from functools import cache from typing import Dict, Optional import pytorch_lightning as pl import torch import torchmetrics # from utils import init_model # from custom_models.gpt2.modeling_gpt2 import GPT2LMHeadModel from modeling_wit import QWenLMHeadModel from configuration_qwen import QWenConfig from transformers import AutoConfig class LitModule(pl.LightningModule): def __init__( self, model_dir: str, learning_rate: float = 0.0001, use_tril_attention_mask: str = False, ): super().__init__() self.save_hyperparameters() config = QWenConfig() model = QWenLMHeadModel(config) model = model.from_pretrained(model_dir) self.llm = self.register_core_module(model) self.learning_rate = learning_rate self.use_tril_attention_mask = use_tril_attention_mask self.metric_loss = torchmetrics.MeanMetric() self.metric_accuracy = torchmetrics.Accuracy( task="multiclass", num_classes=self.llm.config.vocab_size, ) @cache def get_batch_tril_matrix(self, block_size: int, batch_size: Optional[int] = None) -> torch.Tensor: matrix = torch.ones(block_size, block_size).tril() if batch_size is not None: matrix = matrix.repeat(batch_size, 1, 1) return matrix def register_core_module(self, module: torch.nn.Module) -> torch.nn.Module: object.__setattr__(self, "__core_module__", module) return module def training_step(self, batch: Dict[str, torch.Tensor], batch_idx): batch_size, block_size = batch["input_ids"].shape if self.use_tril_attention_mask: batch["attention_mask"] = self.get_batch_tril_matrix(block_size, batch_size=batch_size).to(self.device) outputs, loss = self.llm(**batch) self.log("train_loss", loss, rank_zero_only=True) return loss def validation_step(self, batch: Dict[str, torch.Tensor], batch_idx): outputs, loss = self.llm(**batch, return_dict=True) logits = outputs[..., :-1, :] labels = batch["labels"][..., 1:] self.metric_loss.update(loss) label_mask = labels != -100 self.metric_accuracy.update(logits[label_mask], labels[label_mask]) def on_validation_epoch_end(self) -> None: self.log("val_loss", self.metric_loss, rank_zero_only=True) self.log("accuracy", self.metric_accuracy, rank_zero_only=True) def configure_optimizers(self): strategy = self.trainer.strategy if isinstance(strategy, pl.strategies.DeepSpeedStrategy): assert "optimizer" not in strategy.config zero_config = strategy.config.get("zero_optimization") if zero_config is not None: if "offload_optimizer" in zero_config: import deepspeed optimizer = deepspeed.ops.adam.DeepSpeedCPUAdam( self.trainer.model.parameters(), lr=self.learning_rate ) return optimizer optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate) return optimizer def configure_callbacks(self): checkpoint_callback = pl.callbacks.ModelCheckpoint( monitor="accuracy", mode="max", filename="{epoch:02d}-{accuracy:.4f}", ) early_stop_callback = pl.callbacks.EarlyStopping( monitor="accuracy", min_delta=0.001, patience=3, mode="max", stopping_threshold=1, ) return [checkpoint_callback] # return [checkpoint_callback, early_stop_callback]