Witllm/unsuper/minist.py

187 lines
6.7 KiB
Python

import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F # Add this line
import torchvision
import torchvision.transforms as transforms
sys.path.append("..")
from tools import show
seed = 4321
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("mps")
num_epochs = 1
batch_size = 64
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 8, 5, 1, 0)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(8, 1, 5, 1, 0)
self.fc1 = nn.Linear(1 * 4 * 4, 10)
def forward(self, x):
x = self.pool(self.conv1(x))
x = self.pool(self.conv2(x))
x = x.view(x.shape[0], -1)
x = self.fc1(x)
return x
def forward_unsuper(self, x):
x = self.conv1(x)
# x = self.pool(self.conv1(x))
return x
def forward_finetune(self, x):
x = self.pool(self.conv1(x))
x = self.pool(self.conv2(x))
x = x.view(x.shape[0], -1)
x = self.fc1(x)
return x
def printFector(self, x, label, dir=""):
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/input_image.png", Contrast=[0, 1.0])
# show.DumpTensorToLog(x, "input_image.log")
x = self.conv1(x)
w = self.conv1.weight
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv1_weight.png", Contrast=[-1.0, 1.0])
# show.DumpTensorToLog(w, "conv1_weight.log")
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/conv1_output.png", Contrast=[-1.0, 1.0])
# show.DumpTensorToLog(x, "conv1_output.png")
x = self.pool(x)
x = self.conv2(x)
w = self.conv2.weight
show.DumpTensorToImage(
w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv2_weight.png", Contrast=[-1.0, 1.0]
)
show.DumpTensorToImage(
x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/conv2_output.png", Contrast=[-1.0, 1.0]
)
x = self.pool(x)
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/pool_output.png", Contrast=[-1.0, 1.0])
pool_shape = x.shape
x = x.view(x.shape[0], -1)
x = self.fc1(x)
show.DumpTensorToImage(
self.fc1.weight.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight.png", Contrast=[-1.0, 1.0]
)
show.DumpTensorToImage(x.view(-1).cpu(), dir + "/fc_output.png")
criterion = nn.CrossEntropyLoss()
loss = criterion(x, label)
loss.backward()
if self.conv1.weight.requires_grad:
w = self.conv1.weight.grad
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv1_weight_grad.png")
if self.conv2.weight.requires_grad:
w = self.conv2.weight.grad
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv2_weight_grad.png")
if self.fc1.weight.requires_grad:
show.DumpTensorToImage(
self.fc1.weight.grad.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight_grad.png"
)
model = ConvNet().to(device)
model.train()
# Train the model unsuper
epochs = 2
model.conv1.weight.requires_grad = True
model.conv2.weight.requires_grad = False
model.fc1.weight.requires_grad = False
n_total_steps = len(train_loader)
for epoch in range(epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
outputs = model.forward_unsuper(images)
outputs = outputs.permute(1, 0, 2, 3) # 64 8 24 24 -> 8 64 24 24
sample = outputs.reshape(outputs.shape[0], -1) # -> 8 36864
sample_mean = torch.mean(sample, dim=1, keepdim=True)
diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True)
diff_ratio = (sample - sample_mean) / diff_mean
diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1)
label = diff_ratio_mean * 0.5
loss = F.l1_loss(diff_ratio_mean, label)
model.conv1.weight.grad = None
loss.backward()
grad = model.conv1.weight.data
grad = grad.view(8, -1)
grad_mean = torch.mean(grad, dim=1)
max, index = torch.max(grad_mean, dim=0)
model.conv1.weight.data[index] = model.conv1.weight.data[index] - model.conv1.weight.grad[index] * 0.2
if (i + 1) % 100 == 0:
print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
# Train the model
model.conv1.weight.requires_grad = False
model.conv2.weight.requires_grad = True
model.fc1.weight.requires_grad = True
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.2)
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model.forward_finetune(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
print("Finished Training")
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
test_loader = iter(test_loader)
images, labels = next(test_loader)
images = images.to(device)
labels = labels.to(device)
model.printFector(images, labels, "dump1")
images, labels = next(test_loader)
images = images.to(device)
labels = labels.to(device)
model.printFector(images, labels, "dump2")
# Test the model
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
# max returns (value ,index)
_, predicted = torch.max(outputs.data, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
acc = 100.0 * n_correct / n_samples
print(f"Accuracy of the network on the 10000 test images: {acc} %")