import argparse from functools import partial from itertools import chain from typing import Dict, Tuple import datasets import pytorch_lightning as pl import torch from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split from transformers import ( BatchEncoding, DefaultDataCollator, PreTrainedTokenizer, set_seed, ) from tokenization_qwen import QWenTokenizer dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"] dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"] num_proc = 8 seed = 42 def split_raw_dataset( raw_dataset: datasets.DatasetDict, ) -> Tuple[datasets.Dataset, datasets.Dataset]: if "validation" in raw_dataset: train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"] else: raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed) train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"] return train_dataset, val_dataset def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset: def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding: concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) total_length = (total_length // block_size) * block_size result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() result = BatchEncoding(result) return result def format_inputs(examples): p = examples["段落"] mergeLine = "" for line in p: mergeLine += line["内容"] + "\n" return {"text": mergeLine} def tokenize_inputs( examples: Dict[str, list], tokenizer: PreTrainedTokenizer, column_name: str = "text", ) -> BatchEncoding: logits = tokenizer(examples[column_name], return_attention_mask=False) return logits dataset_column_names = list(dataset.features) dataset = dataset.map( partial(format_inputs), batched=False, num_proc=num_proc, remove_columns=dataset_column_names, ) dataset_column_names = list(dataset.features) dataset = dataset.map( partial(tokenize_inputs, tokenizer=tokenizer), batched=True, num_proc=num_proc, remove_columns=dataset_column_names, ) dataset = dataset.map( partial(group_texts, block_size=tokenizer.model_max_length), batched=True, num_proc=num_proc, ) return dataset if __name__ == "__main__": set_seed(seed) tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken") train_dataset_list = [] val_dataset_list = [] for dn in dataset_name: datanames = dn.split(".") if datanames[-1] == "gz" and datanames[-2] == "jsonl": raw_dataset = datasets.load_dataset("json", data_files=dn) elif datanames[-1] == "json": raw_dataset = datasets.load_dataset("json", data_files=dn) else: raw_dataset = datasets.load_dataset(dn) train_dataset, val_dataset = split_raw_dataset(raw_dataset) train_dataset = process_dataset(train_dataset, tokenizer) val_dataset = process_dataset(val_dataset, tokenizer) train_dataset_list.append(train_dataset) val_dataset_list.append(val_dataset)