Update binary mnist.
This commit is contained in:
parent
9194595716
commit
f1124bc3b1
162
binary/mnist.py
162
binary/mnist.py
|
@ -19,6 +19,8 @@ torch.cuda.manual_seed_all(1234)
|
|||
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# device = "cpu"
|
||||
# torch.set_num_threads(16)
|
||||
print(f"Using device: {device}")
|
||||
|
||||
transform = transforms.Compose(
|
||||
|
@ -39,7 +41,9 @@ def to_binary_tensor(input_tensor, bits):
|
|||
return binary_bits
|
||||
|
||||
|
||||
class MyLut(torch.autograd.Function):
|
||||
class Lut(torch.autograd.Function):
|
||||
# input [batch,count,bits]
|
||||
# weight [count,2**bits]
|
||||
@staticmethod
|
||||
def forward(ctx, input, weight):
|
||||
batch = input.shape[0]
|
||||
|
@ -100,131 +104,125 @@ class SimpleCNN(nn.Module):
|
|||
x = self.bn(x)
|
||||
x = x.view(-1, 160, 8)
|
||||
|
||||
x = MyLut.apply(x, self.weight)
|
||||
x = Lut.apply(x, self.weight)
|
||||
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
class Lut(nn.Module):
|
||||
def __init__(self, bits):
|
||||
super(Lut, self).__init__()
|
||||
self.weight = nn.Parameter(torch.randn(pow(2, bits)))
|
||||
self.bias = nn.Parameter(torch.randn(pow(2, bits)))
|
||||
self.index = torch.pow(2, torch.arange(bits))
|
||||
self.bits = bits
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = MyLut.apply(x, self.weight, self.bias)
|
||||
|
||||
# tmp = torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))
|
||||
# x = tmp + x - x.detach()
|
||||
|
||||
xx = (x > 0).float()
|
||||
x = xx + (x - x.detach())
|
||||
|
||||
# print(xx.requires_grad)
|
||||
# print(xx.grad_fn)
|
||||
x = x * (self.index.to(x.device))
|
||||
x = torch.sum(x, dim=-1)
|
||||
|
||||
w = torch.gather(self.weight, 0, x.long())
|
||||
b = torch.gather(self.weight, 0, x.long())
|
||||
x = w * x + b
|
||||
|
||||
# tmp = torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))
|
||||
# x = tmp + x - x.detach()
|
||||
|
||||
xx = (x > 0).float()
|
||||
x = xx + (x - x.detach())
|
||||
|
||||
x = x.view(-1, 1)
|
||||
return x
|
||||
|
||||
|
||||
class LutGroup(nn.Module):
|
||||
def __init__(self, bits, subbits):
|
||||
super(LutGroup, self).__init__()
|
||||
assert (bits % subbits) == 0
|
||||
self.lutlist = nn.ModuleList([Lut(subbits) for _ in range(int(bits / subbits))])
|
||||
self.weight = nn.Parameter(torch.randn(bits, pow(2, subbits)))
|
||||
self.bits = bits
|
||||
self.subbits = subbits
|
||||
|
||||
def forward(self, x):
|
||||
ll = len(self.lutlist)
|
||||
tmp = torch.empty((x.shape[0], 0), dtype=x.dtype, device=x.device)
|
||||
start = 0
|
||||
end = self.subbits
|
||||
for i in range(ll):
|
||||
tx = self.lutlist[i](x[:, start:end])
|
||||
tmp = torch.cat((tmp, tx), dim=1)
|
||||
start += self.subbits
|
||||
end += self.subbits
|
||||
return tmp
|
||||
batch = x.shape[0]
|
||||
x = x.view(batch, -1, self.subbits)
|
||||
x = Lut.apply(x, self.weight)
|
||||
return x
|
||||
|
||||
|
||||
class LutParallel(nn.Module):
|
||||
def __init__(self, bits, number):
|
||||
super(LutParallel, self).__init__()
|
||||
self.lutlist = nn.ModuleList([Lut(bits) for _ in range(number)])
|
||||
self.bits = bits
|
||||
self.number = number
|
||||
self.weight = nn.Parameter(torch.randn(number, pow(2, bits)))
|
||||
|
||||
def forward(self, x):
|
||||
tmp = torch.empty((x.shape[0], 0), dtype=x.dtype, device=x.device)
|
||||
for i in range(self.number):
|
||||
tx = self.lutlist[i](x)
|
||||
tmp = torch.cat((tmp, tx), dim=1)
|
||||
return tmp
|
||||
x = x.unsqueeze(1).repeat(1, self.number, 1)
|
||||
x = Lut.apply(x, self.weight)
|
||||
return x
|
||||
|
||||
|
||||
class SimpleBNN(nn.Module):
|
||||
def __init__(self):
|
||||
super(SimpleCNN, self).__init__()
|
||||
self.w = nn.Parameter(torch.randn(3, 784 * 8))
|
||||
self.b = nn.Parameter(torch.zeros(3, 784 * 8))
|
||||
super(SimpleBNN, self).__init__()
|
||||
# self.w = nn.Parameter(torch.randn(3, 784 * 8))
|
||||
# self.b = nn.Parameter(torch.zeros(3, 784 * 8))
|
||||
|
||||
self.w = nn.Parameter(torch.randn(3, 784))
|
||||
self.b = nn.Parameter(torch.zeros(3, 784))
|
||||
|
||||
self.lut1 = LutGroup(784 * 8, 8)
|
||||
self.lut2 = LutGroup(784, 8)
|
||||
self.lut3 = LutGroup(98, 14)
|
||||
self.lut4 = LutParallel(7, 10)
|
||||
self.lut2 = LutGroup(784, 4)
|
||||
self.lut3 = LutGroup(196, 4)
|
||||
self.lut4 = LutGroup(49, 7)
|
||||
self.lut5 = LutParallel(7, 10)
|
||||
|
||||
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
||||
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
||||
self.fc1 = nn.Linear(320, 50)
|
||||
self.fc2 = nn.Linear(50, 10)
|
||||
self.pool = nn.MaxPool2d(2)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
batch = x.shape[0]
|
||||
x = x.view(batch, -1)
|
||||
|
||||
# 变换x [-0.5:0.5] 到 0-255,然后按照二进制展开成8个值
|
||||
x = (x * 256 + 128).clamp(0, 255).to(torch.uint8)
|
||||
xx = torch.arange(8).to(x.device)
|
||||
bits = (x.unsqueeze(-1) >> xx) & 1
|
||||
bits = bits.view(batch, -1)
|
||||
# x = (x * 256 + 128).clamp(0, 255).to(torch.uint8)
|
||||
# xx = torch.arange(7, -1, -1).to(x.device)
|
||||
# bits = (x.unsqueeze(-1) >> xx) & 1
|
||||
# x = bits.view(batch, -1)
|
||||
# x = x.float() - 0.5
|
||||
|
||||
x = bits
|
||||
# q = x * self.w[0] + self.b[0]
|
||||
# k = x * self.w[1] + self.b[1]
|
||||
# v = x * self.w[2] + self.b[2]
|
||||
x = (x > 0).float()
|
||||
|
||||
# q = q.view(batch, -1, 1)
|
||||
# k = k.view(batch, 1, -1)
|
||||
# v = v.view(batch, -1, 1)
|
||||
# kq = q @ k
|
||||
# kqv = kq @ v
|
||||
# kqv = kqv.view(batch, -1)
|
||||
kqv = x
|
||||
q = x * self.w[0] + self.b[0]
|
||||
k = x * self.w[1] + self.b[1]
|
||||
v = x * self.w[2] + self.b[2]
|
||||
q = q.view(batch, -1, 1)
|
||||
k = k.view(batch, 1, -1)
|
||||
v = v.view(batch, -1, 1)
|
||||
kq = q @ k
|
||||
kqv = kq @ v
|
||||
kqv = kqv.view(batch, -1, 8)
|
||||
x = kqv
|
||||
|
||||
x = self.lut1(kqv)
|
||||
#########################
|
||||
|
||||
# x = (x > 0) << xx
|
||||
# x = x.sum(2)
|
||||
# x = x.view(batch, 1, 28, 28)
|
||||
# x = (x - 128.0) / 256.0
|
||||
|
||||
# x = x.view(batch, 1, 28, 28)
|
||||
# x = (x > 0).float()
|
||||
|
||||
# x = self.relu(self.pool(self.conv1(x)))
|
||||
# x = self.relu(self.pool((self.conv2(x))))
|
||||
# x = x.view(-1, 320)
|
||||
# x = self.relu(self.fc1(x))
|
||||
# x = self.fc2(x)
|
||||
|
||||
#########################
|
||||
|
||||
x = (x > 0).float()
|
||||
x = x.view(batch, 196, 4)
|
||||
|
||||
# x = self.lut1(x)
|
||||
x = self.lut2(x)
|
||||
|
||||
x = x.view(-1, 28, 7)
|
||||
x = x.permute(0, 2, 1)
|
||||
x = x.reshape(-1, 28 * 7)
|
||||
|
||||
x = self.lut3(x)
|
||||
x = self.lut4(x)
|
||||
x = self.lut5(x)
|
||||
return x
|
||||
|
||||
|
||||
torch.autograd.set_detect_anomaly(True)
|
||||
model = SimpleCNN().to(device)
|
||||
# model = SimpleBNN().to(device)
|
||||
# model = SimpleCNN().to(device)
|
||||
model = SimpleBNN().to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
|
||||
|
||||
|
||||
def train(epoch):
|
||||
|
|
Loading…
Reference in New Issue