Witllm/finetune/llamafactory/train_qwen3_lora_sft.yaml

46 lines
904 B
YAML

### model
model_name_or_path: Qwen/Qwen3-4B
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: alpaca_zh_demo
template: qwen3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen3-4b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: tensorboard # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 5.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500