from modelscope import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-4B-Instruct-2507-FP8" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") # prepare the model input # prompt = "Give me a short introduction to large language model." prompt = "中国的首都在哪里?" messages = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate(**model_inputs, max_new_tokens=16384) output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :].tolist() content = tokenizer.decode(output_ids, skip_special_tokens=True) print("content:", content)