in range(eod_index.size()[0]):
|
||||
i = eod_index[j]
|
||||
# Mask attention loss.
|
||||
if reset_attention_mask:
|
||||
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
||||
# Reset positions.
|
||||
if reset_position_ids:
|
||||
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
||||
prev_index = i + 1
|
||||
|
||||
# Convert attention mask to binary:
|
||||
attention_mask = attention_mask < 0.5
|
||||
|
||||
return attention_mask, loss_mask, position_ids
|
||||
|
||||
|
||||
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
||||
"""Generate batch from context tokens."""
|
||||
# Move to GPU.
|
||||
tokens = context_tokens.contiguous().to(context_tokens.device)
|
||||
# Get the attention mask and postition ids.
|
||||
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
||||
tokens,
|
||||
eod_id,
|
||||
reset_position_ids=False,
|
||||
reset_attention_mask=False,
|
||||
eod_mask_loss=False,
|
||||
)
|
||||
return tokens, attention_mask, position_ids
|
||||
|
||||
|
||||
def make_context(
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
query: str,
|
||||
query_assistant: str = "",
|
||||
history: List[Tuple[str, str]] = None,
|
||||
system: str = "",
|
||||
max_window_size: int = 6144,
|
||||
):
|
||||
if history is None:
|
||||
history = []
|
||||
|
||||
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
||||
im_start_tokens = [tokenizer.im_start_id]
|
||||
im_end_tokens = [tokenizer.im_end_id]
|
||||
nl_tokens = tokenizer.encode("\n")
|
||||
|
||||
def _tokenize_str(role, content):
|
||||
return f"{role}\n{content}", tokenizer.encode(role, allowed_special=set()) + nl_tokens + tokenizer.encode(
|
||||
content, allowed_special=set()
|
||||
)
|
||||
|
||||
system_text, system_tokens_part = _tokenize_str("system", system)
|
||||
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
||||
assistant_tokens = tokenizer.encode(query_assistant, allowed_special=set())
|
||||
raw_text = ""
|
||||
context_tokens = []
|
||||
|
||||
for turn_query, turn_response in reversed(history):
|
||||
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
||||
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
||||
response_text, response_tokens_part = _tokenize_str("assistant", turn_response)
|
||||
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
||||
|
||||
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
||||
prev_chat = f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
||||
|
||||
current_context_size = len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
||||
if current_context_size < max_window_size:
|
||||
context_tokens = next_context_tokens + context_tokens
|
||||
raw_text = prev_chat + raw_text
|
||||
else:
|
||||
break
|
||||
|
||||
context_tokens = system_tokens + context_tokens
|
||||
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
||||
context_tokens += (
|
||||
nl_tokens
|
||||
+ im_start_tokens
|
||||
+ _tokenize_str("user", query)[1]
|
||||
+ im_end_tokens
|
||||
+ nl_tokens
|
||||
+ im_start_tokens
|
||||
+ tokenizer.encode("assistant")
|
||||
+ nl_tokens
|
||||
+ assistant_tokens
|
||||
)
|
||||
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n{query_assistant}"
|
||||
|
||||
return raw_text, context_tokens
|
||||
|
||||
|
||||
def decode_tokens(
|
||||
tokens: Union[torch.LongTensor, TokensType],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int = 0,
|
||||
context_length: int = 0,
|
||||
errors: str = "replace",
|
||||
) -> str:
|
||||
if torch.is_tensor(tokens):
|
||||
tokens = tokens.cpu().numpy().tolist()
|
||||
|
||||
end_reason = f"Gen length {len(tokens)}"
|
||||
eod_token_idx = context_length
|
||||
for eod_token_idx in range(context_length, len(tokens)):
|
||||
if tokens[eod_token_idx] in [tokenizer.im_start_id, tokenizer.im_end_id]:
|
||||
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
||||
break
|
||||
|
||||
decoded = tokenizer.decode(tokens, errors=errors)
|
||||
|
||||
decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)
|
||||
trim_decode_tokens = decode_tokens[raw_text_len:]
|
||||
trim_decode_tokens = trim_decode_tokens.strip()
|
||||
|
||||
return decoded, trim_decode_tokens, end_reason
|
||||
|
||||
|
||||
class StopWordsLogitsProcessor(LogitsProcessor):
|
||||
"""
|
||||
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
||||
|
||||
Args:
|
||||
stop_words_ids (:obj:`List[List[int]]`):
|
||||
List of list of token ids of stop ids. In order to get the tokens of the words
|
||||
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
||||
add_prefix_space=True).input_ids`.
|
||||
eos_token_id (:obj:`int`):
|
||||
The id of the `end-of-sequence` token.
|
||||
"""
|
||||
|
||||
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
||||
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
||||
raise ValueError(f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}.")
|
||||
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
||||
raise ValueError(f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}.")
|
||||
if any(
|
||||
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in stop_word_ids)
|
||||
for stop_word_ids in stop_words_ids
|
||||
):
|
||||
raise ValueError(
|
||||
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
||||
)
|
||||
|
||||
self.stop_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids))
|
||||
self.eos_token_id = eos_token_id
|
||||
for stop_token_seq in self.stop_words_ids:
|
||||
assert len(stop_token_seq) > 0, "Stop words token sequences {} cannot have an empty list".format(
|
||||
stop_words_ids
|
||||
)
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
stopped_samples = self._calc_stopped_samples(input_ids)
|
||||
for i, should_stop in enumerate(stopped_samples):
|
||||
if should_stop:
|
||||
scores[i, self.eos_token_id] = float(2**15)
|
||||
return scores
|
||||
|
||||
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
||||
if len(tokens) == 0:
|
||||
# if bad word tokens is just one token always ban it
|
||||
return True
|
||||
elif len(tokens) > len(prev_tokens):
|
||||
# if bad word tokens are longer then prev input_ids they can't be equal
|
||||
return False
|
||||
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
||||
# if tokens match
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
||||
stopped_samples = []
|
||||
for prev_input_ids_slice in prev_input_ids:
|
||||
match = False
|
||||
for stop_token_seq in self.stop_words_ids:
|
||||
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
||||
# if tokens do not match continue
|
||||
match = True
|
||||
break
|
||||
stopped_samples.append(match)
|
||||
|
||||
return stopped_samples
|
||||
|
||||
|
||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
||||
"""This function has been mostly taken from huggingface conversational
|
||||
ai code at
|
||||
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
||||
conversational-ai-with-transfer-learning-2d818ac26313"""
|
||||
|
||||
if top_k > 0:
|
||||
# Remove all tokens with a probability less than the
|
||||
# last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p > 0.0:
|
||||
# Cconvert to 1D
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
# Shift the indices to the right to keep also the first token
|
||||
# above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
for i in range(sorted_indices.size(0)):
|
||||
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
||||
logits[i][indices_to_remove] = filter_value
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
def switch(val1, val2, boolean):
|
||||
boolean = boolean.type_as(val1)
|
||||
return (1 - boolean) * val1 + boolean * val2
|
|
@ -1,82 +0,0 @@
|
|||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, Dataset, random_split
|
||||
|
||||
from lit_module import LitModule
|
||||
from logger import TBLogger
|
||||
|
||||
from wit.configuration import ModelConfig
|
||||
|
||||
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
learning_rate = 0.0001
|
||||
use_tril_attention_mask = None
|
||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
train_batch_size = 4
|
||||
val_batch_size = 8
|
||||
num_proc = 8
|
||||
max_epochs = 1000
|
||||
strategy = "auto"
|
||||
resume_from_ckpt_path = None
|
||||
seed = 42
|
||||
|
||||
|
||||
class StressDataset(Dataset):
|
||||
def __init__(self, start=1, end=128, size=32768): # 1048576 32768
|
||||
self.size = size
|
||||
self.features = []
|
||||
self.data = torch.randint(start, end, [size, 2048]).long()
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
output = {}
|
||||
data = self.data[idx]
|
||||
output["input_ids"] = data
|
||||
output["labels"] = data.clone()
|
||||
output["token_type_ids"] = torch.zeros(data.shape)
|
||||
return output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
|
||||
config = ModelConfig()
|
||||
config.vocab_size = 4096
|
||||
config.hidden_size = 1024 # 128 1024 2048 32
|
||||
config.num_hidden_layers = 6 # 6 12 24 3
|
||||
config.num_attention_heads = 8 # 8 8 16
|
||||
|
||||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||||
|
||||
raw_dataset = StressDataset()
|
||||
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=train_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
shuffle=True,
|
||||
)
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=val_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
)
|
||||
|
||||
lit_trainer = pl.Trainer(
|
||||
accelerator="gpu",
|
||||
devices=2,
|
||||
precision=precision,
|
||||
logger=TBLogger("./", default_hp_metric=False),
|
||||
strategy=strategy,
|
||||
max_epochs=max_epochs,
|
||||
)
|
||||
lit_trainer.fit(
|
||||
lit_module,
|
||||
train_dataloaders=train_dataloader,
|
||||
val_dataloaders=val_dataloader,
|
||||
ckpt_path=resume_from_ckpt_path,
|
||||
)
|
82
wit/train.py
82
wit/train.py
|
@ -1,83 +1,45 @@
|
|||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
from lit_module import LitModule
|
||||
from tokenization_qwen import QWenTokenizer
|
||||
from logger import TBLogger
|
||||
from model.lit_module import LitModule
|
||||
from wit.model.tokenization_qwen import QWenTokenizer
|
||||
from logger import MLFLogger
|
||||
|
||||
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
|
||||
from wit.configuration import ModelConfig
|
||||
|
||||
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
learning_rate = 0.0001
|
||||
use_tril_attention_mask = None
|
||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
train_batch_size = 1
|
||||
val_batch_size = 1
|
||||
num_proc = 8
|
||||
max_epochs = 1000
|
||||
strategy = "auto"
|
||||
resume_from_ckpt_path = None
|
||||
seed = 42
|
||||
dataloader_works = 2
|
||||
|
||||
vocab_size = 256
|
||||
level_ratio = 5
|
||||
level = 5
|
||||
dataset_level = 3
|
||||
min_subitem = 2
|
||||
|
||||
hidden_size = 128 # 128 1024 2048 32
|
||||
num_attention_heads = 16 # 8 8 16
|
||||
num_hidden_layers = 6 # 6 12 24 3
|
||||
|
||||
mask_level = [0, 1, 2]
|
||||
mask_idx = [0, 0, -1]
|
||||
|
||||
# name = "vocab_ratio_level_data_hidden_head_layer"
|
||||
# name = "mask_level_idx"
|
||||
name = "bigger"
|
||||
|
||||
ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{min_subitem}" + "_" + f"{dataset_level}"
|
||||
ver = ver + "_" + f"{hidden_size}" + "_" + f"{num_attention_heads}" + "_" + f"{num_hidden_layers}"
|
||||
ver = ver + "_" + f"{mask_level}" + "_" + f"{mask_idx}"
|
||||
import configuration
|
||||
import dataset as ds
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
|
||||
config = ModelConfig()
|
||||
config.vocab_size = vocab_size
|
||||
config.hidden_size = hidden_size
|
||||
config.num_hidden_layers = num_hidden_layers
|
||||
config.num_attention_heads = num_attention_heads
|
||||
train_config = configuration.TrainConfig()
|
||||
config = train_config.model_config
|
||||
|
||||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||
torch.manual_seed(train_config.seed)
|
||||
|
||||
start = vocab_size * (level_ratio**level)
|
||||
size = vocab_size * int((level_ratio**dataset_level))
|
||||
config.vocab_size = 256
|
||||
config.hidden_size = 128 # 128 1024 2048 32
|
||||
config.num_hidden_layers = 6 # 6 12 24 3
|
||||
config.num_attention_heads = 16 # 8 8 16
|
||||
|
||||
raw_dataset = MeaningDataset(start, start + size, vocab_size, None, level_ratio, min_subitem)
|
||||
# print(raw_dataset.token_frequency())
|
||||
raw_dataset.set_mask(mask_level, mask_idx)
|
||||
train_dataset, val_dataset = raw_dataset.split(0.9)
|
||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size).dataloader(dataloader_works)
|
||||
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size).dataloader(dataloader_works)
|
||||
lit_module = LitModule(
|
||||
train_config.pretrain_model_name, train_config.learning_rate, config, train_config.use_tril_attention_mask
|
||||
)
|
||||
tokenizer = QWenTokenizer("./model/wit_b64.tiktoken", "./model/wit_char.tiktoken")
|
||||
|
||||
train_dataloader, val_dataloader = ds.InitDataset(train_config)
|
||||
# for i in range(len(train_dataloader)):
|
||||
# print(train_dataloader.print_mapping(i))
|
||||
|
||||
torch.set_float32_matmul_precision("medium")
|
||||
lit_trainer = pl.Trainer(
|
||||
accelerator="cuda",
|
||||
precision=precision,
|
||||
logger=TBLogger("./log/", name=name, version=ver, default_hp_metric=False),
|
||||
strategy=strategy,
|
||||
max_epochs=max_epochs,
|
||||
precision=train_config.precision,
|
||||
logger=MLFLogger("./log/", run_name=train_config.name),
|
||||
strategy=train_config.strategy,
|
||||
max_epochs=train_config.max_epochs,
|
||||
)
|
||||
lit_trainer.fit(
|
||||
lit_module,
|
||||
train_dataloaders=train_dataloader,
|
||||
val_dataloaders=val_dataloader,
|
||||
ckpt_path=resume_from_ckpt_path,
|
||||
ckpt_path=train_config.resume_from_ckpt_path,
|
||||
)
|
||||
|
|
|
@ -1,79 +0,0 @@
|
|||
import argparse
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import datasets
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
|
||||
|
||||
from lit_module import LitModule
|
||||
from tokenization_qwen import QWenTokenizer
|
||||
from logger import TBLogger
|
||||
|
||||
from special_dataset import SpecialDataset
|
||||
from meaning_dataset import MeaningDataset
|
||||
from wit.configuration import ModelConfig
|
||||
|
||||
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
learning_rate = 0.0001
|
||||
use_tril_attention_mask = None
|
||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
train_batch_size = 128
|
||||
val_batch_size = 128
|
||||
num_proc = 8
|
||||
max_epochs = 1000
|
||||
strategy = "auto"
|
||||
resume_from_ckpt_path = None
|
||||
seed = 42
|
||||
vocab_size = 256
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
|
||||
config = ModelConfig()
|
||||
config.vocab_size = vocab_size
|
||||
config.hidden_size = 128 # 128 1024 2048 32
|
||||
config.num_hidden_layers = 3 # 6 12 24 3
|
||||
config.num_attention_heads = 8 # 8 8 16
|
||||
|
||||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||
|
||||
raw_dataset = SpecialDataset()
|
||||
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
|
||||
it = iter(train_dataset)
|
||||
print("data samples:")
|
||||
for i in range(10):
|
||||
print(next(it)["input_ids"].numpy().tolist())
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=train_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
shuffle=True,
|
||||
)
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=val_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
)
|
||||
|
||||
torch.set_float32_matmul_precision("medium")
|
||||
lit_trainer = pl.Trainer(
|
||||
accelerator="gpu",
|
||||
precision=precision,
|
||||
logger=TBLogger("./", default_hp_metric=False),
|
||||
strategy=strategy,
|
||||
max_epochs=max_epochs,
|
||||
)
|
||||
lit_trainer.fit(
|
||||
lit_module,
|
||||
train_dataloaders=train_dataloader,
|
||||
val_dataloaders=val_dataloader,
|
||||
ckpt_path=resume_from_ckpt_path,
|
||||
)
|
Loading…
Reference in New Issue