import torch import torch.nn as nn import torch.nn.functional as F # Add this line import torchvision import torchvision.transforms as transforms # Device configuration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyper-parameters num_epochs = 5 batch_size = 4 learning_rate = 0.001 # Dataset has PILImage images of range [0, 1]. # We transform them to Tensors of normalized range [-1, 1] transform = transforms.Compose([transforms.ToTensor()]) # CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class # train_dataset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform) train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform) # test_dataset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform) test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 3, 1, 1) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 10) # self.fc2 = nn.Linear(120, 84) # self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) # x = F.relu(self.fc1(x)) # x = F.relu(self.fc2(x)) # x = self.fc3(x) x = self.fc1(x) return x model = ConvNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # Train the model n_total_steps = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 2000 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}") print("Finished Training") # Test the model with torch.no_grad(): n_correct = 0 n_samples = 0 for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) # max returns (value ,index) _, predicted = torch.max(outputs.data, 1) n_samples += labels.size(0) n_correct += (predicted == labels).sum().item() acc = 100.0 * n_correct / n_samples print(f"Accuracy of the network on the 10000 test images: {acc} %")