Update unsuper minist.
This commit is contained in:
parent
df05002c90
commit
f74a5d29bd
|
@ -1,21 +1,9 @@
|
||||||
|
|
||||||
|
## 方向
|
||||||
1. 输入的信噪比
|
1. 输入的信噪比
|
||||||
2. loss函数的设计
|
2. loss函数的设计
|
||||||
3. grad信息的应用
|
3. grad信息的应用
|
||||||
|
|
||||||
|
|
||||||
abs.cpu().detach().numpy()
|
|
||||||
array([[8.1206687e-02, 2.2388995e-05, 3.7080176e-02, 5.7033218e-02,
|
|
||||||
1.7404296e-03, 7.6270252e-02, 5.9453689e-02, 4.0801242e-05]],
|
|
||||||
dtype=float32)
|
|
||||||
ratio_nor.cpu().detach().numpy()
|
|
||||||
array([[4.3121886e+00, 3.2778070e-07, 8.9907879e-01, 2.1270120e+00,
|
|
||||||
1.9807382e-03, 3.8038602e+00, 2.3113825e+00, 1.0885816e-06]],
|
|
||||||
dtype=float32)
|
|
||||||
|
|
||||||
都比较差的时候区分不开
|
|
||||||
|
|
||||||
|
|
||||||
## 发现的问题
|
## 发现的问题
|
||||||
1. 3x3的时候会有重复
|
1. 3x3的时候会有重复
|
||||||
1. 重复的权重,虽然权重看起来都一样,但是有稍微的不同,不是完全一样
|
1. 重复的权重,虽然权重看起来都一样,但是有稍微的不同,不是完全一样
|
||||||
|
@ -31,10 +19,13 @@ array([[4.3121886e+00, 3.2778070e-07, 8.9907879e-01, 2.1270120e+00,
|
||||||
2. 网格状,就是为了尽量降低最终输出的绝对值,降低loss
|
2. 网格状,就是为了尽量降低最终输出的绝对值,降低loss
|
||||||
1. 形成4个一组,一共2组,的形式,交替成为最大值,把另外一组的输出降低,最后都输出最低的绝对值
|
1. 形成4个一组,一共2组,的形式,交替成为最大值,把另外一组的输出降低,最后都输出最低的绝对值
|
||||||
2. 需要类似batchnormal的方式对各个conv核心之间进行归一化
|
2. 需要类似batchnormal的方式对各个conv核心之间进行归一化
|
||||||
3. 采用label不改变原来sample output的 abs均值的限制
|
3. 采用label不改变原来sample output的 abs均值的限制,也就是不改变所有卷积核输出的总能量
|
||||||
1. 生成2个分别交替充当最大值的极端(只有2个像素不是0)的卷积核,其他的卷积核都是输出接近0的网格
|
1. 生成2个分别交替充当最大值的极端(只有2个像素不是0)的卷积核,
|
||||||
|
2. 其他的几个卷积核都是输出接近0的网格
|
||||||
|
3. 为什么生成了极端的卷积核?为什么还是有相同的卷积核?是不是数据集导致了这样的结果?
|
||||||
4. 多个卷积核之间需要有差异,同一个卷积核的不同样本输入也要有差异,卷积核的分布要有要求
|
4. 多个卷积核之间需要有差异,同一个卷积核的不同样本输入也要有差异,卷积核的分布要有要求
|
||||||
5. 每个卷积核尽量平摊权重到所有像素,而不是集中一个像素?提高鲁棒性?
|
5. 每个卷积核尽量平摊权重到所有像素,而不是集中一个像素?提高鲁棒性?
|
||||||
|
6. 采用自动的ratio增益控制之后,好像没有重复了卷积核了,但是还有极端的2个像素有效的卷积核
|
||||||
|
|
||||||
## 可能的策略
|
## 可能的策略
|
||||||
1. 每个卷积核的改变权重(grad)能量守恒
|
1. 每个卷积核的改变权重(grad)能量守恒
|
||||||
|
|
|
@ -117,7 +117,7 @@ for epoch in range(epochs):
|
||||||
images = images.to(device)
|
images = images.to(device)
|
||||||
|
|
||||||
# images = torch.ones((1, 1, 5, 5), device=device)
|
# images = torch.ones((1, 1, 5, 5), device=device)
|
||||||
# type = random.randint(0, 7)
|
# type = random.randint(0, 3)
|
||||||
# if type == 0:
|
# if type == 0:
|
||||||
# rand = random.randint(0, 4)
|
# rand = random.randint(0, 4)
|
||||||
# images[:, :, rand, :] = images[:, :, rand, :] * 0.5
|
# images[:, :, rand, :] = images[:, :, rand, :] * 0.5
|
||||||
|
@ -131,8 +131,8 @@ for epoch in range(epochs):
|
||||||
# images[:, :, 3, 3] = images[:, :, 3, 3] * 0.5
|
# images[:, :, 3, 3] = images[:, :, 3, 3] * 0.5
|
||||||
# images[:, :, 4, 4] = images[:, :, 4, 4] * 0.5
|
# images[:, :, 4, 4] = images[:, :, 4, 4] * 0.5
|
||||||
# if type == 3:
|
# if type == 3:
|
||||||
# randx = random.randint(0, 2)
|
# randx = random.randint(1, 3)
|
||||||
# randy = random.randint(0, 2)
|
# randy = random.randint(1, 3)
|
||||||
# images[:, :, randx, randy] = images[:, :, randx, randy] * 0.5
|
# images[:, :, randx, randy] = images[:, :, randx, randy] * 0.5
|
||||||
# images[:, :, randx, randy + 1] = images[:, :, randx, randy + 1] * 0.5
|
# images[:, :, randx, randy + 1] = images[:, :, randx, randy + 1] * 0.5
|
||||||
# images[:, :, randx, randy - 1] = images[:, :, randx, randy - 1] * 0.5
|
# images[:, :, randx, randy - 1] = images[:, :, randx, randy - 1] * 0.5
|
||||||
|
@ -143,7 +143,6 @@ for epoch in range(epochs):
|
||||||
outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
||||||
sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8
|
sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8
|
||||||
|
|
||||||
|
|
||||||
# sample = outputs.reshape(-1, 8,24*24) # -> 36864 8
|
# sample = outputs.reshape(-1, 8,24*24) # -> 36864 8
|
||||||
# sample = torch.mean(sample,dim=2) # -> 36864 8
|
# sample = torch.mean(sample,dim=2) # -> 36864 8
|
||||||
|
|
||||||
|
@ -152,7 +151,15 @@ for epoch in range(epochs):
|
||||||
mean = torch.mean(abs, dim=1)
|
mean = torch.mean(abs, dim=1)
|
||||||
mean = torch.expand_copy(mean.reshape(-1, 1), abs.shape)
|
mean = torch.expand_copy(mean.reshape(-1, 1), abs.shape)
|
||||||
max = torch.expand_copy(max.reshape(-1, 1), abs.shape)
|
max = torch.expand_copy(max.reshape(-1, 1), abs.shape)
|
||||||
ratio = torch.pow(abs / mean, 2)
|
|
||||||
|
e = torch.sum(torch.pow(abs - mean, 2), dim=1)
|
||||||
|
e = torch.expand_copy(e.reshape(-1, 1), abs.shape)
|
||||||
|
e = 1 / e
|
||||||
|
e = torch.where(torch.isinf(e), 1.0, e)
|
||||||
|
e = torch.pow(e, 0.5)
|
||||||
|
|
||||||
|
ratio = abs / mean * e
|
||||||
|
# ratio = torch.pow(abs / mean, e )
|
||||||
|
|
||||||
ratio = torch.where(torch.isnan(ratio), 0.0, ratio)
|
ratio = torch.where(torch.isnan(ratio), 0.0, ratio)
|
||||||
label = ratio * abs
|
label = ratio * abs
|
||||||
|
@ -160,15 +167,13 @@ for epoch in range(epochs):
|
||||||
label = label - label_mean + mean
|
label = label - label_mean + mean
|
||||||
sample = torch.abs(sample)
|
sample = torch.abs(sample)
|
||||||
|
|
||||||
sample_nz = sample[abs > 0]
|
loss = F.l1_loss(sample[abs > 0], label[abs > 0])
|
||||||
label_nz = label[abs > 0]
|
|
||||||
loss = F.l1_loss(sample_nz, label_nz)
|
|
||||||
model.conv1.weight.grad = None
|
model.conv1.weight.grad = None
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
# if epoch >= (epochs - 1):
|
# if epoch >= (epochs - 1):
|
||||||
# continue
|
# continue
|
||||||
model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 0.1
|
model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 0.01
|
||||||
model.conv1.weight.data = model.normal_conv1_weight()
|
model.conv1.weight.data = model.normal_conv1_weight()
|
||||||
|
|
||||||
if (i + 1) % 100 == 0:
|
if (i + 1) % 100 == 0:
|
||||||
|
|
Loading…
Reference in New Issue