import argparse from functools import partial from itertools import chain from typing import Dict, Tuple import datasets import pytorch_lightning as pl import torch from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset from transformers import ( BatchEncoding, DefaultDataCollator, PreTrainedTokenizer, set_seed, ) from modelscope import snapshot_download from lit_module import LitModule from tokenization_qwen import QWenTokenizer model_name = "qwen/Qwen-1_8B-Chat" learning_rate = 0.0001 use_tril_attention_mask = None precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true" tokenizer_name_or_path = None train_batch_size = 256 val_batch_size = 16 num_proc = 8 max_epochs = 1000 strategy = "fsdp" resume_from_ckpt_path = None seed = 42 class SpecialDataset(Dataset): def __init__(self, start=1, end=4096, size=65536): self.size = size self.features = [] a = torch.randint(start, end, [size]) b = torch.randint(start, end, [size]) c = torch.randint(start, end, [size]) d = torch.randint(start, end, [size]) self.data = torch.stack([a, b, c, d, ((a + b + c + d) / 4).long()]).permute(1, 0) def __len__(self): return self.size def __getitem__(self, idx): output = {} data = self.data[idx] output["input_ids"] = data output["labels"] = data.clone() output["labels"][:4] = 0 output["token_type_ids"] = torch.zeros(data.shape) return output if __name__ == "__main__": if tokenizer_name_or_path is None: tokenizer_name_or_path = model_name set_seed(seed) # lightning module model_dir = snapshot_download(model_name) lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask) tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken") raw_dataset = SpecialDataset() train_idx, val_idx = random_split(list(range(len(raw_dataset))), [0.95, 0.05]) train_dataset = Subset(raw_dataset, train_idx.indices) val_dataset = Subset(raw_dataset, val_idx.indices) train_dataloader = DataLoader( train_dataset, batch_size=train_batch_size, num_workers=num_proc, collate_fn=DefaultDataCollator(), persistent_workers=True, shuffle=True, ) val_dataloader = DataLoader( val_dataset, batch_size=val_batch_size, num_workers=num_proc, collate_fn=DefaultDataCollator(), persistent_workers=True, ) torch.set_float32_matmul_precision("medium") precision = precision lit_trainer = pl.Trainer(accelerator="gpu", precision=precision, strategy=strategy, max_epochs=max_epochs) lit_trainer.fit( lit_module, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader, ckpt_path=resume_from_ckpt_path, )