Compare commits

..

2 Commits

Author SHA1 Message Date
Colin a4fafd460f Refine model of qwen. 2024-01-24 21:22:03 +08:00
Colin 11af10e710 Refine research_attention and forward model. 2024-01-23 13:13:21 +08:00
2 changed files with 62 additions and 44 deletions

View File

@ -204,46 +204,20 @@ class QwenRunner:
pad_token_id = qwen.config.pad_token_id pad_token_id = qwen.config.pad_token_id
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device) unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False
while True: while True:
outputs = self.forwardQWen(input_ids) outputs = self.forwardQWen(input_ids)
next_token_scores = outputs[:, -1, :] next_token_scores = outputs[:, -1, :]
# repetition_penalty next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
penalty = qwen.config.repetition_penalty next_token_scores = self.top_p(next_token_scores)
score = torch.gather(next_token_scores, 1, input_ids) next_tokens = self.sample(next_token_scores)
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
score = torch.where(score < 0, score * penalty, score / penalty)
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
# top_p
top_p = qwen.config.top_p
filter_value = -float("Inf")
min_tokens_to_keep = 1
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
unfinished_sequences = unfinished_sequences.mul( unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
) )
if unfinished_sequences.max() == 0: if unfinished_sequences.max() == 0:
this_peer_finished = True
if this_peer_finished:
break break
decoded, response, end_reason = decode_tokens( decoded, response, end_reason = decode_tokens(
@ -254,7 +228,7 @@ class QwenRunner:
errors="replace", errors="replace",
) )
history.append((query, response)) history.append((query, response))
return response, history, decoded return input_ids[0].cpu().tolist(), history, decoded
def _rotate_half(self, x): def _rotate_half(self, x):
x = rearrange(x, "... (j d) -> ... j d", j=2) x = rearrange(x, "... (j d) -> ... j d", j=2)
@ -379,3 +353,31 @@ class QwenRunner:
# loss.backward() # loss.backward()
return lm_logits return lm_logits
def repetition_penalty(self, input_ids, next_token_scores):
penalty = self.qwen.config.repetition_penalty
score = torch.gather(next_token_scores, 1, input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
score = torch.where(score < 0, score * penalty, score / penalty)
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
return next_token_scores
def top_p(self, next_token_scores):
top_p = self.qwen.config.top_p
filter_value = -float("Inf")
min_tokens_to_keep = 1
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
return next_token_scores
def sample(self, next_token_scores):
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
return next_tokens

View File

@ -70,12 +70,7 @@ def Dump_lm_head_weight(model):
# Dump_lm_head_weight(model) # Dump_lm_head_weight(model)
class ResearchRunner(QwenRunner): def DumpQK(query, key, causal_mask, index):
def attention(self, attention, query, key, value, causal_mask):
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
scale_factor = 1 / math.sqrt(query.size(-1)) scale_factor = 1 / math.sqrt(query.size(-1))
attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight = torch.softmax(attn_weight, dim=-1) attn_weight = torch.softmax(attn_weight, dim=-1)
@ -84,20 +79,39 @@ class ResearchRunner(QwenRunner):
attn_mask.masked_fill_(causal_mask.logical_not(), float(0)) attn_mask.masked_fill_(causal_mask.logical_not(), float(0))
qk = attn_weight * attn_mask qk = attn_weight * attn_mask
qk = qk[0] qk = qk[0]
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(attention.index) + ".png" prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
show.DumpTensorToImage(qk, prePath, GridValue=255) show.DumpTensorToImage(qk, prePath, GridValue=255)
class ResearchRunner(QwenRunner):
def __init__(self, model):
super().__init__(model)
def attention(self, attention, query, key, value, causal_mask):
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
DumpQK(query, key, causal_mask, attention.index)
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2) attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim) context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim)
attn_output = attention.c_proj(context_layer) attn_output = attention.c_proj(context_layer)
return attn_output return attn_output
runner = ResearchRunner(model) runner = ResearchRunner(model)
# 第一轮对话 # 第一轮对话
response, history, decode_tokens = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "日本的首都是") output_ids, history, decoded = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "日本的首都是")
print(decode_tokens) print(decoded)
tokens = []
for i, token in enumerate(output_ids):
de = tokenizer.decode([token])
de = str(i).zfill(3) + " : " + repr(de)
tokens.append(de)
print(de)
# <|im_start|>system # <|im_start|>system
# You are a helpful assistant.<|im_end|> # You are a helpful assistant.<|im_end|>
# <|im_start|>user # <|im_start|>user
@ -106,5 +120,7 @@ print(decode_tokens)
# 日本的首都东京。<|im_end|> # 日本的首都东京。<|im_end|>
# <|endoftext|> # <|endoftext|>
if decode_tokens.split("\n")[-2] != """日本的首都东京。<|im_end|>""": show.DumpListToFile(tokens, "./temp/token_decode_list.txt")
if decoded.split("\n")[-2] != """日本的首都东京。<|im_end|>""":
raise () raise ()