Witllm/binary/loss.py

66 lines
1.7 KiB
Python

import torch
data_size = 20
torch.manual_seed(1234)
x_data = torch.abs(torch.randn((data_size)))
y_data = 10 * x_data
class MUL(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight):
ctx.save_for_backward(input, weight)
return input * weight
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
grad_weight = input * grad_output
grad_input = weight * grad_output
print(f"grad_output:{grad_output.item():.4f}")
return grad_input, grad_weight
class LinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor([[1.0]]), requires_grad=True)
def forward(self, x):
return MUL.apply(x, self.weight)
return x * self.weight
model = LinearModel()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
loss_history = []
for step in range(data_size):
y_pred = model(x_data[step])
# loss = criterion(y_pred, y_data[step])
# loss = y_data[step] / y_pred - 1.0
# loss = torch.abs(y_data[step] - y_pred)
# loss = y_data[step] - y_pred
loss = (y_data[step] - y_pred) * (y_data[step] - y_pred)
loss_history.append(loss.item())
optimizer.zero_grad()
loss.backward()
if (step + 1) % 1 == 0:
w = model.weight.item()
print(
f"Step {step+1}: w={w:.4f} loss={loss.item():.6f} input:{x_data[step]:.4f} output:{y_pred.item():.4f} label:{y_data[step].item():.4f} w_grad:{model.weight.grad.item():.4f}"
)
optimizer.step() # w = w - lr * ∇w[5](@ref)
test_x = torch.tensor([[5.0]])
print(f"\n预测结果: x=5 → y={model(test_x).item():.2f}")