Add accurancy in loss.
This commit is contained in:
parent
cf726a5b9f
commit
fdc8c657b3
43
test/loss.py
43
test/loss.py
|
@ -4,19 +4,42 @@ import torch.nn.functional as F
|
|||
import torch.utils.checkpoint
|
||||
from torch.nn import CrossEntropyLoss
|
||||
import math
|
||||
import torchmetrics
|
||||
|
||||
shift_logits = torch.zeros((16, 4096))
|
||||
shift_logits[:, 2] = 10.0
|
||||
shift_labels = (torch.ones(16) * 2).long()
|
||||
loss = CrossEntropyLoss()(shift_logits, shift_labels)
|
||||
print(loss)
|
||||
# shift_logits = torch.zeros((16, 4096))
|
||||
# shift_logits[:, 2] = 10.0
|
||||
# shift_labels = (torch.ones(16) * 2).long()
|
||||
# loss = CrossEntropyLoss()(shift_logits, shift_labels)
|
||||
# print(loss)
|
||||
|
||||
|
||||
loss = nn.CrossEntropyLoss()
|
||||
input = torch.tensor([[1.0, 2.0, 3.0]])
|
||||
target = torch.tensor([0]).long()
|
||||
output = loss(input, target)
|
||||
print(output)
|
||||
# loss = nn.CrossEntropyLoss()
|
||||
# input = torch.tensor([[1.0, 2.0, 3.0]])
|
||||
# target = torch.tensor([0]).long()
|
||||
# output = loss(input, target)
|
||||
# print(output)
|
||||
|
||||
|
||||
target = torch.tensor([0, 1, 2])
|
||||
preds = torch.tensor([[0.1, 0.9, 0], [0.3, 10.1, 0.6], [0.2, 0.3, 0.9]])
|
||||
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=3)
|
||||
accur = accuracy(preds, target)
|
||||
|
||||
|
||||
metric_accuracy = torchmetrics.Accuracy(
|
||||
task="multiclass",
|
||||
num_classes=4096,
|
||||
)
|
||||
shift_logits = torch.zeros((16, 2, 4096))
|
||||
shift_logits[:8, :, 2] = 10.0
|
||||
shift_labels = (torch.ones((16, 2)) * 2).long()
|
||||
|
||||
label_mask = shift_labels != 4096
|
||||
shift_logits = shift_logits[label_mask]
|
||||
shift_labels = shift_labels[label_mask]
|
||||
|
||||
accur = metric_accuracy(shift_logits, shift_labels)
|
||||
metric_accuracy.update(shift_logits, shift_labels)
|
||||
|
||||
|
||||
# torch.manual_seed(32)
|
||||
|
|
Loading…
Reference in New Issue