184 lines
5.7 KiB
Python
184 lines
5.7 KiB
Python
import argparse
|
|
from functools import partial
|
|
from itertools import chain
|
|
from typing import Dict, Tuple
|
|
|
|
import datasets
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from torch.utils.data import ConcatDataset, DataLoader, Dataset
|
|
from transformers import (
|
|
BatchEncoding,
|
|
DefaultDataCollator,
|
|
PreTrainedTokenizer,
|
|
set_seed,
|
|
)
|
|
from modelscope import snapshot_download
|
|
from lit_module import LitModule
|
|
from tokenization_qwen import QWenTokenizer
|
|
|
|
model_name = "qwen/Qwen-1_8B-Chat"
|
|
learning_rate = 0.0001
|
|
use_tril_attention_mask = None
|
|
precision = "16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
|
tokenizer_name_or_path = None
|
|
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
|
|
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
|
|
train_batch_size = 1
|
|
val_batch_size = 1
|
|
accumulate_grad_batches = 32
|
|
num_proc = 8
|
|
max_epochs = None
|
|
strategy = "fsdp"
|
|
resume_from_ckpt_path = None
|
|
seed = 42
|
|
|
|
|
|
class SpecialDataset(Dataset):
|
|
def __init__(self, size=4096):
|
|
self.size = size
|
|
self.features = []
|
|
|
|
def __len__(self):
|
|
return self.size
|
|
|
|
def __getitem__(self, idx):
|
|
output = {}
|
|
output["input_ids"] = torch.randint(0, 4096, [128])
|
|
output["labels"] = output["input_ids"]
|
|
output["token_type_ids"] = torch.zeros([128])
|
|
return output
|
|
|
|
|
|
def split_raw_dataset(
|
|
raw_dataset: datasets.DatasetDict,
|
|
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
|
if "validation" in raw_dataset:
|
|
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
|
|
else:
|
|
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
|
|
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
|
|
return train_dataset, val_dataset
|
|
|
|
|
|
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
|
|
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
|
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
|
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
|
total_length = (total_length // block_size) * block_size
|
|
result = {
|
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
|
for k, t in concatenated_examples.items()
|
|
}
|
|
result["labels"] = result["input_ids"].copy()
|
|
result = BatchEncoding(result)
|
|
return result
|
|
|
|
def format_inputs(examples):
|
|
p = examples["段落"]
|
|
mergeLine = ""
|
|
for line in p:
|
|
mergeLine += line["内容"] + "\n"
|
|
return {"text": mergeLine}
|
|
|
|
def tokenize_inputs(
|
|
examples: Dict[str, list],
|
|
tokenizer: PreTrainedTokenizer,
|
|
column_name: str = "text",
|
|
) -> BatchEncoding:
|
|
logits = tokenizer(examples[column_name], return_attention_mask=False)
|
|
return logits
|
|
|
|
dataset_column_names = list(dataset.features)
|
|
dataset = dataset.map(
|
|
partial(format_inputs),
|
|
batched=False,
|
|
num_proc=num_proc,
|
|
remove_columns=dataset_column_names,
|
|
)
|
|
dataset_column_names = list(dataset.features)
|
|
dataset = dataset.map(
|
|
partial(tokenize_inputs, tokenizer=tokenizer),
|
|
batched=True,
|
|
num_proc=num_proc,
|
|
remove_columns=dataset_column_names,
|
|
)
|
|
dataset = dataset.map(
|
|
partial(group_texts, block_size=tokenizer.model_max_length),
|
|
batched=True,
|
|
num_proc=num_proc,
|
|
)
|
|
|
|
return dataset
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if tokenizer_name_or_path is None:
|
|
tokenizer_name_or_path = model_name
|
|
|
|
set_seed(seed)
|
|
|
|
# lightning module
|
|
model_dir = snapshot_download(model_name)
|
|
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
|
|
|
|
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
|
train_dataset_list = []
|
|
val_dataset_list = []
|
|
for dn in dataset_name:
|
|
datanames = dn.split(".")
|
|
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
|
|
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
|
elif datanames[-1] == "json":
|
|
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
|
else:
|
|
raw_dataset = datasets.load_dataset(dn)
|
|
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
|
train_dataset = process_dataset(train_dataset, tokenizer)
|
|
val_dataset = process_dataset(val_dataset, tokenizer)
|
|
train_dataset_list.append(train_dataset)
|
|
val_dataset_list.append(val_dataset)
|
|
train_dataset = ConcatDataset(train_dataset_list)
|
|
val_dataset = ConcatDataset(val_dataset_list)
|
|
|
|
train_dataset = SpecialDataset()
|
|
val_dataset = SpecialDataset()
|
|
|
|
# dataloaders
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
batch_size=train_batch_size,
|
|
num_workers=num_proc,
|
|
collate_fn=DefaultDataCollator(),
|
|
persistent_workers=True,
|
|
shuffle=True,
|
|
)
|
|
val_dataloader = DataLoader(
|
|
val_dataset,
|
|
batch_size=val_batch_size,
|
|
num_workers=num_proc,
|
|
collate_fn=DefaultDataCollator(),
|
|
persistent_workers=True,
|
|
)
|
|
|
|
ne = next(train_dataloader._get_iterator())
|
|
|
|
# trainer
|
|
# apply_all_patches()
|
|
torch.set_float32_matmul_precision("medium")
|
|
precision = precision
|
|
lit_trainer = pl.Trainer(
|
|
accelerator="gpu",
|
|
precision=precision,
|
|
log_every_n_steps=5,
|
|
accumulate_grad_batches=accumulate_grad_batches,
|
|
strategy=strategy,
|
|
max_epochs=max_epochs,
|
|
)
|
|
lit_trainer.fit(
|
|
lit_module,
|
|
train_dataloaders=train_dataloader,
|
|
val_dataloaders=val_dataloader,
|
|
ckpt_path=resume_from_ckpt_path,
|
|
)
|