Add finetune

This commit is contained in:
Colin 2024-01-04 17:36:41 +08:00
parent 9b90c607e0
commit ec72ee1141
12 changed files with 910 additions and 2 deletions

View File

@ -1,4 +1,3 @@
import torch import torch
from modelscope import snapshot_download from modelscope import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoModelForCausalLM, AutoTokenizer
@ -11,7 +10,8 @@ seed = 4321
torch.manual_seed(seed) torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed_all(seed)
model_dir = snapshot_download("qwen/Qwen-1_8B-Chat") # model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
config, kwargs = AutoConfig.from_pretrained( config, kwargs = AutoConfig.from_pretrained(
model_dir, model_dir,

1
qwen/finetune/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
output_qwen

15
qwen/finetune/data.json Normal file
View File

@ -0,0 +1,15 @@
[
{
"id": "identity_0",
"conversations": [
{
"from": "user",
"value": "你好"
},
{
"from": "assistant",
"value": "我是一个语言模型,我叫通义千问。"
}
]
}
]

View File

@ -0,0 +1,52 @@
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}

View File

@ -0,0 +1,59 @@
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"offload_param": {
"device": "none",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}

364
qwen/finetune/finetune.py Normal file
View File

@ -0,0 +1,364 @@
# This code is based on the revised code from fastchat based on tatsu-lab/stanford_alpaca.
from dataclasses import dataclass, field
import json
import math
import logging
import os
from typing import Dict, Optional, List
import torch
from torch.utils.data import Dataset
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
import transformers
from transformers import Trainer, GPTQConfig, deepspeed
from transformers.trainer_pt_utils import LabelSmoother
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate.utils import DistributedType
from modelscope import snapshot_download
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="qwen/Qwen-1_8B-Chat")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=8192,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def maybe_zero_3(param):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, bias="none"):
"""Collects the state dict and dump to disk."""
# check if zero3 mode enabled
if deepspeed.is_deepspeed_zero3_enabled():
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
else:
if trainer.args.use_lora:
state_dict = get_peft_state_maybe_zero_3(
trainer.model.named_parameters(), bias
)
else:
state_dict = trainer.model.state_dict()
if trainer.args.should_save and trainer.args.local_rank == 0:
trainer._save(output_dir, state_dict=state_dict)
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
max_len: int,
system_message: str = "You are a helpful assistant."
) -> Dict:
roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
im_start = tokenizer.im_start_id
im_end = tokenizer.im_end_id
nl_tokens = tokenizer('\n').input_ids
_system = tokenizer('system').input_ids + nl_tokens
_user = tokenizer('user').input_ids + nl_tokens
_assistant = tokenizer('assistant').input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != roles["user"]:
source = source[1:]
input_id, target = [], []
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
input_id += system
target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
_input_id = tokenizer(role).input_ids + nl_tokens + \
tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
input_id += _input_id
if role == '<|im_start|>user':
_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens
elif role == '<|im_start|>assistant':
_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \
_input_id[len(tokenizer(role).input_ids)+1:-2] + [im_end] + nl_tokens
else:
raise NotImplementedError
target += _target
assert len(input_id) == len(target)
input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
target += [IGNORE_TOKEN_ID] * (max_len - len(target))
input_ids.append(input_id[:max_len])
targets.append(target[:max_len])
input_ids = torch.tensor(input_ids, dtype=torch.int)
targets = torch.tensor(targets, dtype=torch.int)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, max_len)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
self.max_len = max_len
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer, self.max_len)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args, max_len,
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
# This serves for single-gpu qlora.
if getattr(training_args, 'deepspeed', None) and int(os.environ.get("WORLD_SIZE", 1))==1:
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
local_rank = training_args.local_rank
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if lora_args.q_lora:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else "auto"
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
logging.warning(
"FSDP or ZeRO3 are incompatible with QLoRA."
)
model_dir = snapshot_download(model_args.model_name_or_path)
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_dir,
cache_dir=training_args.cache_dir,
trust_remote_code=True,
)
config.use_cache = False
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
model_dir,
config=config,
cache_dir=training_args.cache_dir,
device_map=device_map,
trust_remote_code=True,
quantization_config=GPTQConfig(
bits=4, disable_exllama=True
)
if training_args.use_lora and lora_args.q_lora
else None,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_dir,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
trust_remote_code=True,
)
tokenizer.pad_token_id = tokenizer.eod_id
if training_args.use_lora:
if lora_args.q_lora or 'chat' in model_dir.lower():
modules_to_save = None
else:
modules_to_save = ["wte", "lm_head"]
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
task_type="CAUSAL_LM",
modules_to_save=modules_to_save # This argument serves for adding new tokens.
)
if lora_args.q_lora:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
model = get_peft_model(model, lora_config)
# Print peft trainable params
model.print_trainable_parameters()
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
# Load data
data_module = make_supervised_data_module(
tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length
)
# Start trainner
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias)
if __name__ == "__main__":
train()

View File

@ -0,0 +1,90 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Number of GPUs per GPU worker
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
# Number of GPU workers, for single-worker training, please set to 1
NNODES=${NNODES:-1}
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost}
# The port for communication
MASTER_PORT=${MASTER_PORT:-6001}
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
function usage() {
echo '
Usage: bash finetune/finetune_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--bf16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 1e-5 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--gradient_checkpointing True \
--lazy_preprocess True \
--deepspeed finetune/ds_config_zero3.json

View File

@ -0,0 +1,96 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Number of GPUs per GPU worker
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
# Number of GPU workers, for single-worker training, please set to 1
NNODES=${NNODES:-1}
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost}
# The port for communication
MASTER_PORT=${MASTER_PORT:-6001}
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
DS_CONFIG_PATH="finetune/ds_config_zero2.json"
function usage() {
echo '
Usage: bash finetune/finetune_lora_ds.sh [-m MODEL_PATH] [-d DATA_PATH] [--deepspeed DS_CONFIG_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
--deepspeed )
shift
DS_CONFIG_PATH=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--bf16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--use_lora \
--gradient_checkpointing \
--deepspeed ${DS_CONFIG_PATH}

View File

@ -0,0 +1,65 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
MODEL="qwen/Qwen-1_8B-Chat" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="data.json"
function usage() {
echo '
Usage: bash finetune/finetune_lora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
export CUDA_VISIBLE_DEVICES=0
python finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--bf16 False \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--gradient_checkpointing \
--use_lora
# If you use fp16 instead of bf16, you should use deepspeed
# --fp16 True --deepspeed finetune/ds_config_zero2.json

View File

@ -0,0 +1,93 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Number of GPUs per GPU worker
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
# Number of GPU workers, for single-worker training, please set to 1
NNODES=${NNODES:-1}
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost}
# The port for communication
MASTER_PORT=${MASTER_PORT:-6001}
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
function usage() {
echo '
Usage: bash finetune/finetune_qlora_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
# Remember to use --fp16 instead of --bf16 due to autogptq
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--fp16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--use_lora \
--q_lora \
--gradient_checkpointing \
--deepspeed finetune/ds_config_zero2.json

View File

@ -0,0 +1,66 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
function usage() {
echo '
Usage: bash finetune/finetune_qlora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
export CUDA_VISIBLE_DEVICES=0
# Remember to use --fp16 instead of --bf16 due to autogptq
python finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--fp16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--gradient_checkpointing \
--use_lora \
--q_lora \
--deepspeed finetune/ds_config_zero2.json

7
test/dataset.py Normal file
View File

@ -0,0 +1,7 @@
from datasets import load_dataset
dataset = load_dataset("BAAI/COIG")
d = dataset["Default"][0]
dataset