From f3690fd47fe496706fd12d6c266a2b49d2d88358 Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 7 Oct 2024 16:39:29 +0800 Subject: [PATCH] Update unsuper learning. --- unsuper/minist.py | 26 +++++++++++++++++++------- 1 file changed, 19 insertions(+), 7 deletions(-) diff --git a/unsuper/minist.py b/unsuper/minist.py index c409962..73818a3 100644 --- a/unsuper/minist.py +++ b/unsuper/minist.py @@ -105,7 +105,7 @@ model = ConvNet().to(device) model.train() # Train the model unsuper -epochs = 10 +epochs = 20 model.conv1.weight.requires_grad = True model.conv2.weight.requires_grad = False model.fc1.weight.requires_grad = False @@ -117,16 +117,24 @@ for epoch in range(epochs): outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8 sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8 - abs = torch.abs(sample) + abs = torch.abs(sample).detach() max, max_index = torch.max(abs, dim=1) - label = sample * 0.9 - all = range(0, label.shape[0]) - label[all, max_index] = label[all, max_index] * 1.1 + mean = torch.mean(abs, dim=1) + mean = torch.expand_copy(mean.reshape(-1, 1), sample.shape) + max = torch.expand_copy(max.reshape(-1, 1), sample.shape) + + all = range(0, sample.shape[0]) + ratio_max = abs / mean + ratio_nor = (max - abs) / max + ratio_nor[all, max_index] = ratio_max[all, max_index].clone() + ratio_nor = torch.where(torch.isnan(ratio_nor), 1.0, ratio_nor) + label = sample * ratio_nor + loss = F.l1_loss(sample, label) model.conv1.weight.grad = None loss.backward() - model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 100 + model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 10 if (i + 1) % 100 == 0: print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}") @@ -136,6 +144,10 @@ show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_g w = model.conv1.weight.data show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png", Contrast=[-1.0, 1.0]) +# loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False) +# images, labels = next(iter(loader)) +# images = images.to(device) + # Train the model model.conv1.weight.requires_grad = False model.conv2.weight.requires_grad = True @@ -155,7 +167,7 @@ for epoch in range(num_epochs): if (i + 1) % 100 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}") -# print("Finished Training") +print("Finished Training") test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False) test_loader = iter(test_loader)