Compare commits
2 Commits
5b2cd4da61
...
2ad977a072
Author | SHA1 | Date |
---|---|---|
Colin | 2ad977a072 | |
Colin | 59449df047 |
|
@ -78,11 +78,12 @@ def DumpTensorToImage(tensor, name, forceSquare=False, scale=1.0, Contrast=None,
|
||||||
|
|
||||||
|
|
||||||
def DumpTensorToLog(tensor, name="log"):
|
def DumpTensorToLog(tensor, name="log"):
|
||||||
shape = tensor.shape
|
|
||||||
tensor_mean = torch.mean(tensor).cpu().detach().numpy()
|
tensor_mean = torch.mean(tensor).cpu().detach().numpy()
|
||||||
|
tensor_abs_mean = torch.mean(torch.abs(tensor)).cpu().detach().numpy()
|
||||||
tensor_range = (torch.max(tensor) - torch.min(tensor)).cpu().detach().numpy()
|
tensor_range = (torch.max(tensor) - torch.min(tensor)).cpu().detach().numpy()
|
||||||
f = open(name, "w")
|
f = open(name, "w")
|
||||||
f.writelines("tensor mean: %s" % tensor_mean + os.linesep)
|
f.writelines("tensor mean: %s" % tensor_mean + os.linesep)
|
||||||
|
f.writelines("tensor abs mean: %s" % tensor_abs_mean + os.linesep)
|
||||||
f.writelines("tensor range: %s" % tensor_range + os.linesep)
|
f.writelines("tensor range: %s" % tensor_range + os.linesep)
|
||||||
data = tensor.reshape([-1]).float().cpu().detach().numpy().tolist()
|
data = tensor.reshape([-1]).float().cpu().detach().numpy().tolist()
|
||||||
for d in data:
|
for d in data:
|
||||||
|
|
|
@ -20,8 +20,8 @@ np.random.seed(seed)
|
||||||
random.seed(seed)
|
random.seed(seed)
|
||||||
|
|
||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
# device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
# device = torch.device("mps")
|
# device = torch.device("mps")
|
||||||
|
|
||||||
num_epochs = 1
|
num_epochs = 1
|
||||||
|
@ -128,8 +128,8 @@ for epoch in range(epochs):
|
||||||
all = range(0, sample.shape[0])
|
all = range(0, sample.shape[0])
|
||||||
# ratio_max = abs / mean
|
# ratio_max = abs / mean
|
||||||
# ratio_nor = (max - abs) / max
|
# ratio_nor = (max - abs) / max
|
||||||
ratio_nor = torch.pow(abs / mean, 4)
|
|
||||||
# ratio_nor[all, max_index] = ratio_max[all, max_index].clone()
|
# ratio_nor[all, max_index] = ratio_max[all, max_index].clone()
|
||||||
|
ratio_nor = torch.pow(abs / mean, 4)
|
||||||
ratio_nor = torch.where(torch.isnan(ratio_nor), 1.0, ratio_nor)
|
ratio_nor = torch.where(torch.isnan(ratio_nor), 1.0, ratio_nor)
|
||||||
label = sample * ratio_nor
|
label = sample * ratio_nor
|
||||||
|
|
||||||
|
@ -197,7 +197,6 @@ with torch.no_grad():
|
||||||
labels = labels.to(device)
|
labels = labels.to(device)
|
||||||
outputs = model(images)
|
outputs = model(images)
|
||||||
|
|
||||||
# max returns (value ,index)
|
|
||||||
_, predicted = torch.max(outputs.data, 1)
|
_, predicted = torch.max(outputs.data, 1)
|
||||||
n_samples += labels.size(0)
|
n_samples += labels.size(0)
|
||||||
n_correct += (predicted == labels).sum().item()
|
n_correct += (predicted == labels).sum().item()
|
||||||
|
|
Loading…
Reference in New Issue