|
|
|
@ -7,6 +7,7 @@ from transformers import AutoConfig
|
|
|
|
|
|
|
|
|
|
from modeling_qwen import QWenLMHeadModel
|
|
|
|
|
from modeling_qwen import QwenRunner
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
@ -69,18 +70,24 @@ def Dump_lm_head_weight(model):
|
|
|
|
|
|
|
|
|
|
# Dump_lm_head_weight(model)
|
|
|
|
|
|
|
|
|
|
qk_sum = []
|
|
|
|
|
qk_index = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def DumpQK(query, key, causal_mask, index):
|
|
|
|
|
scale_factor = 1 / math.sqrt(query.size(-1))
|
|
|
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
|
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
|
|
|
size = query.shape[2]
|
|
|
|
|
attn_mask = torch.ones(causal_mask.shape, dtype=query.dtype, device=query.device)
|
|
|
|
|
attn_mask.masked_fill_(causal_mask.logical_not(), float(0))
|
|
|
|
|
qk = attn_weight * attn_mask
|
|
|
|
|
qk = qk[0]
|
|
|
|
|
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
|
|
|
|
|
show.DumpTensorToImage(qk, prePath, GridValue=255)
|
|
|
|
|
attn_weight = attn_weight * attn_mask
|
|
|
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
|
|
|
attn_weight = attn_weight * attn_mask
|
|
|
|
|
size = query.shape[2]
|
|
|
|
|
qk = attn_weight[0]
|
|
|
|
|
# prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
|
|
|
|
|
# show.DumpTensorToImage(qk, prePath, GridValue=255)
|
|
|
|
|
qk_sum.append(qk.sum(0))
|
|
|
|
|
qk_index.append(size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResearchRunner(QwenRunner):
|
|
|
|
@ -99,18 +106,48 @@ class ResearchRunner(QwenRunner):
|
|
|
|
|
attn_output = attention.c_proj(context_layer)
|
|
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
|
def sample(self, next_token_scores):
|
|
|
|
|
qk_sum_cat = torch.stack(qk_sum, 0)
|
|
|
|
|
qk_sum.clear()
|
|
|
|
|
prePath = "./temp/" + "q@k_sum_seq_" + str(qk_index[-1]) + ".png"
|
|
|
|
|
show.DumpTensorToImage(qk_sum_cat, prePath, GridValue=255)
|
|
|
|
|
|
|
|
|
|
return super().sample(next_token_scores)
|
|
|
|
|
|
|
|
|
|
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
|
|
|
|
start_to = [151644]
|
|
|
|
|
n_to = [198]
|
|
|
|
|
end_to = [151645]
|
|
|
|
|
system_str = "system\nYou are a helpful assistant."
|
|
|
|
|
user_str = "user\n" + query
|
|
|
|
|
aassistant_str = "assistant\n" + query_assistant
|
|
|
|
|
|
|
|
|
|
system_token = start_to + tokenizer.encode(system_str, allowed_special=set()) + end_to + n_to
|
|
|
|
|
user_token = start_to + tokenizer.encode(user_str, allowed_special=set()) + end_to + n_to
|
|
|
|
|
aassistant_token = start_to + tokenizer.encode(aassistant_str, allowed_special=set())
|
|
|
|
|
|
|
|
|
|
tokens = system_token + user_token + aassistant_token
|
|
|
|
|
tokens = user_token + aassistant_token
|
|
|
|
|
tokens = start_to + tokenizer.encode("user\n你好\nassistant\n", allowed_special=set())
|
|
|
|
|
|
|
|
|
|
return "", tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
runner = ResearchRunner(model)
|
|
|
|
|
|
|
|
|
|
# 第一轮对话
|
|
|
|
|
output_ids, history, decoded = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "日本的首都是")
|
|
|
|
|
# output_ids, history, decoded = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "日本的首都是")
|
|
|
|
|
# print(decoded)
|
|
|
|
|
|
|
|
|
|
output_ids, history, decoded = runner.Chat(tokenizer, "你好!!", "")
|
|
|
|
|
print(decoded)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokens = []
|
|
|
|
|
for i, token in enumerate(output_ids):
|
|
|
|
|
de = tokenizer.decode([token])
|
|
|
|
|
de = str(i).zfill(3) + " : " + repr(de)
|
|
|
|
|
de = str(i + 1).zfill(3) + " : " + repr(de)
|
|
|
|
|
tokens.append(de)
|
|
|
|
|
print(de)
|
|
|
|
|
|
|
|
|
|
# <|im_start|>system
|
|
|
|
|
# You are a helpful assistant.<|im_end|>
|
|
|
|
@ -122,5 +159,9 @@ for i, token in enumerate(output_ids):
|
|
|
|
|
|
|
|
|
|
show.DumpListToFile(tokens, "./temp/token_decode_list.txt")
|
|
|
|
|
|
|
|
|
|
if decoded.split("\n")[-2] != """日本的首都东京。<|im_end|>""":
|
|
|
|
|
raise ()
|
|
|
|
|
# if decoded.split("\n")[-2] != """日本的首都东京。<|im_end|>""":
|
|
|
|
|
# raise ()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# normal (x - mean) / (std + eps) => sum(y)==0
|
|
|
|
|
# softmax exp(x) / sum(exp(x)) => 0 < y < 1 sum(y)==1
|
|
|
|
|