Compare commits

..

2 Commits

Author SHA1 Message Date
Colin 0ae63298b2 use custom vocab_size. 2024-03-14 13:28:40 +08:00
Colin 05f17b1221 Refine model config and init. 2024-03-14 11:40:26 +08:00
13 changed files with 38 additions and 39 deletions

2
.gitignore vendored
View File

@ -3,6 +3,6 @@ __pycache__
*.txt
*.npy
temp
# lightning_logs
lightning_logs
checkpoints

View File

@ -4,12 +4,12 @@
# LICENSE file in the root directory of this source tree.
class QWenConfig:
class ModelConfig:
def __init__(self):
self.vocab_size = 4096
self.hidden_size = 128 # 128 1024 2048 32
self.num_hidden_layers = 6 # 6 12 24 3
self.num_attention_heads = 8 # 8 8 16
self.hidden_size = 1024
self.num_hidden_layers = 24
self.num_attention_heads = 16
self.emb_dropout_prob = 0.0
self.attn_dropout_prob = 0.0
self.layer_norm_epsilon = 1e-6

View File

@ -4,7 +4,7 @@ from modelscope import snapshot_download
from modeling_wit import QWenLMHeadModel
from modeling_wit import QwenRunner
from configuration_qwen import QWenConfig
from wit.configuration import ModelConfig
from tokenization_qwen import QWenTokenizer
@ -20,7 +20,7 @@ torch.cuda.manual_seed_all(seed)
model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
config = QWenConfig()
config = ModelConfig()
model = QWenLMHeadModel(config)
print(model)

View File

@ -1,3 +0,0 @@
model_dir: /home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat
learning_rate: 0.0001
use_tril_attention_mask: null

View File

@ -1,3 +0,0 @@
model_dir: /home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat
learning_rate: 0.0001
use_tril_attention_mask: null

View File

@ -1,3 +0,0 @@
model_dir: /home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat
learning_rate: 0.0001
use_tril_attention_mask: null

View File

@ -6,7 +6,7 @@ import torch
import torchmetrics
from modeling_wit import QWenLMHeadModel
from configuration_qwen import QWenConfig
from wit.configuration import ModelConfig
from transformers import AutoConfig
@ -14,15 +14,20 @@ from transformers import AutoConfig
class LitModule(pl.LightningModule):
def __init__(
self,
model_dir: str,
pretrained_model_dir: str = None,
learning_rate: float = 0.0001,
config: ModelConfig = None,
use_tril_attention_mask: str = False,
):
super().__init__()
self.save_hyperparameters()
config = QWenConfig()
if config == None:
config = ModelConfig()
model = QWenLMHeadModel(config)
model = model.from_pretrained(model_dir)
if pretrained_model_dir != None:
from modelscope import snapshot_download
model = model.from_pretrained(snapshot_download(pretrained_model_dir))
self.llm = self.register_core_module(model)
self.learning_rate = learning_rate
self.use_tril_attention_mask = use_tril_attention_mask

View File

@ -115,7 +115,7 @@ class MeaningDataset(Dataset):
def __getitem__(self, idx):
output = {}
data = torch.tensor(self.data[idx])
data = torch.tensor(self.data[idx]).long()
output["input_ids"] = data
output["labels"] = data.clone()
output["token_type_ids"] = torch.zeros(data.shape)

View File

@ -10,7 +10,7 @@ from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, S
class SpecialDataset(Dataset):
def __init__(self, start=1, end=320, size=32768): # 1048576 32768
def __init__(self, start=1, end=128, size=32768): # 1048576 32768
self.size = size
self.features = []
a = torch.randint(start, end, [size])
@ -20,8 +20,8 @@ class SpecialDataset(Dataset):
z = torch.zeros([size]).long()
# self.data = torch.stack([a, b, a + b, a + b, a + b * 2]).permute(1, 0)
# self.data = torch.stack([a, b, a, a + b / 4]).permute(1, 0).long()
# self.data = torch.stack([a, a + 1, a + 2]).permute(1, 0).long()
self.data = torch.stack([a, b, a]).permute(1, 0).long()
self.data = torch.stack([a, a + a, a + a]).permute(1, 0).long()
# self.data = torch.stack([a, b, a]).permute(1, 0).long()
# self.data = torch.stack([a, b, a, a + a / 8, a + a / 4, a + a / 2, a + a]).permute(1, 0).long()
# input a b c

View File

@ -9,50 +9,53 @@ import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from transformers import (
BatchEncoding,
DefaultDataCollator,
PreTrainedTokenizer,
set_seed,
)
from modelscope import snapshot_download
from lit_module import LitModule
from tokenization_qwen import QWenTokenizer
from logger import TBLogger
from special_dataset import SpecialDataset
from meaning_dataset import MeaningDataset
from wit.configuration import ModelConfig
model_name = "qwen/Qwen-1_8B-Chat"
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
tokenizer_name_or_path = None
train_batch_size = 16
val_batch_size = 16
train_batch_size = 256
val_batch_size = 1
num_proc = 8
max_epochs = 1000
strategy = "auto"
resume_from_ckpt_path = None
seed = 42
vocab_size = 4096
vocab_size = 256
if __name__ == "__main__":
if tokenizer_name_or_path is None:
tokenizer_name_or_path = model_name
set_seed(seed)
model_dir = snapshot_download(model_name)
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
config = ModelConfig()
config.vocab_size = vocab_size
config.hidden_size = 128 # 128 1024 2048 32
config.num_hidden_layers = 6 # 6 12 24 3
config.num_attention_heads = 8 # 8 8 16
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
# raw_dataset = SpecialDataset()
raw_dataset = MeaningDataset(start=131072, end=1048576, size=32768)
raw_dataset = SpecialDataset()
# raw_dataset = MeaningDataset(start=65536, end=262133, size=32768, max_subitem=4, vocab_size=vocab_size)
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
# daf = next(iter(train_dataset))["input_ids"].numpy().tolist()
it = iter(train_dataset)
print("data samples:")
for i in range(10):
print(next(it)["input_ids"].numpy().tolist())
train_dataloader = DataLoader(
train_dataset,