1734 lines
68 KiB
Python
1734 lines
68 KiB
Python
# Copyright (c) Alibaba Cloud.
|
||
#
|
||
# This source code is licensed under the license found in the
|
||
# LICENSE file in the root directory of this source tree.
|
||
|
||
import copy
|
||
import importlib
|
||
import math
|
||
import inspect
|
||
import pathlib
|
||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
|
||
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import torch.utils.checkpoint
|
||
import warnings
|
||
|
||
from torch.nn import CrossEntropyLoss
|
||
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
||
from transformers.generation.logits_process import LogitsProcessorList
|
||
|
||
if TYPE_CHECKING:
|
||
from transformers.generation.streamers import BaseStreamer
|
||
from transformers.generation.utils import GenerateOutput
|
||
from transformers.modeling_outputs import (
|
||
BaseModelOutputWithPast,
|
||
CausalLMOutputWithPast,
|
||
)
|
||
from transformers.modeling_utils import PreTrainedModel
|
||
from transformers.utils import logging
|
||
|
||
try:
|
||
from einops import rearrange
|
||
except ImportError:
|
||
rearrange = None
|
||
from torch import nn
|
||
|
||
SUPPORT_CUDA = torch.cuda.is_available()
|
||
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
|
||
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
|
||
SUPPORT_TORCH2 = (
|
||
hasattr(torch, "__version__") and int(torch.__version__.split(".")[0]) >= 2
|
||
)
|
||
|
||
|
||
from configuration_qwen import QWenConfig
|
||
from qwen_generation_utils import (
|
||
HistoryType,
|
||
make_context,
|
||
decode_tokens,
|
||
get_stop_words_ids,
|
||
StopWordsLogitsProcessor,
|
||
)
|
||
|
||
logger = logging.get_logger(__name__)
|
||
|
||
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
|
||
|
||
_ERROR_BAD_CHAT_FORMAT = """\
|
||
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
|
||
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
|
||
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
|
||
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
|
||
"""
|
||
|
||
_SENTINEL = object()
|
||
_ERROR_STREAM_IN_CHAT = """\
|
||
Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
|
||
向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
|
||
"""
|
||
|
||
apply_rotary_emb_func = None
|
||
rms_norm = None
|
||
|
||
|
||
def quantize_cache_v(fdata, bits, qmax, qmin):
|
||
# b, s, head, h-dim->b, head, s, h-dim
|
||
qtype = torch.uint8
|
||
device = fdata.device
|
||
shape = fdata.shape
|
||
|
||
fdata_cal = torch.flatten(fdata, 2)
|
||
fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
|
||
fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
|
||
# Compute params
|
||
if qmax.device != fmax.device:
|
||
qmax = qmax.to(device)
|
||
qmin = qmin.to(device)
|
||
scale = (fmax - fmin) / (qmax - qmin)
|
||
zero = qmin - fmin / scale
|
||
scale = scale.unsqueeze(-1).repeat(1, 1, shape[2], 1).contiguous()
|
||
zero = zero.unsqueeze(-1).repeat(1, 1, shape[2], 1).contiguous()
|
||
# Quantize
|
||
res_data = fdata / scale + zero
|
||
qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
|
||
return qdata.contiguous(), scale, zero
|
||
|
||
|
||
def dequantize_cache_torch(qdata, scale, zero):
|
||
data = scale * (qdata - zero)
|
||
return data
|
||
|
||
|
||
class QWenAttention(nn.Module):
|
||
def __init__(self, config):
|
||
super().__init__()
|
||
|
||
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
||
self.seq_length = config.seq_length
|
||
|
||
self.hidden_size = config.hidden_size
|
||
self.split_size = config.hidden_size
|
||
self.num_heads = config.num_attention_heads
|
||
self.head_dim = self.hidden_size // self.num_heads
|
||
|
||
self.scale_attn_weights = True
|
||
|
||
self.projection_size = config.kv_channels * config.num_attention_heads
|
||
|
||
assert self.projection_size % config.num_attention_heads == 0
|
||
self.hidden_size_per_attention_head = (
|
||
self.projection_size // config.num_attention_heads
|
||
)
|
||
|
||
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
||
|
||
self.c_proj = nn.Linear(
|
||
config.hidden_size, self.projection_size, bias=not config.no_bias
|
||
)
|
||
|
||
self.is_fp32 = not (config.bf16 or config.fp16)
|
||
|
||
self.bf16 = config.bf16
|
||
|
||
self.use_dynamic_ntk = config.use_dynamic_ntk
|
||
self.use_logn_attn = config.use_logn_attn
|
||
|
||
logn_list = [
|
||
math.log(i, self.seq_length) if i > self.seq_length else 1
|
||
for i in range(1, 32768)
|
||
]
|
||
logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
||
self.register_buffer("logn_tensor", logn_tensor, persistent=False)
|
||
|
||
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
||
self.softmax_in_fp32 = (
|
||
config.softmax_in_fp32 if hasattr(config, "softmax_in_fp32") else False
|
||
)
|
||
self.use_cache_quantization = (
|
||
config.use_cache_quantization
|
||
if hasattr(config, "use_cache_quantization")
|
||
else False
|
||
)
|
||
self.use_cache_kernel = (
|
||
config.use_cache_kernel if hasattr(config, "use_cache_kernel") else False
|
||
)
|
||
cache_dtype = torch.float
|
||
if self.bf16:
|
||
cache_dtype = torch.bfloat16
|
||
elif config.fp16:
|
||
cache_dtype = torch.float16
|
||
self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
|
||
self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
|
||
|
||
if config.use_cache_quantization and config.use_cache_kernel:
|
||
# pre check if the support files existing
|
||
module_root = pathlib.Path(__file__).parent
|
||
src_files = (
|
||
"cache_autogptq_cuda_256.cpp",
|
||
"cache_autogptq_cuda_kernel_256.cu",
|
||
)
|
||
if any(not (module_root / src).is_file() for src in src_files):
|
||
warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
|
||
self.cache_kernels = None
|
||
else:
|
||
try:
|
||
from .cpp_kernels import cache_autogptq_cuda_256
|
||
|
||
self.cache_kernels = cache_autogptq_cuda_256
|
||
except ImportError:
|
||
warnings.warn("Failed to import KV cache kernels.")
|
||
self.cache_kernels = None
|
||
|
||
def _attn(
|
||
self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None
|
||
):
|
||
device = query.device
|
||
if self.use_cache_quantization:
|
||
qk, qk_scale, qk_zero = key
|
||
if self.use_cache_kernel and self.cache_kernels is not None:
|
||
shape = query.shape[:-1] + (qk.shape[-2],)
|
||
attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
|
||
self.cache_kernels.vecquant8matmul_batched_faster_old(
|
||
query.contiguous()
|
||
if query.dtype == torch.float16
|
||
else query.to(torch.float16).contiguous(),
|
||
qk.transpose(-1, -2).contiguous(),
|
||
attn_weights,
|
||
qk_scale.contiguous()
|
||
if qk_scale.dtype == torch.float16
|
||
else qk_scale.to(torch.float16).contiguous(),
|
||
qk_zero.contiguous()
|
||
if qk_zero.dtype == torch.float16
|
||
else qk_zero.to(torch.float16).contiguous(),
|
||
)
|
||
# attn_weights = attn_weights.to(query.dtype).contiguous()
|
||
else:
|
||
key = dequantize_cache_torch(qk, qk_scale, qk_zero)
|
||
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
||
else:
|
||
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
||
|
||
if self.scale_attn_weights:
|
||
if self.use_cache_quantization:
|
||
size_temp = value[0].size(-1)
|
||
else:
|
||
size_temp = value.size(-1)
|
||
attn_weights = attn_weights / (size_temp**0.5)
|
||
|
||
mask_value = torch.finfo(attn_weights.dtype).min
|
||
if causal_mask is not None:
|
||
attn_weights = torch.where(
|
||
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
||
)
|
||
|
||
if attention_mask is not None:
|
||
attn_weights = attn_weights + attention_mask
|
||
|
||
if self.softmax_in_fp32:
|
||
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
|
||
else:
|
||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
||
attn_weights = attn_weights.type(query.dtype)
|
||
attn_weights = self.attn_dropout(attn_weights)
|
||
|
||
if head_mask is not None:
|
||
attn_weights = attn_weights * head_mask
|
||
|
||
if self.use_cache_quantization:
|
||
qv, qv_scale, qv_zero = value
|
||
if self.use_cache_kernel and self.cache_kernels is not None:
|
||
shape = attn_weights.shape[:-1] + (query.shape[-1],)
|
||
attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
|
||
self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
|
||
attn_weights.contiguous()
|
||
if attn_weights.dtype == torch.float16
|
||
else attn_weights.to(torch.float16).contiguous(),
|
||
qv.contiguous(), # dtype: int32
|
||
attn_output,
|
||
qv_scale.contiguous()
|
||
if qv_scale.dtype == torch.float16
|
||
else qv_scale.to(torch.float16).contiguous(),
|
||
qv_zero.contiguous()
|
||
if qv_zero.dtype == torch.float16
|
||
else qv_zero.to(torch.float16).contiguous(),
|
||
)
|
||
if attn_output.dtype != query.dtype:
|
||
attn_output = attn_output.to(query.dtype)
|
||
attn_weights = attn_weights.to(query.dtype)
|
||
else:
|
||
value = dequantize_cache_torch(qv, qv_scale, qv_zero)
|
||
attn_output = torch.matmul(attn_weights, value)
|
||
else:
|
||
attn_output = torch.matmul(attn_weights, value)
|
||
|
||
attn_output = attn_output.transpose(1, 2)
|
||
|
||
return attn_output, attn_weights
|
||
|
||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||
tensor = tensor.view(new_shape)
|
||
return tensor
|
||
|
||
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
||
tensor = tensor.contiguous()
|
||
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
||
return tensor.view(new_shape)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||
attention_mask: Optional[torch.FloatTensor] = None,
|
||
head_mask: Optional[torch.FloatTensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
output_attentions: Optional[bool] = False,
|
||
use_cache: Optional[bool] = False,
|
||
):
|
||
mixed_x_layer = self.c_attn(hidden_states)
|
||
|
||
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
||
|
||
query = self._split_heads(query, self.num_heads, self.head_dim)
|
||
key = self._split_heads(key, self.num_heads, self.head_dim)
|
||
value = self._split_heads(value, self.num_heads, self.head_dim)
|
||
|
||
if rotary_pos_emb_list is not None:
|
||
cur_len = query.shape[1]
|
||
if len(rotary_pos_emb_list) == 1:
|
||
rotary_pos_emb = rotary_pos_emb_list[0]
|
||
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
||
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||
q_pos_emb, k_pos_emb = rotary_pos_emb
|
||
# Slice the pos emb for current inference
|
||
query = apply_rotary_pos_emb(query, q_pos_emb)
|
||
key = apply_rotary_pos_emb(key, k_pos_emb)
|
||
else:
|
||
query_list = []
|
||
key_list = []
|
||
for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
|
||
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
||
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||
q_pos_emb, k_pos_emb = rotary_pos_emb
|
||
# Slice the pos emb for current inference
|
||
query_list += [
|
||
apply_rotary_pos_emb(query[i : i + 1, :, :], q_pos_emb)
|
||
]
|
||
key_list += [apply_rotary_pos_emb(key[i : i + 1, :, :], k_pos_emb)]
|
||
query = torch.cat(query_list, dim=0)
|
||
key = torch.cat(key_list, dim=0)
|
||
|
||
if self.use_cache_quantization:
|
||
key = quantize_cache_v(
|
||
key.permute(0, 2, 1, 3),
|
||
bits=8,
|
||
qmin=self.cache_qmin,
|
||
qmax=self.cache_qmax,
|
||
)
|
||
value = quantize_cache_v(
|
||
value.permute(0, 2, 1, 3),
|
||
bits=8,
|
||
qmin=self.cache_qmin,
|
||
qmax=self.cache_qmax,
|
||
)
|
||
|
||
if layer_past is not None:
|
||
past_key, past_value = layer_past[0], layer_past[1]
|
||
if self.use_cache_quantization:
|
||
# use_cache_quantization:
|
||
# present=((q_key,key_scale,key_zero_point),
|
||
# (q_value,value_scale,value_zero_point))
|
||
key = (
|
||
torch.cat((past_key[0], key[0]), dim=2),
|
||
torch.cat((past_key[1], key[1]), dim=2),
|
||
torch.cat((past_key[2], key[2]), dim=2),
|
||
)
|
||
value = (
|
||
torch.cat((past_value[0], value[0]), dim=2),
|
||
torch.cat((past_value[1], value[1]), dim=2),
|
||
torch.cat((past_value[2], value[2]), dim=2),
|
||
)
|
||
else:
|
||
# not use_cache_quantization:
|
||
# present=(key,value)
|
||
key = torch.cat((past_key, key), dim=1)
|
||
value = torch.cat((past_value, value), dim=1)
|
||
|
||
if use_cache:
|
||
present = (key, value)
|
||
else:
|
||
present = None
|
||
|
||
key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
|
||
if key_size > self.seq_length and self.use_logn_attn and not self.training:
|
||
if self.use_cache_quantization:
|
||
seq_start = key[0].size(2) - query.size(1)
|
||
seq_end = key[0].size(2)
|
||
else:
|
||
seq_start = key.size(1) - query.size(1)
|
||
seq_end = key.size(1)
|
||
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
|
||
query = query * logn_tensor.expand_as(query)
|
||
|
||
key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
|
||
if query.size(1) == key_size:
|
||
causal_mask = torch.tril(
|
||
torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
|
||
).view(1, 1, key_size, key_size)
|
||
else:
|
||
causal_mask = None
|
||
query = query.permute(0, 2, 1, 3)
|
||
if not self.use_cache_quantization:
|
||
key = key.permute(0, 2, 1, 3)
|
||
value = value.permute(0, 2, 1, 3)
|
||
|
||
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
||
if attention_mask is not None:
|
||
attention_mask = attention_mask.expand(-1, -1, causal_mask.size(2), -1)
|
||
if causal_mask is not None:
|
||
attention_mask = attention_mask.masked_fill(
|
||
~causal_mask, torch.finfo(query.dtype).min
|
||
)
|
||
else:
|
||
attention_mask = causal_mask
|
||
attn_output = F.scaled_dot_product_attention(
|
||
query, key, value, attn_mask=attention_mask
|
||
).transpose(1, 2)
|
||
attn_weight = None
|
||
else:
|
||
attn_output, attn_weight = self._attn(
|
||
query, key, value, causal_mask, attention_mask, head_mask
|
||
)
|
||
context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
||
|
||
attn_output = self.c_proj(context_layer)
|
||
|
||
outputs = (attn_output, present)
|
||
if output_attentions:
|
||
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
||
raise ValueError(
|
||
"Cannot output attentions while using scaled_dot_product_attention"
|
||
)
|
||
else:
|
||
outputs += (attn_weight,)
|
||
|
||
return outputs
|
||
|
||
|
||
class QWenMLP(nn.Module):
|
||
def __init__(self, config):
|
||
super().__init__()
|
||
self.w1 = nn.Linear(
|
||
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
|
||
)
|
||
self.w2 = nn.Linear(
|
||
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
|
||
)
|
||
ff_dim_in = config.intermediate_size // 2
|
||
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
||
|
||
def forward(self, hidden_states):
|
||
a1 = self.w1(hidden_states)
|
||
a2 = self.w2(hidden_states)
|
||
intermediate_parallel = a1 * F.silu(a2)
|
||
output = self.c_proj(intermediate_parallel)
|
||
return output
|
||
|
||
|
||
class QWenBlock(nn.Module):
|
||
def __init__(self, config):
|
||
super().__init__()
|
||
hidden_size = config.hidden_size
|
||
self.bf16 = config.bf16
|
||
|
||
self.ln_1 = RMSNorm(
|
||
hidden_size,
|
||
eps=config.layer_norm_epsilon,
|
||
)
|
||
self.attn = QWenAttention(config)
|
||
self.ln_2 = RMSNorm(
|
||
hidden_size,
|
||
eps=config.layer_norm_epsilon,
|
||
)
|
||
|
||
self.mlp = QWenMLP(config)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||
attention_mask: Optional[torch.FloatTensor] = None,
|
||
head_mask: Optional[torch.FloatTensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
use_cache: Optional[bool] = False,
|
||
output_attentions: Optional[bool] = False,
|
||
):
|
||
layernorm_output = self.ln_1(hidden_states)
|
||
|
||
attn_outputs = self.attn(
|
||
layernorm_output,
|
||
rotary_pos_emb_list,
|
||
layer_past=layer_past,
|
||
attention_mask=attention_mask,
|
||
head_mask=head_mask,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions,
|
||
)
|
||
attn_output = attn_outputs[0]
|
||
|
||
outputs = attn_outputs[1:]
|
||
|
||
residual = hidden_states
|
||
layernorm_input = attn_output + residual
|
||
|
||
layernorm_output = self.ln_2(layernorm_input)
|
||
|
||
residual = layernorm_input
|
||
mlp_output = self.mlp(layernorm_output)
|
||
hidden_states = residual + mlp_output
|
||
|
||
if use_cache:
|
||
outputs = (hidden_states,) + outputs
|
||
else:
|
||
outputs = (hidden_states,) + outputs[1:]
|
||
|
||
return outputs
|
||
|
||
|
||
class QWenPreTrainedModel(PreTrainedModel):
|
||
config_class = QWenConfig
|
||
base_model_prefix = "transformer"
|
||
is_parallelizable = False
|
||
supports_gradient_checkpointing = True
|
||
_no_split_modules = ["QWenBlock"]
|
||
_skip_keys_device_placement = "past_key_values"
|
||
|
||
def __init__(self, *inputs, **kwargs):
|
||
super().__init__(*inputs, **kwargs)
|
||
|
||
def _init_weights(self, module):
|
||
"""Initialize the weights."""
|
||
if isinstance(module, nn.Linear):
|
||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
if module.bias is not None:
|
||
module.bias.data.zero_()
|
||
elif isinstance(module, nn.Embedding):
|
||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
if module.padding_idx is not None:
|
||
module.weight.data[module.padding_idx].zero_()
|
||
elif isinstance(module, RMSNorm):
|
||
module.weight.data.fill_(1.0)
|
||
|
||
for name, p in module.named_parameters():
|
||
if name == "c_proj.weight":
|
||
p.data.normal_(
|
||
mean=0.0,
|
||
std=(
|
||
self.config.initializer_range
|
||
/ math.sqrt(2 * self.config.num_hidden_layers)
|
||
),
|
||
)
|
||
|
||
def _set_gradient_checkpointing(self, module, value=False):
|
||
if isinstance(module, QWenModel):
|
||
module.gradient_checkpointing = value
|
||
|
||
|
||
class QWenModel(QWenPreTrainedModel):
|
||
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
||
|
||
def __init__(self, config):
|
||
super().__init__(config)
|
||
self.vocab_size = config.vocab_size
|
||
self.num_hidden_layers = config.num_hidden_layers
|
||
self.embed_dim = config.hidden_size
|
||
self.use_cache_quantization = (
|
||
self.config.use_cache_quantization
|
||
if hasattr(self.config, "use_cache_quantization")
|
||
else False
|
||
)
|
||
|
||
self.gradient_checkpointing = False
|
||
self.use_dynamic_ntk = config.use_dynamic_ntk
|
||
self.seq_length = config.seq_length
|
||
|
||
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
||
|
||
self.drop = nn.Dropout(config.emb_dropout_prob)
|
||
|
||
if config.rotary_pct == 1.0:
|
||
self.rotary_ndims = None
|
||
else:
|
||
assert config.rotary_pct < 1
|
||
self.rotary_ndims = int(config.kv_channels * config.rotary_pct)
|
||
dim = self.rotary_ndims if self.rotary_ndims is not None else config.kv_channels
|
||
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
||
|
||
self.is_fp32 = not (config.bf16 or config.fp16)
|
||
|
||
self.h = nn.ModuleList(
|
||
[QWenBlock(config) for i in range(config.num_hidden_layers)]
|
||
)
|
||
self.ln_f = RMSNorm(
|
||
self.embed_dim,
|
||
eps=config.layer_norm_epsilon,
|
||
)
|
||
|
||
self.post_init()
|
||
|
||
def get_input_embeddings(self):
|
||
return self.wte
|
||
|
||
def set_input_embeddings(self, new_embeddings):
|
||
self.wte = new_embeddings
|
||
|
||
def get_ntk_alpha(self, true_seq_len):
|
||
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
|
||
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
||
ntk_alpha = max(ntk_alpha, 1)
|
||
return ntk_alpha
|
||
|
||
def forward(
|
||
self,
|
||
input_ids: Optional[torch.LongTensor] = None,
|
||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
attention_mask: Optional[torch.FloatTensor] = None,
|
||
token_type_ids: Optional[torch.LongTensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
head_mask: Optional[torch.FloatTensor] = None,
|
||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
):
|
||
output_attentions = (
|
||
output_attentions
|
||
if output_attentions is not None
|
||
else self.config.output_attentions
|
||
)
|
||
output_hidden_states = (
|
||
output_hidden_states
|
||
if output_hidden_states is not None
|
||
else self.config.output_hidden_states
|
||
)
|
||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
return_dict = (
|
||
return_dict if return_dict is not None else self.config.use_return_dict
|
||
)
|
||
|
||
if input_ids is not None and inputs_embeds is not None:
|
||
raise ValueError(
|
||
"You cannot specify both input_ids and inputs_embeds at the same time"
|
||
)
|
||
elif input_ids is not None:
|
||
input_shape = input_ids.size()
|
||
input_ids = input_ids.view(-1, input_shape[-1])
|
||
batch_size = input_ids.shape[0]
|
||
elif inputs_embeds is not None:
|
||
input_shape = inputs_embeds.size()[:-1]
|
||
batch_size = inputs_embeds.shape[0]
|
||
else:
|
||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
||
if token_type_ids is not None:
|
||
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
||
if position_ids is not None:
|
||
position_ids = position_ids.view(-1, input_shape[-1])
|
||
|
||
if past_key_values is None:
|
||
past_length = 0
|
||
past_key_values = tuple([None] * len(self.h))
|
||
else:
|
||
if self.use_cache_quantization:
|
||
past_length = past_key_values[0][0][0].size(2)
|
||
else:
|
||
past_length = past_key_values[0][0].size(-2)
|
||
if position_ids is None:
|
||
position_ids = torch.arange(
|
||
past_length,
|
||
input_shape[-1] + past_length,
|
||
dtype=torch.long,
|
||
device=device,
|
||
)
|
||
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
||
|
||
if attention_mask is not None:
|
||
if batch_size <= 0:
|
||
raise ValueError("batch_size has to be defined and > 0")
|
||
attention_mask = attention_mask.view(batch_size, -1)
|
||
attention_mask = attention_mask[:, None, None, :]
|
||
attention_mask = attention_mask.to(dtype=self.dtype)
|
||
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
||
|
||
encoder_attention_mask = None
|
||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
||
if inputs_embeds is None:
|
||
inputs_embeds = self.wte(input_ids)
|
||
hidden_states = inputs_embeds
|
||
|
||
kv_seq_len = hidden_states.size()[1]
|
||
if past_key_values[0] is not None:
|
||
# past key values[0][0] shape: bs * seq_len * head_num * dim
|
||
if self.use_cache_quantization:
|
||
kv_seq_len += past_key_values[0][0][0].shape[2]
|
||
else:
|
||
kv_seq_len += past_key_values[0][0].shape[1]
|
||
|
||
if self.training or not self.use_dynamic_ntk:
|
||
ntk_alpha_list = [1.0]
|
||
elif kv_seq_len != hidden_states.size()[1]:
|
||
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
|
||
else:
|
||
ntk_alpha_list = []
|
||
if attention_mask is not None and kv_seq_len > self.seq_length:
|
||
true_seq_lens = (
|
||
attention_mask.squeeze(1)
|
||
.squeeze(1)
|
||
.eq(0)
|
||
.sum(dim=-1, dtype=torch.int32)
|
||
)
|
||
for i in range(hidden_states.size()[0]):
|
||
true_seq_len = true_seq_lens[i].item()
|
||
ntk_alpha = self.get_ntk_alpha(true_seq_len)
|
||
ntk_alpha_list.append(ntk_alpha)
|
||
else:
|
||
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
|
||
ntk_alpha_list.append(ntk_alpha)
|
||
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
|
||
rotary_pos_emb_list = [
|
||
self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
|
||
for ntk_alpha in ntk_alpha_list
|
||
]
|
||
|
||
hidden_states = self.drop(hidden_states)
|
||
output_shape = input_shape + (hidden_states.size(-1),)
|
||
|
||
if self.gradient_checkpointing and self.training:
|
||
if use_cache:
|
||
logger.warning_once(
|
||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
)
|
||
use_cache = False
|
||
|
||
presents = () if use_cache else None
|
||
all_self_attentions = () if output_attentions else None
|
||
all_hidden_states = () if output_hidden_states else None
|
||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||
if output_hidden_states:
|
||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
||
if self.gradient_checkpointing and self.training:
|
||
|
||
def create_custom_forward(module):
|
||
def custom_forward(*inputs):
|
||
# None for past_key_value
|
||
return module(*inputs, use_cache, output_attentions)
|
||
|
||
return custom_forward
|
||
|
||
outputs = torch.utils.checkpoint.checkpoint(
|
||
create_custom_forward(block),
|
||
hidden_states,
|
||
rotary_pos_emb_list,
|
||
None,
|
||
attention_mask,
|
||
head_mask[i],
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
)
|
||
else:
|
||
outputs = block(
|
||
hidden_states,
|
||
layer_past=layer_past,
|
||
rotary_pos_emb_list=rotary_pos_emb_list,
|
||
attention_mask=attention_mask,
|
||
head_mask=head_mask[i],
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions,
|
||
)
|
||
|
||
hidden_states = outputs[0]
|
||
if use_cache is True:
|
||
presents = presents + (outputs[1],)
|
||
|
||
if output_attentions:
|
||
all_self_attentions = all_self_attentions + (
|
||
outputs[2 if use_cache else 1],
|
||
)
|
||
|
||
hidden_states = self.ln_f(hidden_states)
|
||
hidden_states = hidden_states.view(output_shape)
|
||
# Add last hidden state
|
||
if output_hidden_states:
|
||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
||
if not return_dict:
|
||
return tuple(
|
||
v for v in [hidden_states, presents, all_hidden_states] if v is not None
|
||
)
|
||
|
||
return BaseModelOutputWithPast(
|
||
last_hidden_state=hidden_states,
|
||
past_key_values=presents,
|
||
hidden_states=all_hidden_states,
|
||
attentions=all_self_attentions,
|
||
)
|
||
|
||
|
||
class QWenLMHeadModel(QWenPreTrainedModel):
|
||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
|
||
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
|
||
|
||
def __init__(self, config):
|
||
super().__init__(config)
|
||
assert (
|
||
config.bf16 + config.fp16 + config.fp32 <= 1
|
||
), 'Only one of "bf16", "fp16", "fp32" can be true'
|
||
|
||
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
||
|
||
if autoset_precision:
|
||
if SUPPORT_BF16:
|
||
logger.warn(
|
||
"The model is automatically converting to bf16 for faster inference. "
|
||
'If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to "AutoModelForCausalLM.from_pretrained".'
|
||
)
|
||
config.bf16 = True
|
||
elif SUPPORT_FP16:
|
||
logger.warn(
|
||
"The model is automatically converting to fp16 for faster inference. "
|
||
'If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to "AutoModelForCausalLM.from_pretrained".'
|
||
)
|
||
config.fp16 = True
|
||
else:
|
||
config.fp32 = True
|
||
|
||
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
|
||
logger.warn(
|
||
'Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in "AutoModelForCausalLM.from_pretrained".'
|
||
)
|
||
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
|
||
logger.warn(
|
||
"Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster"
|
||
)
|
||
if config.fp32:
|
||
if SUPPORT_BF16:
|
||
logger.warn(
|
||
'Your device support faster inference by passing bf16=True in "AutoModelForCausalLM.from_pretrained".'
|
||
)
|
||
elif SUPPORT_FP16:
|
||
logger.warn(
|
||
'Your device support faster inference by passing fp16=True in "AutoModelForCausalLM.from_pretrained".'
|
||
)
|
||
|
||
self.transformer = QWenModel(config)
|
||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
||
if config.bf16:
|
||
self.transformer.bfloat16()
|
||
self.lm_head.bfloat16()
|
||
if config.fp16:
|
||
self.transformer.half()
|
||
self.lm_head.half()
|
||
self.post_init()
|
||
|
||
def get_output_embeddings(self):
|
||
return self.lm_head
|
||
|
||
def set_output_embeddings(self, new_embeddings):
|
||
self.lm_head = new_embeddings
|
||
|
||
def prepare_inputs_for_generation(
|
||
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
||
):
|
||
if past_key_values:
|
||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||
|
||
if input_ids.size(0) == 1:
|
||
attention_mask = None
|
||
else:
|
||
attention_mask = kwargs.get("attention_mask", None)
|
||
|
||
if inputs_embeds is not None and past_key_values is None:
|
||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
else:
|
||
model_inputs = {"input_ids": input_ids}
|
||
|
||
model_inputs.update(
|
||
{
|
||
"past_key_values": past_key_values,
|
||
"use_cache": kwargs.get("use_cache"),
|
||
"attention_mask": attention_mask,
|
||
}
|
||
)
|
||
return model_inputs
|
||
|
||
def forward(
|
||
self,
|
||
input_ids: Optional[torch.LongTensor] = None,
|
||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
attention_mask: Optional[torch.FloatTensor] = None,
|
||
token_type_ids: Optional[torch.LongTensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
head_mask: Optional[torch.FloatTensor] = None,
|
||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
labels: Optional[torch.LongTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||
return_dict = (
|
||
return_dict if return_dict is not None else self.config.use_return_dict
|
||
)
|
||
|
||
transformer_outputs = self.transformer(
|
||
input_ids,
|
||
past_key_values=past_key_values,
|
||
attention_mask=attention_mask,
|
||
token_type_ids=token_type_ids,
|
||
position_ids=position_ids,
|
||
head_mask=head_mask,
|
||
inputs_embeds=inputs_embeds,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions,
|
||
output_hidden_states=output_hidden_states,
|
||
return_dict=return_dict,
|
||
)
|
||
hidden_states = transformer_outputs[0]
|
||
|
||
lm_logits = self.lm_head(hidden_states)
|
||
|
||
loss = None
|
||
if labels is not None:
|
||
labels = labels.to(lm_logits.device)
|
||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||
shift_labels = labels[..., 1:].contiguous()
|
||
loss_fct = CrossEntropyLoss()
|
||
loss = loss_fct(
|
||
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||
)
|
||
|
||
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
|
||
# shift_logits = lm_logits[..., :-1, :].contiguous()
|
||
# loss_fct = CrossEntropyLoss()
|
||
# loss = loss_fct(
|
||
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||
# )
|
||
# loss.backward()
|
||
|
||
if not return_dict:
|
||
output = (lm_logits,) + transformer_outputs[1:]
|
||
return ((loss,) + output) if loss is not None else output
|
||
|
||
return CausalLMOutputWithPast(
|
||
loss=loss,
|
||
logits=lm_logits,
|
||
past_key_values=transformer_outputs.past_key_values,
|
||
hidden_states=transformer_outputs.hidden_states,
|
||
attentions=transformer_outputs.attentions,
|
||
)
|
||
|
||
@staticmethod
|
||
def _reorder_cache(
|
||
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
||
) -> Tuple[Tuple[torch.Tensor]]:
|
||
return tuple(
|
||
tuple(
|
||
past_state.index_select(0, beam_idx.to(past_state.device))
|
||
for past_state in layer_past
|
||
)
|
||
for layer_past in past_key_values
|
||
)
|
||
|
||
def chat(
|
||
self,
|
||
tokenizer: PreTrainedTokenizer,
|
||
query: str,
|
||
history: Optional[HistoryType],
|
||
system: str = "You are a helpful assistant.",
|
||
stream: Optional[bool] = _SENTINEL,
|
||
stop_words_ids: Optional[List[List[int]]] = None,
|
||
generation_config: Optional[GenerationConfig] = None,
|
||
**kwargs,
|
||
) -> Tuple[str, HistoryType]:
|
||
generation_config = (
|
||
generation_config
|
||
if generation_config is not None
|
||
else self.generation_config
|
||
)
|
||
|
||
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
||
assert generation_config.chat_format == "chatml", _ERROR_BAD_CHAT_FORMAT
|
||
if history is None:
|
||
history = []
|
||
else:
|
||
# make a copy of the user's input such that is is left untouched
|
||
history = copy.deepcopy(history)
|
||
|
||
if stop_words_ids is None:
|
||
stop_words_ids = []
|
||
|
||
max_window_size = kwargs.get("max_window_size", None)
|
||
if max_window_size is None:
|
||
max_window_size = generation_config.max_window_size
|
||
raw_text, context_tokens = make_context(
|
||
tokenizer,
|
||
query,
|
||
history=history,
|
||
system=system,
|
||
max_window_size=max_window_size,
|
||
chat_format=generation_config.chat_format,
|
||
)
|
||
|
||
stop_words_ids.extend(
|
||
get_stop_words_ids(generation_config.chat_format, tokenizer)
|
||
)
|
||
input_ids = torch.tensor([context_tokens]).to(self.device)
|
||
outputs = self.generate(
|
||
input_ids,
|
||
stop_words_ids=stop_words_ids,
|
||
return_dict_in_generate=False,
|
||
generation_config=generation_config,
|
||
**kwargs,
|
||
)
|
||
|
||
response = decode_tokens(
|
||
outputs[0],
|
||
tokenizer,
|
||
raw_text_len=len(raw_text),
|
||
context_length=len(context_tokens),
|
||
chat_format=generation_config.chat_format,
|
||
verbose=False,
|
||
errors="replace",
|
||
)
|
||
|
||
# as history is a copy of the user inputs,
|
||
# we can always return the new turn to the user.
|
||
# separating input history and output history also enables the user
|
||
# to implement more complex history management
|
||
history.append((query, response))
|
||
|
||
return response, history
|
||
|
||
def chat_stream(
|
||
self,
|
||
tokenizer: PreTrainedTokenizer,
|
||
query: str,
|
||
history: Optional[HistoryType],
|
||
system: str = "You are a helpful assistant.",
|
||
stop_words_ids: Optional[List[List[int]]] = None,
|
||
logits_processor: Optional[LogitsProcessorList] = None,
|
||
generation_config: Optional[GenerationConfig] = None,
|
||
**kwargs,
|
||
) -> Generator[str, Any, None]:
|
||
generation_config = (
|
||
generation_config
|
||
if generation_config is not None
|
||
else self.generation_config
|
||
)
|
||
assert generation_config.chat_format == "chatml", _ERROR_BAD_CHAT_FORMAT
|
||
if history is None:
|
||
history = []
|
||
if stop_words_ids is None:
|
||
stop_words_ids = []
|
||
|
||
max_window_size = kwargs.get("max_window_size", None)
|
||
if max_window_size is None:
|
||
max_window_size = generation_config.max_window_size
|
||
raw_text, context_tokens = make_context(
|
||
tokenizer,
|
||
query,
|
||
history=history,
|
||
system=system,
|
||
max_window_size=max_window_size,
|
||
chat_format=generation_config.chat_format,
|
||
)
|
||
|
||
stop_words_ids.extend(
|
||
get_stop_words_ids(generation_config.chat_format, tokenizer)
|
||
)
|
||
if stop_words_ids is not None:
|
||
stop_words_logits_processor = StopWordsLogitsProcessor(
|
||
stop_words_ids=stop_words_ids,
|
||
eos_token_id=generation_config.eos_token_id,
|
||
)
|
||
if logits_processor is None:
|
||
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
||
else:
|
||
logits_processor.append(stop_words_logits_processor)
|
||
input_ids = torch.tensor([context_tokens]).to(self.device)
|
||
|
||
from transformers_stream_generator.main import (
|
||
NewGenerationMixin,
|
||
StreamGenerationConfig,
|
||
)
|
||
|
||
self.__class__.generate_stream = NewGenerationMixin.generate
|
||
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
||
stream_config = StreamGenerationConfig(
|
||
**generation_config.to_dict(), do_stream=True
|
||
)
|
||
|
||
def stream_generator():
|
||
outputs = []
|
||
for token in self.generate_stream(
|
||
input_ids,
|
||
return_dict_in_generate=False,
|
||
generation_config=stream_config,
|
||
logits_processor=logits_processor,
|
||
seed=-1,
|
||
**kwargs,
|
||
):
|
||
outputs.append(token.item())
|
||
yield tokenizer.decode(
|
||
outputs, skip_special_tokens=True, errors="ignore"
|
||
)
|
||
|
||
return stream_generator()
|
||
|
||
def generate(
|
||
self,
|
||
inputs: Optional[torch.Tensor] = None,
|
||
generation_config: Optional[GenerationConfig] = None,
|
||
logits_processor: Optional[LogitsProcessorList] = None,
|
||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||
prefix_allowed_tokens_fn: Optional[
|
||
Callable[[int, torch.Tensor], List[int]]
|
||
] = None,
|
||
synced_gpus: Optional[bool] = None,
|
||
assistant_model: Optional["PreTrainedModel"] = None,
|
||
streamer: Optional["BaseStreamer"] = None,
|
||
**kwargs,
|
||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||
generation_config = (
|
||
generation_config
|
||
if generation_config is not None
|
||
else self.generation_config
|
||
)
|
||
|
||
# Process stop_words_ids.
|
||
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
||
if stop_words_ids is None and generation_config is not None:
|
||
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
||
if stop_words_ids is None:
|
||
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
||
|
||
if stop_words_ids is not None:
|
||
stop_words_logits_processor = StopWordsLogitsProcessor(
|
||
stop_words_ids=stop_words_ids,
|
||
eos_token_id=generation_config.eos_token_id,
|
||
)
|
||
if logits_processor is None:
|
||
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
||
else:
|
||
logits_processor.append(stop_words_logits_processor)
|
||
|
||
return self.generate_base(
|
||
inputs,
|
||
generation_config=generation_config,
|
||
logits_processor=logits_processor,
|
||
stopping_criteria=stopping_criteria,
|
||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||
synced_gpus=synced_gpus,
|
||
assistant_model=assistant_model,
|
||
streamer=streamer,
|
||
**kwargs,
|
||
)
|
||
|
||
def generate_base(
|
||
self,
|
||
inputs: Optional[torch.Tensor] = None,
|
||
generation_config: Optional[GenerationConfig] = None,
|
||
logits_processor: Optional[LogitsProcessorList] = None,
|
||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||
prefix_allowed_tokens_fn: Optional[
|
||
Callable[[int, torch.Tensor], List[int]]
|
||
] = None,
|
||
synced_gpus: Optional[bool] = None,
|
||
assistant_model: Optional["PreTrainedModel"] = None,
|
||
streamer: Optional["BaseStreamer"] = None,
|
||
negative_prompt_ids: Optional[torch.Tensor] = None,
|
||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||
**kwargs,
|
||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||
if synced_gpus is None:
|
||
synced_gpus = False
|
||
|
||
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
||
self._validate_model_class()
|
||
|
||
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
||
if generation_config is None:
|
||
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
|
||
# two conditions must be met
|
||
# 1) the generation config must have been created from the model config (`_from_model_config` field);
|
||
# 2) the generation config must have seen no modification since its creation (the hash is the same).
|
||
if (
|
||
self.generation_config._from_model_config
|
||
and self.generation_config._original_object_hash
|
||
== hash(self.generation_config)
|
||
):
|
||
new_generation_config = GenerationConfig.from_model_config(self.config)
|
||
if new_generation_config != self.generation_config:
|
||
warnings.warn(
|
||
"You have modified the pretrained model configuration to control generation. This is a"
|
||
" deprecated strategy to control generation and will be removed soon, in a future version."
|
||
" Please use and modify the model generation configuration (see"
|
||
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
|
||
)
|
||
self.generation_config = new_generation_config
|
||
generation_config = self.generation_config
|
||
|
||
generation_config = copy.deepcopy(generation_config)
|
||
model_kwargs = generation_config.update(
|
||
**kwargs
|
||
) # All unused kwargs must be model kwargs
|
||
generation_config.validate()
|
||
self._validate_model_kwargs(model_kwargs.copy())
|
||
|
||
# 2. Set generation parameters if not already defined
|
||
logits_processor = (
|
||
logits_processor if logits_processor is not None else LogitsProcessorList()
|
||
)
|
||
stopping_criteria = (
|
||
stopping_criteria
|
||
if stopping_criteria is not None
|
||
else StoppingCriteriaList()
|
||
)
|
||
|
||
if (
|
||
generation_config.pad_token_id is None
|
||
and generation_config.eos_token_id is not None
|
||
):
|
||
if model_kwargs.get("attention_mask", None) is None:
|
||
logger.warning(
|
||
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
||
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
||
)
|
||
eos_token_id = generation_config.eos_token_id
|
||
if isinstance(eos_token_id, list):
|
||
eos_token_id = eos_token_id[0]
|
||
logger.warning(
|
||
f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation."
|
||
)
|
||
generation_config.pad_token_id = eos_token_id
|
||
|
||
# 3. Define model inputs
|
||
# inputs_tensor has to be defined
|
||
# model_input_name is defined if model-specific keyword input is passed
|
||
# otherwise model_input_name is None
|
||
# all model-specific keyword inputs are removed from `model_kwargs`
|
||
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
||
inputs, generation_config.bos_token_id, model_kwargs
|
||
)
|
||
batch_size = inputs_tensor.shape[0]
|
||
|
||
# 4. Define other model kwargs
|
||
model_kwargs["output_attentions"] = generation_config.output_attentions
|
||
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
|
||
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
|
||
# generating the first new token or not, and we only want to use the embeddings for the first new token)
|
||
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
|
||
model_kwargs["use_cache"] = True
|
||
else:
|
||
model_kwargs["use_cache"] = generation_config.use_cache
|
||
|
||
accepts_attention_mask = "attention_mask" in set(
|
||
inspect.signature(self.forward).parameters.keys()
|
||
)
|
||
requires_attention_mask = "encoder_outputs" not in model_kwargs
|
||
|
||
if (
|
||
model_kwargs.get("attention_mask", None) is None
|
||
and requires_attention_mask
|
||
and accepts_attention_mask
|
||
):
|
||
model_kwargs[
|
||
"attention_mask"
|
||
] = self._prepare_attention_mask_for_generation(
|
||
inputs_tensor,
|
||
generation_config.pad_token_id,
|
||
generation_config.eos_token_id,
|
||
)
|
||
|
||
# decoder-only models should use left-padding for generation
|
||
if not self.config.is_encoder_decoder:
|
||
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
|
||
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
|
||
if (
|
||
generation_config.pad_token_id is not None
|
||
and len(inputs_tensor.shape) == 2
|
||
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id)
|
||
> 0
|
||
):
|
||
logger.warning(
|
||
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
||
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
||
)
|
||
|
||
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
|
||
# if model is encoder decoder encoder_outputs are created
|
||
# and added to `model_kwargs`
|
||
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
||
inputs_tensor, model_kwargs, model_input_name
|
||
)
|
||
|
||
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
||
if self.config.is_encoder_decoder:
|
||
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
|
||
batch_size=batch_size,
|
||
model_input_name=model_input_name,
|
||
model_kwargs=model_kwargs,
|
||
decoder_start_token_id=generation_config.decoder_start_token_id,
|
||
bos_token_id=generation_config.bos_token_id,
|
||
device=inputs_tensor.device,
|
||
)
|
||
else:
|
||
input_ids = (
|
||
inputs_tensor
|
||
if model_input_name == "input_ids"
|
||
else model_kwargs.pop("input_ids")
|
||
)
|
||
|
||
if streamer is not None:
|
||
streamer.put(input_ids.cpu())
|
||
|
||
# 6. Prepare `max_length` depending on other stopping criteria.
|
||
input_ids_length = input_ids.shape[-1]
|
||
has_default_max_length = (
|
||
kwargs.get("max_length") is None
|
||
and generation_config.max_length is not None
|
||
)
|
||
if generation_config.max_new_tokens is not None:
|
||
if not has_default_max_length and generation_config.max_length is not None:
|
||
logger.warning(
|
||
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
||
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
||
"Please refer to the documentation for more information. "
|
||
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
||
)
|
||
generation_config.max_length = (
|
||
generation_config.max_new_tokens + input_ids_length
|
||
)
|
||
self._validate_generated_length(
|
||
generation_config, input_ids_length, has_default_max_length
|
||
)
|
||
|
||
# 7. determine generation mode
|
||
generation_mode = self._get_generation_mode(generation_config, assistant_model)
|
||
|
||
if streamer is not None and (generation_config.num_beams > 1):
|
||
raise ValueError(
|
||
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
|
||
)
|
||
|
||
if self.device.type != input_ids.device.type:
|
||
warnings.warn(
|
||
"You are calling .generate() with the `input_ids` being on a device type different"
|
||
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
||
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
||
" Please make sure that you have put `input_ids` to the"
|
||
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
||
" running `.generate()`.",
|
||
UserWarning,
|
||
)
|
||
|
||
# 8. prepare distribution pre_processing samplers
|
||
logits_processor = self._get_logits_processor(
|
||
generation_config=generation_config,
|
||
input_ids_seq_length=input_ids_length,
|
||
encoder_input_ids=inputs_tensor,
|
||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||
logits_processor=logits_processor,
|
||
model_kwargs=model_kwargs,
|
||
negative_prompt_ids=negative_prompt_ids,
|
||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||
)
|
||
|
||
# 9. prepare stopping criteria
|
||
stopping_criteria = self._get_stopping_criteria(
|
||
generation_config=generation_config, stopping_criteria=stopping_criteria
|
||
)
|
||
# 10. go into different generation modes
|
||
|
||
# 11. prepare logits warper
|
||
logits_warper = self._get_logits_warper(generation_config)
|
||
|
||
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
||
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
||
input_ids=input_ids,
|
||
expand_size=generation_config.num_return_sequences,
|
||
is_encoder_decoder=self.config.is_encoder_decoder,
|
||
**model_kwargs,
|
||
)
|
||
|
||
# 13. run sample
|
||
return self.sample_base(
|
||
input_ids,
|
||
logits_processor=logits_processor,
|
||
logits_warper=logits_warper,
|
||
stopping_criteria=stopping_criteria,
|
||
pad_token_id=generation_config.pad_token_id,
|
||
eos_token_id=generation_config.eos_token_id,
|
||
output_scores=generation_config.output_scores,
|
||
return_dict_in_generate=generation_config.return_dict_in_generate,
|
||
synced_gpus=synced_gpus,
|
||
streamer=streamer,
|
||
**model_kwargs,
|
||
)
|
||
|
||
def sample_base(
|
||
self,
|
||
input_ids: torch.LongTensor,
|
||
logits_processor: Optional[LogitsProcessorList] = None,
|
||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||
logits_warper: Optional[LogitsProcessorList] = None,
|
||
max_length: Optional[int] = None,
|
||
pad_token_id: Optional[int] = None,
|
||
eos_token_id: Optional[Union[int, List[int]]] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
output_scores: Optional[bool] = None,
|
||
return_dict_in_generate: Optional[bool] = None,
|
||
synced_gpus: bool = False,
|
||
streamer: Optional["BaseStreamer"] = None,
|
||
**model_kwargs,
|
||
):
|
||
# init values
|
||
logits_processor = (
|
||
logits_processor if logits_processor is not None else LogitsProcessorList()
|
||
)
|
||
stopping_criteria = (
|
||
stopping_criteria
|
||
if stopping_criteria is not None
|
||
else StoppingCriteriaList()
|
||
)
|
||
# if max_length is not None:
|
||
# warnings.warn(
|
||
# "`max_length` is deprecated in this function, use"
|
||
# " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
||
# UserWarning,
|
||
# )
|
||
# stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
||
logits_warper = (
|
||
logits_warper if logits_warper is not None else LogitsProcessorList()
|
||
)
|
||
pad_token_id = (
|
||
pad_token_id
|
||
if pad_token_id is not None
|
||
else self.generation_config.pad_token_id
|
||
)
|
||
eos_token_id = (
|
||
eos_token_id
|
||
if eos_token_id is not None
|
||
else self.generation_config.eos_token_id
|
||
)
|
||
if isinstance(eos_token_id, int):
|
||
eos_token_id = [eos_token_id]
|
||
eos_token_id_tensor = (
|
||
torch.tensor(eos_token_id).to(input_ids.device)
|
||
if eos_token_id is not None
|
||
else None
|
||
)
|
||
output_scores = (
|
||
output_scores
|
||
if output_scores is not None
|
||
else self.generation_config.output_scores
|
||
)
|
||
output_attentions = (
|
||
output_attentions
|
||
if output_attentions is not None
|
||
else self.generation_config.output_attentions
|
||
)
|
||
output_hidden_states = (
|
||
output_hidden_states
|
||
if output_hidden_states is not None
|
||
else self.generation_config.output_hidden_states
|
||
)
|
||
return_dict_in_generate = (
|
||
return_dict_in_generate
|
||
if return_dict_in_generate is not None
|
||
else self.generation_config.return_dict_in_generate
|
||
)
|
||
|
||
# init attention / hidden states / scores tuples
|
||
scores = () if (return_dict_in_generate and output_scores) else None
|
||
decoder_attentions = (
|
||
() if (return_dict_in_generate and output_attentions) else None
|
||
)
|
||
cross_attentions = (
|
||
() if (return_dict_in_generate and output_attentions) else None
|
||
)
|
||
decoder_hidden_states = (
|
||
() if (return_dict_in_generate and output_hidden_states) else None
|
||
)
|
||
|
||
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
||
if return_dict_in_generate and self.config.is_encoder_decoder:
|
||
encoder_attentions = (
|
||
model_kwargs["encoder_outputs"].get("attentions")
|
||
if output_attentions
|
||
else None
|
||
)
|
||
encoder_hidden_states = (
|
||
model_kwargs["encoder_outputs"].get("hidden_states")
|
||
if output_hidden_states
|
||
else None
|
||
)
|
||
|
||
# keep track of which sequences are already finished
|
||
unfinished_sequences = torch.ones(
|
||
input_ids.shape[0], dtype=torch.long, device=input_ids.device
|
||
)
|
||
|
||
this_peer_finished = False # used by synced_gpus only
|
||
# auto-regressive generation
|
||
while True:
|
||
# if synced_gpus:
|
||
# # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
||
# # The following logic allows an early break if all peers finished generating their sequence
|
||
# this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
||
# # send 0.0 if we finished, 1.0 otherwise
|
||
# dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
||
# # did all peers finish? the reduced sum will be 0.0 then
|
||
# if this_peer_finished_flag.item() == 0.0:
|
||
# break
|
||
|
||
# prepare model inputs
|
||
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||
|
||
# forward pass to get next token
|
||
outputs = self(
|
||
**model_inputs,
|
||
return_dict=True,
|
||
output_attentions=output_attentions,
|
||
output_hidden_states=output_hidden_states,
|
||
)
|
||
|
||
if synced_gpus and this_peer_finished:
|
||
continue # don't waste resources running the code we don't need
|
||
|
||
next_token_logits = outputs.logits[:, -1, :]
|
||
|
||
# pre-process distribution
|
||
next_token_scores = logits_processor(input_ids, next_token_logits)
|
||
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||
|
||
# Store scores, attentions and hidden_states when required
|
||
if return_dict_in_generate:
|
||
if output_scores:
|
||
scores += (next_token_scores,)
|
||
if output_attentions:
|
||
decoder_attentions += (
|
||
(outputs.decoder_attentions,)
|
||
if self.config.is_encoder_decoder
|
||
else (outputs.attentions,)
|
||
)
|
||
if self.config.is_encoder_decoder:
|
||
cross_attentions += (outputs.cross_attentions,)
|
||
|
||
if output_hidden_states:
|
||
decoder_hidden_states += (
|
||
(outputs.decoder_hidden_states,)
|
||
if self.config.is_encoder_decoder
|
||
else (outputs.hidden_states,)
|
||
)
|
||
|
||
# sample
|
||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||
|
||
# finished sentences should have their next token be a padding token
|
||
if eos_token_id is not None:
|
||
if pad_token_id is None:
|
||
raise ValueError(
|
||
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
|
||
)
|
||
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
||
1 - unfinished_sequences
|
||
)
|
||
|
||
# update generated ids, model inputs, and length for next step
|
||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||
if streamer is not None:
|
||
streamer.put(next_tokens.cpu())
|
||
model_kwargs = self._update_model_kwargs_for_generation(
|
||
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
||
)
|
||
|
||
# if eos_token was found in one sentence, set sentence to finished
|
||
if eos_token_id_tensor is not None:
|
||
unfinished_sequences = unfinished_sequences.mul(
|
||
next_tokens.tile(eos_token_id_tensor.shape[0], 1)
|
||
.ne(eos_token_id_tensor.unsqueeze(1))
|
||
.prod(dim=0)
|
||
)
|
||
|
||
# stop when each sentence is finished
|
||
if unfinished_sequences.max() == 0:
|
||
this_peer_finished = True
|
||
|
||
# stop if we exceed the maximum length
|
||
if stopping_criteria(input_ids, scores):
|
||
this_peer_finished = True
|
||
|
||
if this_peer_finished and not synced_gpus:
|
||
break
|
||
|
||
if streamer is not None:
|
||
streamer.end()
|
||
|
||
return input_ids
|
||
|
||
# def backward(
|
||
# self,
|
||
# tokenizer,
|
||
# query: str,
|
||
# ):
|
||
# inputs = tokenizer.build_chat_input(query, history=[], role="user")
|
||
# inputs = inputs.to(next(self.parameters()).device)
|
||
|
||
# generation_config = copy.deepcopy(self.generation_config)
|
||
# inputs_tensor = inputs["input_ids"]
|
||
# input_ids = inputs_tensor.repeat_interleave(
|
||
# generation_config.num_return_sequences, dim=0
|
||
# )
|
||
|
||
# input_ids_in = input_ids
|
||
# batch_size, seq_length = input_ids_in.shape
|
||
# position_ids_in = (
|
||
# torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
||
# .unsqueeze(0)
|
||
# .repeat(batch_size, 1)
|
||
# )
|
||
# model_inputs = {"input_ids": input_ids_in, "position_ids": position_ids_in}
|
||
|
||
# probs, next_tokens = self.transformer(
|
||
# **model_inputs,
|
||
# output_hidden_states=None,
|
||
# tokenizer=tokenizer,
|
||
# )
|
||
|
||
# next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||
# # probs_target = probs
|
||
# # probs_target[0, next_tokens] = probs_target[0, next_tokens] * 1.1
|
||
|
||
# loss = probs[0, next_tokens]
|
||
# loss.backward()
|
||
|
||
# return loss
|
||
|
||
|
||
class RotaryEmbedding(torch.nn.Module):
|
||
def __init__(self, dim, base=10000):
|
||
super().__init__()
|
||
self.dim = dim
|
||
self.base = base
|
||
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||
if importlib.util.find_spec("einops") is None:
|
||
raise RuntimeError("einops is required for Rotary Embedding")
|
||
|
||
self._rotary_pos_emb_cache = None
|
||
self._seq_len_cached = 0
|
||
self._ntk_alpha_cached = 1.0
|
||
self._ntk_alpha_cached_list = [1.0]
|
||
|
||
def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
|
||
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
||
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
||
self.inv_freq = 1.0 / (
|
||
base
|
||
** (
|
||
torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
|
||
/ self.dim
|
||
)
|
||
)
|
||
self._seq_len_cached = max(2 * seqlen, 16)
|
||
self._ntk_alpha_cached = ntk_alpha
|
||
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
||
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
||
|
||
emb = torch.cat((freqs, freqs), dim=-1)
|
||
from einops import rearrange
|
||
|
||
emb = rearrange(emb, "n d -> 1 n 1 d")
|
||
|
||
cos, sin = emb.cos(), emb.sin()
|
||
self._rotary_pos_emb_cache = [cos, sin]
|
||
|
||
def forward(self, max_seq_len, ntk_alpha=1.0):
|
||
self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
|
||
cos, sin = self._rotary_pos_emb_cache
|
||
return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
|
||
|
||
|
||
def _rotate_half(x):
|
||
from einops import rearrange
|
||
|
||
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
||
x1, x2 = x.unbind(dim=-2)
|
||
return torch.cat((-x2, x1), dim=-1)
|
||
|
||
|
||
def apply_rotary_pos_emb(t, freqs):
|
||
"""Apply rotary embedding to the first rotary_dim of the iput
|
||
|
||
Arguments:
|
||
t (tensor(batch_size, seq_len, n_head, head_dim)):
|
||
the input embedding/hidden states
|
||
freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
|
||
the cached cos/sin position embeddings
|
||
"""
|
||
rot_dim = freqs[0].shape[-1]
|
||
cos, sin = freqs
|
||
t_float = t.float()
|
||
if apply_rotary_emb_func is not None and t.is_cuda:
|
||
# apply_rotary_emb in flash_attn requires cos/sin to be of
|
||
# shape (seqlen, rotary_dim / 2) and apply rotary embedding
|
||
# to the first rotary_dim of the input
|
||
cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
||
sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
||
return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
|
||
else:
|
||
t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
|
||
t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
|
||
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
|
||
|
||
|
||
class RMSNorm(torch.nn.Module):
|
||
def __init__(self, dim: int, eps: float = 1e-6):
|
||
super().__init__()
|
||
self.eps = eps
|
||
self.weight = nn.Parameter(torch.ones(dim))
|
||
|
||
def _norm(self, x):
|
||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||
|
||
def forward(self, x):
|
||
if rms_norm is not None and x.is_cuda:
|
||
return rms_norm(x, self.weight, self.eps)
|
||
else:
|
||
output = self._norm(x.float()).type_as(x)
|
||
return output * self.weight
|