187 lines
6.7 KiB
Python
187 lines
6.7 KiB
Python
import os
|
|
import sys
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F # Add this line
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
|
|
sys.path.append("..")
|
|
from tools import show
|
|
|
|
seed = 4321
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
# device = torch.device("mps")
|
|
|
|
num_epochs = 1
|
|
batch_size = 64
|
|
|
|
transform = transforms.Compose([transforms.ToTensor()])
|
|
|
|
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
|
|
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
|
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
|
|
|
|
|
class ConvNet(nn.Module):
|
|
def __init__(self):
|
|
super(ConvNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 8, 5, 1, 0)
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
self.conv2 = nn.Conv2d(8, 1, 5, 1, 0)
|
|
self.fc1 = nn.Linear(1 * 4 * 4, 10)
|
|
|
|
def forward(self, x):
|
|
x = self.pool(self.conv1(x))
|
|
x = self.pool(self.conv2(x))
|
|
x = x.view(x.shape[0], -1)
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def forward_unsuper(self, x):
|
|
x = self.conv1(x)
|
|
# x = self.pool(self.conv1(x))
|
|
return x
|
|
|
|
def forward_finetune(self, x):
|
|
x = self.pool(self.conv1(x))
|
|
x = self.pool(self.conv2(x))
|
|
x = x.view(x.shape[0], -1)
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def printFector(self, x, label, dir=""):
|
|
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/input_image.png", Contrast=[0, 1.0])
|
|
# show.DumpTensorToLog(x, "input_image.log")
|
|
x = self.conv1(x)
|
|
w = self.conv1.weight
|
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv1_weight.png", Contrast=[-1.0, 1.0])
|
|
# show.DumpTensorToLog(w, "conv1_weight.log")
|
|
|
|
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/conv1_output.png", Contrast=[-1.0, 1.0])
|
|
# show.DumpTensorToLog(x, "conv1_output.png")
|
|
|
|
x = self.pool(x)
|
|
x = self.conv2(x)
|
|
w = self.conv2.weight
|
|
show.DumpTensorToImage(
|
|
w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv2_weight.png", Contrast=[-1.0, 1.0]
|
|
)
|
|
show.DumpTensorToImage(
|
|
x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/conv2_output.png", Contrast=[-1.0, 1.0]
|
|
)
|
|
x = self.pool(x)
|
|
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/pool_output.png", Contrast=[-1.0, 1.0])
|
|
pool_shape = x.shape
|
|
x = x.view(x.shape[0], -1)
|
|
x = self.fc1(x)
|
|
show.DumpTensorToImage(
|
|
self.fc1.weight.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight.png", Contrast=[-1.0, 1.0]
|
|
)
|
|
show.DumpTensorToImage(x.view(-1).cpu(), dir + "/fc_output.png")
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
loss = criterion(x, label)
|
|
loss.backward()
|
|
|
|
if self.conv1.weight.requires_grad:
|
|
w = self.conv1.weight.grad
|
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv1_weight_grad.png")
|
|
if self.conv2.weight.requires_grad:
|
|
w = self.conv2.weight.grad
|
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv2_weight_grad.png")
|
|
if self.fc1.weight.requires_grad:
|
|
show.DumpTensorToImage(
|
|
self.fc1.weight.grad.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight_grad.png"
|
|
)
|
|
|
|
|
|
model = ConvNet().to(device)
|
|
model.train()
|
|
|
|
# Train the model unsuper
|
|
epochs = 2
|
|
model.conv1.weight.requires_grad = True
|
|
model.conv2.weight.requires_grad = False
|
|
model.fc1.weight.requires_grad = False
|
|
n_total_steps = len(train_loader)
|
|
for epoch in range(epochs):
|
|
for i, (images, labels) in enumerate(train_loader):
|
|
images = images.to(device)
|
|
outputs = model.forward_unsuper(images)
|
|
|
|
outputs = outputs.permute(1, 0, 2, 3) # 64 8 24 24 -> 8 64 24 24
|
|
sample = outputs.reshape(outputs.shape[0], -1) # -> 8 36864
|
|
|
|
sample_mean = torch.mean(sample, dim=1, keepdim=True)
|
|
diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True)
|
|
diff_ratio = (sample - sample_mean) / diff_mean
|
|
diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1)
|
|
label = diff_ratio_mean * 0.5
|
|
loss = F.l1_loss(diff_ratio_mean, label)
|
|
model.conv1.weight.grad = None
|
|
loss.backward()
|
|
|
|
grad = model.conv1.weight.data
|
|
grad = grad.view(8, -1)
|
|
grad_mean = torch.mean(grad, dim=1)
|
|
max, index = torch.max(grad_mean, dim=0)
|
|
|
|
model.conv1.weight.data[index] = model.conv1.weight.data[index] - model.conv1.weight.grad[index] * 0.2
|
|
if (i + 1) % 100 == 0:
|
|
print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
|
|
|
|
# Train the model
|
|
model.conv1.weight.requires_grad = False
|
|
model.conv2.weight.requires_grad = True
|
|
model.fc1.weight.requires_grad = True
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.2)
|
|
n_total_steps = len(train_loader)
|
|
for epoch in range(num_epochs):
|
|
for i, (images, labels) in enumerate(train_loader):
|
|
images = images.to(device)
|
|
labels = labels.to(device)
|
|
outputs = model.forward_finetune(images)
|
|
loss = criterion(outputs, labels)
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
if (i + 1) % 100 == 0:
|
|
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
|
|
|
|
print("Finished Training")
|
|
|
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
|
test_loader = iter(test_loader)
|
|
images, labels = next(test_loader)
|
|
images = images.to(device)
|
|
labels = labels.to(device)
|
|
model.printFector(images, labels, "dump1")
|
|
|
|
images, labels = next(test_loader)
|
|
images = images.to(device)
|
|
labels = labels.to(device)
|
|
model.printFector(images, labels, "dump2")
|
|
|
|
# Test the model
|
|
with torch.no_grad():
|
|
n_correct = 0
|
|
n_samples = 0
|
|
for images, labels in test_loader:
|
|
images = images.to(device)
|
|
labels = labels.to(device)
|
|
outputs = model(images)
|
|
|
|
# max returns (value ,index)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
n_samples += labels.size(0)
|
|
n_correct += (predicted == labels).sum().item()
|
|
|
|
acc = 100.0 * n_correct / n_samples
|
|
print(f"Accuracy of the network on the 10000 test images: {acc} %")
|