import pytorch_lightning as pl import torch from torch.utils.data import DataLoader, Dataset, random_split from lit_module import LitModule from logger import TBLogger from wit.configuration import ModelConfig pretrain_model_name = None # "qwen/Qwen-1_8B-Chat" learning_rate = 0.0001 use_tril_attention_mask = None precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true" train_batch_size = 4 val_batch_size = 8 num_proc = 8 max_epochs = 1000 strategy = "auto" resume_from_ckpt_path = None seed = 42 class StressDataset(Dataset): def __init__(self, start=1, end=128, size=32768): # 1048576 32768 self.size = size self.features = [] self.data = torch.randint(start, end, [size, 2048]).long() def __len__(self): return self.size def __getitem__(self, idx): output = {} data = self.data[idx] output["input_ids"] = data output["labels"] = data.clone() output["token_type_ids"] = torch.zeros(data.shape) return output if __name__ == "__main__": torch.manual_seed(seed) config = ModelConfig() config.vocab_size = 4096 config.hidden_size = 1024 # 128 1024 2048 32 config.num_hidden_layers = 6 # 6 12 24 3 config.num_attention_heads = 8 # 8 8 16 lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask) raw_dataset = StressDataset() train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05]) train_dataloader = DataLoader( train_dataset, batch_size=train_batch_size, num_workers=num_proc, persistent_workers=True, shuffle=True, ) val_dataloader = DataLoader( val_dataset, batch_size=val_batch_size, num_workers=num_proc, persistent_workers=True, ) lit_trainer = pl.Trainer( accelerator="gpu", devices=2, precision=precision, logger=TBLogger("./", default_hp_metric=False), strategy=strategy, max_epochs=max_epochs, ) lit_trainer.fit( lit_module, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader, ckpt_path=resume_from_ckpt_path, )