342 lines
13 KiB
Python
342 lines
13 KiB
Python
"""Simple, minimal implementation of Mamba in one file of PyTorch.
|
|
|
|
Suggest reading the following before/while reading the code:
|
|
[1] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)
|
|
https://arxiv.org/abs/2312.00752
|
|
[2] The Annotated S4 (Sasha Rush and Sidd Karamcheti)
|
|
https://srush.github.io/annotated-s4
|
|
|
|
Glossary:
|
|
b: batch size (`B` in Mamba paper [1] Algorithm 2)
|
|
l: sequence length (`L` in [1] Algorithm 2)
|
|
d or d_model: hidden dim
|
|
n or d_state: latent state dim (`N` in [1] Algorithm 2)
|
|
expand: expansion factor (`E` in [1] Section 3.4)
|
|
d_in or d_inner: d * expand (`D` in [1] Algorithm 2)
|
|
A, B, C, D: state space parameters (See any state space representation formula)
|
|
(B, C are input-dependent (aka selective, a key innovation in Mamba); A, D are not)
|
|
Δ or delta: input-dependent step size
|
|
dt_rank: rank of Δ (See [1] Section 3.6 "Parameterization of ∆")
|
|
|
|
"""
|
|
from __future__ import annotations
|
|
import math
|
|
import json
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from dataclasses import dataclass
|
|
from einops import rearrange, repeat, einsum
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
d_model: int
|
|
n_layer: int
|
|
vocab_size: int
|
|
d_state: int = 16
|
|
expand: int = 2
|
|
dt_rank: Union[int, str] = 'auto'
|
|
d_conv: int = 4
|
|
pad_vocab_size_multiple: int = 8
|
|
conv_bias: bool = True
|
|
bias: bool = False
|
|
|
|
def __post_init__(self):
|
|
self.d_inner = int(self.expand * self.d_model)
|
|
|
|
if self.dt_rank == 'auto':
|
|
self.dt_rank = math.ceil(self.d_model / 16)
|
|
|
|
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
|
self.vocab_size += (self.pad_vocab_size_multiple
|
|
- self.vocab_size % self.pad_vocab_size_multiple)
|
|
|
|
|
|
class Mamba(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
"""Full Mamba model."""
|
|
super().__init__()
|
|
self.args = args
|
|
|
|
self.embedding = nn.Embedding(args.vocab_size, args.d_model)
|
|
self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])
|
|
self.norm_f = RMSNorm(args.d_model)
|
|
|
|
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
|
|
self.lm_head.weight = self.embedding.weight # Tie output projection to embedding weights.
|
|
# See "Weight Tying" paper
|
|
|
|
|
|
def forward(self, input_ids):
|
|
"""
|
|
Args:
|
|
input_ids (long tensor): shape (b, l) (See Glossary at top for definitions of b, l, d_in, n...)
|
|
|
|
Returns:
|
|
logits: shape (b, l, vocab_size)
|
|
|
|
Official Implementation:
|
|
class MambaLMHeadModel, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L173
|
|
|
|
"""
|
|
x = self.embedding(input_ids)
|
|
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
|
|
x = self.norm_f(x)
|
|
logits = self.lm_head(x)
|
|
|
|
return logits
|
|
|
|
|
|
@staticmethod
|
|
def from_pretrained(pretrained_model_name: str):
|
|
"""Load pretrained weights from HuggingFace into model.
|
|
|
|
Args:
|
|
pretrained_model_name: One of
|
|
* 'state-spaces/mamba-2.8b-slimpj'
|
|
* 'state-spaces/mamba-2.8b'
|
|
* 'state-spaces/mamba-1.4b'
|
|
* 'state-spaces/mamba-790m'
|
|
* 'state-spaces/mamba-370m'
|
|
* 'state-spaces/mamba-130m'
|
|
|
|
Returns:
|
|
model: Mamba model with weights loaded
|
|
|
|
"""
|
|
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
|
|
from transformers.utils.hub import cached_file
|
|
|
|
def load_config_hf(model_name):
|
|
resolved_archive_file = cached_file(model_name, CONFIG_NAME,
|
|
_raise_exceptions_for_missing_entries=False)
|
|
return json.load(open(resolved_archive_file))
|
|
|
|
|
|
def load_state_dict_hf(model_name, device=None, dtype=None):
|
|
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
|
|
_raise_exceptions_for_missing_entries=False)
|
|
return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
|
|
|
|
config_data = load_config_hf(pretrained_model_name)
|
|
args = ModelArgs(
|
|
d_model=config_data['d_model'],
|
|
n_layer=config_data['n_layer'],
|
|
vocab_size=config_data['vocab_size']
|
|
)
|
|
model = Mamba(args)
|
|
|
|
state_dict = load_state_dict_hf(pretrained_model_name)
|
|
new_state_dict = {}
|
|
for key in state_dict:
|
|
new_key = key.replace('backbone.', '')
|
|
new_state_dict[new_key] = state_dict[key]
|
|
model.load_state_dict(new_state_dict)
|
|
|
|
return model
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
"""Simple block wrapping Mamba block with normalization and residual connection."""
|
|
super().__init__()
|
|
self.args = args
|
|
self.mixer = MambaBlock(args)
|
|
self.norm = RMSNorm(args.d_model)
|
|
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
|
|
|
|
Returns:
|
|
output: shape (b, l, d)
|
|
|
|
Official Implementation:
|
|
Block.forward(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L297
|
|
|
|
Note: the official repo chains residual blocks that look like
|
|
[Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> ...
|
|
where the first Add is a no-op. This is purely for performance reasons as this
|
|
allows them to fuse the Add->Norm.
|
|
|
|
We instead implement our blocks as the more familiar, simpler, and numerically equivalent
|
|
[Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> ....
|
|
|
|
"""
|
|
output = self.mixer(self.norm(x)) + x
|
|
|
|
return output
|
|
|
|
|
|
class MambaBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
|
|
super().__init__()
|
|
self.args = args
|
|
|
|
self.in_proj = nn.Linear(args.d_model, args.d_inner * 2, bias=args.bias)
|
|
|
|
self.conv1d = nn.Conv1d(
|
|
in_channels=args.d_inner,
|
|
out_channels=args.d_inner,
|
|
bias=args.conv_bias,
|
|
kernel_size=args.d_conv,
|
|
groups=args.d_inner,
|
|
padding=args.d_conv - 1,
|
|
)
|
|
|
|
# x_proj takes in `x` and outputs the input-specific Δ, B, C
|
|
self.x_proj = nn.Linear(args.d_inner, args.dt_rank + args.d_state * 2, bias=False)
|
|
|
|
# dt_proj projects Δ from dt_rank to d_in
|
|
self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=True)
|
|
|
|
A = repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
|
|
self.A_log = nn.Parameter(torch.log(A))
|
|
self.D = nn.Parameter(torch.ones(args.d_inner))
|
|
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
|
|
|
|
|
|
def forward(self, x):
|
|
"""Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
|
|
|
|
Args:
|
|
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
|
|
|
|
Returns:
|
|
output: shape (b, l, d)
|
|
|
|
Official Implementation:
|
|
class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
|
|
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
|
|
|
|
"""
|
|
(b, l, d) = x.shape
|
|
|
|
x_and_res = self.in_proj(x) # shape (b, l, 2 * d_in)
|
|
(x, res) = x_and_res.split(split_size=[self.args.d_inner, self.args.d_inner], dim=-1)
|
|
|
|
x = rearrange(x, 'b l d_in -> b d_in l')
|
|
x = self.conv1d(x)[:, :, :l]
|
|
x = rearrange(x, 'b d_in l -> b l d_in')
|
|
|
|
x = F.silu(x)
|
|
|
|
y = self.ssm(x)
|
|
|
|
y = y * F.silu(res)
|
|
|
|
output = self.out_proj(y)
|
|
|
|
return output
|
|
|
|
|
|
def ssm(self, x):
|
|
"""Runs the SSM. See:
|
|
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
|
|
- run_SSM(A, B, C, u) in The Annotated S4 [2]
|
|
|
|
Args:
|
|
x: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
|
|
|
|
Returns:
|
|
output: shape (b, l, d_in)
|
|
|
|
Official Implementation:
|
|
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
|
|
|
|
"""
|
|
(d_in, n) = self.A_log.shape
|
|
|
|
# Compute ∆ A B C D, the state space parameters.
|
|
# A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
|
# ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
|
# and is why Mamba is called **selective** state spaces)
|
|
|
|
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
|
|
D = self.D.float()
|
|
|
|
x_dbl = self.x_proj(x) # (b, l, dt_rank + 2*n)
|
|
|
|
(delta, B, C) = x_dbl.split(split_size=[self.args.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
|
|
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
|
|
|
|
y = self.selective_scan(x, delta, A, B, C, D) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
|
|
|
|
return y
|
|
|
|
|
|
def selective_scan(self, u, delta, A, B, C, D):
|
|
"""Does selective scan algorithm. See:
|
|
- Section 2 State Space Models in the Mamba paper [1]
|
|
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
|
|
- run_SSM(A, B, C, u) in The Annotated S4 [2]
|
|
|
|
This is the classic discrete state space formula:
|
|
x(t + 1) = Ax(t) + Bu(t)
|
|
y(t) = Cx(t) + Du(t)
|
|
except B and C (and the step size delta, which is used for discretization) are dependent on the input x(t).
|
|
|
|
Args:
|
|
u: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
|
|
delta: shape (b, l, d_in)
|
|
A: shape (d_in, n)
|
|
B: shape (b, l, n)
|
|
C: shape (b, l, n)
|
|
D: shape (d_in,)
|
|
|
|
Returns:
|
|
output: shape (b, l, d_in)
|
|
|
|
Official Implementation:
|
|
selective_scan_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L86
|
|
Note: I refactored some parts out of `selective_scan_ref` out, so the functionality doesn't match exactly.
|
|
|
|
"""
|
|
(b, l, d_in) = u.shape
|
|
n = A.shape[1]
|
|
|
|
# Discretize continuous parameters (A, B)
|
|
# - A is discretized using zero-order hold (ZOH) discretization (see Section 2 Equation 4 in the Mamba paper [1])
|
|
# - B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors:
|
|
# "A is the more important term and the performance doesn't change much with the simplification on B"
|
|
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
|
|
deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
|
|
|
|
# Perform selective scan (see scan_SSM() in The Annotated S4 [2])
|
|
# Note that the below is sequential, while the official implementation does a much faster parallel scan that
|
|
# is additionally hardware-aware (like FlashAttention).
|
|
x = torch.zeros((b, d_in, n), device=deltaA.device)
|
|
ys = []
|
|
for i in range(l):
|
|
x = deltaA[:, i] * x + deltaB_u[:, i]
|
|
y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
|
|
ys.append(y)
|
|
y = torch.stack(ys, dim=1) # shape (b, l, d_in)
|
|
|
|
y = y + u * D
|
|
|
|
return y
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self,
|
|
d_model: int,
|
|
eps: float = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(d_model))
|
|
|
|
|
|
def forward(self, x):
|
|
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
|
|
|
return output
|
|
|