Witllm/wit/query_block_output.py

52 lines
1.8 KiB
Python

import torch
from model.light_module import LightModule
from model.light_module import ModelRunner
import numpy as np
import math
import sys
sys.path.append("..")
from tools import show
import dataset.dataset as ds
if __name__ == "__main__":
# checkpoint_path = "log/bigger/version_0/checkpoints/epoch=19-step=98720.ckpt"
checkpoint_path = "log/bigger/version_1/checkpoints/epoch=14-step=74040.ckpt"
checkpoint_path = "log/bigger/version_3/checkpoints/epoch=46-step=231992.ckpt"
checkpoint_path = "log/bigger/version_8/checkpoints/epoch=49-step=246800.ckpt"
qwen = LightModule.load_from_checkpoint(checkpoint_path=checkpoint_path)
qwen.eval()
conf = qwen.config
torch.manual_seed(conf.seed)
np.random.seed(conf.seed)
runner = ModelRunner(qwen.llm)
def DumpQK(query, key, causal_mask, index):
size = query.shape[2]
scale_factor = 1 / math.sqrt(query.size(-1))
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_mask = torch.ones(causal_mask.shape, dtype=query.dtype, device=query.device)
attn_mask.masked_fill_(causal_mask.logical_not(), float(0))
attn_weight = attn_weight * attn_mask
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = attn_weight * attn_mask
qk = attn_weight[0]
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
show.DumpTensorToImage(qk, prePath, GridValue=255)
# qk_seq.append(qk)
# qk_index = size
qwen.llm.hook_attention = DumpQK
batch = torch.tensor([[11, 0, 3, 7, 15, 8, 10, 7]], dtype=torch.int64)
sorted_logits, sorted_indices = runner.ChatTokens(batch, sample=False)
print(sorted_logits.detach().cpu().numpy())
print(sorted_indices.detach().cpu().numpy())