import pytorch_lightning as pl import torch from model.qwen_module import QwenModule from model.modeling_wit import QwenRunner from model.tokenization_qwen import QWenTokenizer import configuration import dataset.dataset as ds if __name__ == "__main__": conf = configuration.TrainConfig() config = conf.model_config conf.name = "bigger" # current train process name conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat" conf.learning_rate = 0.0001 conf.use_tril_attention_mask = None conf.precision = "bf16-mixed" # "precision:bf16-mixed,16-mixed,32-true" conf.train_batch_size = 16 conf.val_batch_size = 4 conf.num_proc = 8 conf.max_epochs = 1000 conf.strategy = "auto" conf.resume_from_ckpt_path = None conf.seed = 42 conf.dataloader_works = 2 conf.dataset.meaning.val_mask_level = [0, 1, 2] conf.dataset.meaning.val_mask_idx = [0, 0, -1] config.vocab_size = 256 config.hidden_size = 128 # 128 1024 2048 32 config.num_hidden_layers = 3 # 6 12 24 3 config.num_attention_heads = 16 # 8 8 16 torch.manual_seed(conf.seed) qwen = QwenModule.load_from_checkpoint(checkpoint_path = "log/bigger/version_1/checkpoints/epoch=26-step=27891.ckpt") qwen.eval() runner = QwenRunner(qwen.llm) train_dataloader, val_dataloader = ds.InitDataset(conf) it = iter(val_dataloader) batch = next(it) fdsafd = batch["input_ids"].numpy() print(batch["input_ids"].numpy()) print(batch["input_ids"][0:1,:-1].numpy()) next_token = runner.ChatToken(batch["input_ids"][0:1,:-1].cuda()) print(next_token.detach().cpu().numpy())