import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import CrossEntropyLoss import math shift_logits = torch.zeros((16, 4096)) shift_logits[:, 2] = 10.0 shift_labels = (torch.ones(16) * 2).long() loss = CrossEntropyLoss()(shift_logits, shift_labels) print(loss) loss = nn.CrossEntropyLoss() input = torch.tensor([[1.0, 2.0, 3.0]]) target = torch.tensor([0]).long() output = loss(input, target) print(output) # torch.manual_seed(32) # criterion = nn.CrossEntropyLoss() # output = torch.randn(1, 5) # label = torch.ones(1, dtype=torch.long)*3 # loss = criterion(output, label) # print("网络输出为5类:") # print(output) # print("要计算label的类别:") # print(label) # print("计算loss的结果:") # print(loss) # first = 0 # for i in range(1): # first = -output[i][label[i]] # second = 0 # for i in range(1): # for j in range(5): # second += math.exp(output[i][j]) # res = 0 # res = (first + math.log(second)) # print("自己的计算结果:") # print(res)