Add dump in minist.
After Width: | Height: | Size: 2.8 KiB |
After Width: | Height: | Size: 191 B |
After Width: | Height: | Size: 187 B |
After Width: | Height: | Size: 1018 B |
After Width: | Height: | Size: 2.0 KiB |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 84 B |
After Width: | Height: | Size: 2.4 KiB |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 320 B |
|
@ -1,49 +1,48 @@
|
|||
import os
|
||||
import sys
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # Add this line
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
sys.path.append("..")
|
||||
from tools import show
|
||||
|
||||
seed = 4321
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
# Device configuration
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyper-parameters
|
||||
num_epochs = 5
|
||||
batch_size = 4
|
||||
num_epochs = 1
|
||||
batch_size = 1
|
||||
learning_rate = 0.001
|
||||
|
||||
# Dataset has PILImage images of range [0, 1].
|
||||
# We transform them to Tensors of normalized range [-1, 1]
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
|
||||
# CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class
|
||||
# train_dataset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
|
||||
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
|
||||
|
||||
|
||||
# test_dataset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
|
||||
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
|
||||
class ConvNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(ConvNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 6, 3, 1, 1)
|
||||
self.conv1 = nn.Conv2d(1, 8, 3, 1, 1)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(6, 16, 5)
|
||||
self.fc1 = nn.Linear(16 * 5 * 5, 10)
|
||||
self.conv2 = nn.Conv2d(8, 8, 5)
|
||||
self.fc1 = nn.Linear(8 * 5 * 5, 10)
|
||||
# self.fc2 = nn.Linear(120, 84)
|
||||
# self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = x.view(-1, 16 * 5 * 5)
|
||||
x = x.view(-1, 8 * 5 * 5)
|
||||
# x = F.relu(self.fc1(x))
|
||||
# x = F.relu(self.fc2(x))
|
||||
# x = self.fc3(x)
|
||||
|
@ -51,6 +50,38 @@ class ConvNet(nn.Module):
|
|||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
def printFector(self, x, label):
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "input_image.png")
|
||||
x = self.conv1(x)
|
||||
w = self.conv1.weight
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png")
|
||||
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv1_output.png")
|
||||
x = self.pool(F.relu(x))
|
||||
x = self.conv2(x)
|
||||
w = self.conv2.weight
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight.png")
|
||||
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv2_output.png")
|
||||
x = self.pool(F.relu(x))
|
||||
x = x.view(-1, 8 * 5 * 5)
|
||||
x = self.fc1(x)
|
||||
|
||||
show.DumpTensorToImage(self.fc1.weight.view(-1, 10, 10).permute(2, 0, 1), "fc_weight.png")
|
||||
|
||||
show.DumpTensorToImage(x.view(-1), "fc_output.png")
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
loss = criterion(x, label)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
w = self.conv1.weight.grad
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_grad.png")
|
||||
w = self.conv2.weight.grad
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight_grad.png")
|
||||
show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 10, 10).permute(2, 0, 1), "fc_weight_grad.png")
|
||||
|
||||
|
||||
model = ConvNet().to(device)
|
||||
|
||||
|
@ -77,6 +108,10 @@ for epoch in range(num_epochs):
|
|||
if (i + 1) % 2000 == 0:
|
||||
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
|
||||
|
||||
for images, labels in test_loader:
|
||||
model.printFector(images, labels)
|
||||
break
|
||||
|
||||
print("Finished Training")
|
||||
|
||||
# Test the model
|
||||
|
|