Compare commits
No commits in common. "d1906629abc2100121c162dc3ac13f06367d2bba" and "fc071dce707572e4038a0f8a1d878dc2c59b9147" have entirely different histories.
d1906629ab
...
fc071dce70
|
@ -1,5 +1,4 @@
|
||||||
__pycache__
|
__pycache__
|
||||||
.vscode
|
.vscode
|
||||||
*.txt
|
*.txt
|
||||||
temp
|
temp
|
||||||
lightning_logs
|
|
|
@ -0,0 +1,5 @@
|
||||||
|
from datasets import load_dataset
|
||||||
|
|
||||||
|
dataset = load_dataset("liwu/MNBVC", "wikipedia", split="train", streaming=True)
|
||||||
|
|
||||||
|
print(next(iter(dataset))) # get the first line
|
|
@ -1,101 +0,0 @@
|
||||||
from functools import cache
|
|
||||||
from typing import Dict, Optional
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
import torchmetrics
|
|
||||||
|
|
||||||
# from utils import init_model
|
|
||||||
# from custom_models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
|
||||||
|
|
||||||
from modeling_wit import QWenLMHeadModel
|
|
||||||
from configuration_qwen import QWenConfig
|
|
||||||
|
|
||||||
from transformers import AutoConfig
|
|
||||||
|
|
||||||
|
|
||||||
class LitModule(pl.LightningModule):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model_dir: str,
|
|
||||||
learning_rate: float = 0.0001,
|
|
||||||
use_tril_attention_mask: str = False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.save_hyperparameters()
|
|
||||||
config = QWenConfig()
|
|
||||||
model = QWenLMHeadModel(config)
|
|
||||||
model = model.from_pretrained(model_dir)
|
|
||||||
self.llm = self.register_core_module(model)
|
|
||||||
self.learning_rate = learning_rate
|
|
||||||
self.use_tril_attention_mask = use_tril_attention_mask
|
|
||||||
self.metric_loss = torchmetrics.MeanMetric()
|
|
||||||
self.metric_accuracy = torchmetrics.Accuracy(
|
|
||||||
task="multiclass",
|
|
||||||
num_classes=self.llm.config.vocab_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
@cache
|
|
||||||
def get_batch_tril_matrix(self, block_size: int, batch_size: Optional[int] = None) -> torch.Tensor:
|
|
||||||
matrix = torch.ones(block_size, block_size).tril()
|
|
||||||
if batch_size is not None:
|
|
||||||
matrix = matrix.repeat(batch_size, 1, 1)
|
|
||||||
return matrix
|
|
||||||
|
|
||||||
def register_core_module(self, module: torch.nn.Module) -> torch.nn.Module:
|
|
||||||
object.__setattr__(self, "__core_module__", module)
|
|
||||||
return module
|
|
||||||
|
|
||||||
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
|
||||||
batch_size, block_size = batch["input_ids"].shape
|
|
||||||
if self.use_tril_attention_mask:
|
|
||||||
batch["attention_mask"] = self.get_batch_tril_matrix(block_size, batch_size=batch_size).to(self.device)
|
|
||||||
outputs, loss = self.llm(**batch)
|
|
||||||
self.log("train_loss", loss, rank_zero_only=True)
|
|
||||||
return loss
|
|
||||||
|
|
||||||
def validation_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
|
||||||
outputs, loss = self.llm(**batch, return_dict=True)
|
|
||||||
logits = outputs[..., :-1, :]
|
|
||||||
labels = batch["labels"][..., 1:]
|
|
||||||
|
|
||||||
self.metric_loss.update(loss)
|
|
||||||
|
|
||||||
label_mask = labels != -100
|
|
||||||
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
|
|
||||||
|
|
||||||
def on_validation_epoch_end(self) -> None:
|
|
||||||
self.log("val_loss", self.metric_loss, rank_zero_only=True)
|
|
||||||
self.log("accuracy", self.metric_accuracy, rank_zero_only=True)
|
|
||||||
|
|
||||||
def configure_optimizers(self):
|
|
||||||
strategy = self.trainer.strategy
|
|
||||||
if isinstance(strategy, pl.strategies.DeepSpeedStrategy):
|
|
||||||
assert "optimizer" not in strategy.config
|
|
||||||
zero_config = strategy.config.get("zero_optimization")
|
|
||||||
if zero_config is not None:
|
|
||||||
if "offload_optimizer" in zero_config:
|
|
||||||
import deepspeed
|
|
||||||
|
|
||||||
optimizer = deepspeed.ops.adam.DeepSpeedCPUAdam(
|
|
||||||
self.trainer.model.parameters(), lr=self.learning_rate
|
|
||||||
)
|
|
||||||
return optimizer
|
|
||||||
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate)
|
|
||||||
return optimizer
|
|
||||||
|
|
||||||
def configure_callbacks(self):
|
|
||||||
checkpoint_callback = pl.callbacks.ModelCheckpoint(
|
|
||||||
monitor="accuracy",
|
|
||||||
mode="max",
|
|
||||||
filename="{epoch:02d}-{accuracy:.4f}",
|
|
||||||
)
|
|
||||||
early_stop_callback = pl.callbacks.EarlyStopping(
|
|
||||||
monitor="accuracy",
|
|
||||||
min_delta=0.001,
|
|
||||||
patience=3,
|
|
||||||
mode="max",
|
|
||||||
stopping_threshold=1,
|
|
||||||
)
|
|
||||||
return [checkpoint_callback]
|
|
||||||
# return [checkpoint_callback, early_stop_callback]
|
|
181
wit/lit_train.py
181
wit/lit_train.py
|
@ -1,181 +0,0 @@
|
||||||
import argparse
|
|
||||||
from functools import partial
|
|
||||||
from itertools import chain
|
|
||||||
from typing import Dict, Tuple
|
|
||||||
|
|
||||||
import datasets
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset
|
|
||||||
from transformers import (
|
|
||||||
BatchEncoding,
|
|
||||||
DefaultDataCollator,
|
|
||||||
PreTrainedTokenizer,
|
|
||||||
set_seed,
|
|
||||||
)
|
|
||||||
from modelscope import snapshot_download
|
|
||||||
from lit_module import LitModule
|
|
||||||
from tokenization_qwen import QWenTokenizer
|
|
||||||
|
|
||||||
model_name = "qwen/Qwen-1_8B-Chat"
|
|
||||||
learning_rate = 0.0001
|
|
||||||
use_tril_attention_mask = None
|
|
||||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
|
||||||
tokenizer_name_or_path = None
|
|
||||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
|
|
||||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
|
|
||||||
train_batch_size = 256
|
|
||||||
val_batch_size = 16
|
|
||||||
limit_val_batches = 128
|
|
||||||
num_proc = 8
|
|
||||||
max_epochs = 1000
|
|
||||||
strategy = "fsdp"
|
|
||||||
resume_from_ckpt_path = None
|
|
||||||
seed = 42
|
|
||||||
|
|
||||||
|
|
||||||
class SpecialDataset(Dataset):
|
|
||||||
def __init__(self, size=65536):
|
|
||||||
self.size = size
|
|
||||||
self.features = []
|
|
||||||
a = torch.randint(0, 1024, [size])
|
|
||||||
self.data = torch.stack([a, a * 2, a * 3, a * 4]).permute(1, 0)
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return self.size
|
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
|
||||||
output = {}
|
|
||||||
data = self.data[idx]
|
|
||||||
output["input_ids"] = data
|
|
||||||
output["labels"] = data
|
|
||||||
output["token_type_ids"] = torch.zeros(data.shape)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
def split_raw_dataset(
|
|
||||||
raw_dataset: datasets.DatasetDict,
|
|
||||||
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
|
||||||
if "validation" in raw_dataset:
|
|
||||||
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
|
|
||||||
else:
|
|
||||||
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
|
|
||||||
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
|
|
||||||
return train_dataset, val_dataset
|
|
||||||
|
|
||||||
|
|
||||||
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
|
|
||||||
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
|
|
||||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
|
||||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
|
||||||
total_length = (total_length // block_size) * block_size
|
|
||||||
result = {
|
|
||||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
|
||||||
for k, t in concatenated_examples.items()
|
|
||||||
}
|
|
||||||
result["labels"] = result["input_ids"].copy()
|
|
||||||
result = BatchEncoding(result)
|
|
||||||
return result
|
|
||||||
|
|
||||||
def format_inputs(examples):
|
|
||||||
p = examples["段落"]
|
|
||||||
mergeLine = ""
|
|
||||||
for line in p:
|
|
||||||
mergeLine += line["内容"] + "\n"
|
|
||||||
return {"text": mergeLine}
|
|
||||||
|
|
||||||
def tokenize_inputs(
|
|
||||||
examples: Dict[str, list],
|
|
||||||
tokenizer: PreTrainedTokenizer,
|
|
||||||
column_name: str = "text",
|
|
||||||
) -> BatchEncoding:
|
|
||||||
logits = tokenizer(examples[column_name], return_attention_mask=False)
|
|
||||||
return logits
|
|
||||||
|
|
||||||
dataset_column_names = list(dataset.features)
|
|
||||||
dataset = dataset.map(
|
|
||||||
partial(format_inputs),
|
|
||||||
batched=False,
|
|
||||||
num_proc=num_proc,
|
|
||||||
remove_columns=dataset_column_names,
|
|
||||||
)
|
|
||||||
dataset_column_names = list(dataset.features)
|
|
||||||
dataset = dataset.map(
|
|
||||||
partial(tokenize_inputs, tokenizer=tokenizer),
|
|
||||||
batched=True,
|
|
||||||
num_proc=num_proc,
|
|
||||||
remove_columns=dataset_column_names,
|
|
||||||
)
|
|
||||||
dataset = dataset.map(
|
|
||||||
partial(group_texts, block_size=tokenizer.model_max_length),
|
|
||||||
batched=True,
|
|
||||||
num_proc=num_proc,
|
|
||||||
)
|
|
||||||
|
|
||||||
return dataset
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
if tokenizer_name_or_path is None:
|
|
||||||
tokenizer_name_or_path = model_name
|
|
||||||
|
|
||||||
set_seed(seed)
|
|
||||||
|
|
||||||
# lightning module
|
|
||||||
model_dir = snapshot_download(model_name)
|
|
||||||
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
|
|
||||||
|
|
||||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
|
||||||
train_dataset_list = []
|
|
||||||
val_dataset_list = []
|
|
||||||
for dn in dataset_name:
|
|
||||||
datanames = dn.split(".")
|
|
||||||
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
|
|
||||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
|
||||||
elif datanames[-1] == "json":
|
|
||||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
|
||||||
else:
|
|
||||||
raw_dataset = datasets.load_dataset(dn)
|
|
||||||
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
|
||||||
train_dataset = process_dataset(train_dataset, tokenizer)
|
|
||||||
val_dataset = process_dataset(val_dataset, tokenizer)
|
|
||||||
train_dataset_list.append(train_dataset)
|
|
||||||
val_dataset_list.append(val_dataset)
|
|
||||||
train_dataset = ConcatDataset(train_dataset_list)
|
|
||||||
val_dataset = ConcatDataset(val_dataset_list)
|
|
||||||
|
|
||||||
train_dataset = SpecialDataset()
|
|
||||||
val_dataset = SpecialDataset()
|
|
||||||
|
|
||||||
train_dataloader = DataLoader(
|
|
||||||
train_dataset,
|
|
||||||
batch_size=train_batch_size,
|
|
||||||
num_workers=num_proc,
|
|
||||||
collate_fn=DefaultDataCollator(),
|
|
||||||
persistent_workers=True,
|
|
||||||
shuffle=True,
|
|
||||||
)
|
|
||||||
val_dataloader = DataLoader(
|
|
||||||
val_dataset,
|
|
||||||
batch_size=val_batch_size,
|
|
||||||
num_workers=num_proc,
|
|
||||||
collate_fn=DefaultDataCollator(),
|
|
||||||
persistent_workers=True,
|
|
||||||
shuffle=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision("medium")
|
|
||||||
precision = precision
|
|
||||||
lit_trainer = pl.Trainer(
|
|
||||||
accelerator="gpu",
|
|
||||||
precision=precision,
|
|
||||||
strategy=strategy,
|
|
||||||
max_epochs=max_epochs,
|
|
||||||
limit_val_batches=limit_val_batches,
|
|
||||||
)
|
|
||||||
lit_trainer.fit(
|
|
||||||
lit_module,
|
|
||||||
train_dataloaders=train_dataloader,
|
|
||||||
val_dataloaders=val_dataloader,
|
|
||||||
ckpt_path=resume_from_ckpt_path,
|
|
||||||
)
|
|
|
@ -137,16 +137,6 @@ class QWenLMHeadModel(nn.Module):
|
||||||
self.transformer = QWenModel(config)
|
self.transformer = QWenModel(config)
|
||||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: Optional[torch.LongTensor] = None,
|
|
||||||
labels: Optional[torch.LongTensor] = None,
|
|
||||||
token_type_ids: Optional[torch.LongTensor] = None,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
runner = QwenRunner(self)
|
|
||||||
return runner.forwardQWen(input_ids, labels)
|
|
||||||
|
|
||||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
||||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||||
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
||||||
|
@ -353,7 +343,15 @@ class QwenRunner:
|
||||||
loss_fct = CrossEntropyLoss()
|
loss_fct = CrossEntropyLoss()
|
||||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||||
|
|
||||||
return lm_logits, loss
|
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
|
||||||
|
# shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||||
|
# loss_fct = CrossEntropyLoss()
|
||||||
|
# loss = loss_fct(
|
||||||
|
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||||||
|
# )
|
||||||
|
# loss.backward()
|
||||||
|
|
||||||
|
return lm_logits
|
||||||
|
|
||||||
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
||||||
return make_context(tokenizer, query, query_assistant, history=history, system=system)
|
return make_context(tokenizer, query, query_assistant, history=history, system=system)
|
||||||
|
|
|
@ -63,7 +63,7 @@ class QWenTokenizer(PreTrainedTokenizer):
|
||||||
|
|
||||||
self.mergeable_ranks = _load_tiktoken_b64(vocab_file_b64)
|
self.mergeable_ranks = _load_tiktoken_b64(vocab_file_b64)
|
||||||
self.mergeable_ranks.update(_load_tiktoken_char(vocab_file_char, len(self.mergeable_ranks)))
|
self.mergeable_ranks.update(_load_tiktoken_char(vocab_file_char, len(self.mergeable_ranks)))
|
||||||
self.model_max_length = 1024
|
|
||||||
special = (
|
special = (
|
||||||
"user",
|
"user",
|
||||||
"assistant",
|
"assistant",
|
||||||
|
|
Loading…
Reference in New Issue