64 lines
1.8 KiB
Python
64 lines
1.8 KiB
Python
import pytorch_lightning as pl
|
|
import torch
|
|
|
|
from model.lit_module import LitModule
|
|
from wit.model.tokenization_qwen import QWenTokenizer
|
|
from logger import MLFLogger, TBLogger
|
|
|
|
import configuration
|
|
import dataset.dataset as ds
|
|
|
|
if __name__ == "__main__":
|
|
|
|
conf = configuration.TrainConfig()
|
|
config = conf.model_config
|
|
|
|
conf.name = "bigger" # current train process name
|
|
conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
|
conf.learning_rate = 0.0001
|
|
conf.use_tril_attention_mask = None
|
|
conf.precision = "bf16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
|
conf.train_batch_size = 16
|
|
conf.val_batch_size = 4
|
|
conf.num_proc = 8
|
|
conf.max_epochs = 1000
|
|
conf.strategy = "auto"
|
|
conf.resume_from_ckpt_path = None
|
|
conf.seed = 42
|
|
conf.dataloader_works = 2
|
|
|
|
conf.dataset.meaning.mask_level = [0, 1, 2]
|
|
conf.dataset.meaning.mask_idx = [0, 0, -1]
|
|
|
|
config.vocab_size = 256
|
|
config.hidden_size = 128 # 128 1024 2048 32
|
|
config.num_hidden_layers = 3 # 6 12 24 3
|
|
config.num_attention_heads = 16 # 8 8 16
|
|
|
|
torch.manual_seed(conf.seed)
|
|
lit_module = LitModule(conf)
|
|
|
|
train_dataloader, val_dataloader = ds.InitDataset(conf)
|
|
# for i in range(len(train_dataloader)):
|
|
# print(train_dataloader.print_mapping(i))
|
|
|
|
logger = TBLogger("./log/", name=conf.name)
|
|
logger.log_hyperparams(configuration.class_to_dict(conf))
|
|
|
|
torch.set_float32_matmul_precision("medium")
|
|
lit_trainer = pl.Trainer(
|
|
accelerator="cuda",
|
|
precision=conf.precision,
|
|
# logger=MLFLogger("./log/", run_name=conf.name),
|
|
logger=logger,
|
|
strategy=conf.strategy,
|
|
max_epochs=conf.max_epochs,
|
|
)
|
|
|
|
lit_trainer.fit(
|
|
lit_module,
|
|
train_dataloaders=train_dataloader,
|
|
val_dataloaders=val_dataloader,
|
|
ckpt_path=conf.resume_from_ckpt_path,
|
|
)
|