267 lines
9.3 KiB
Python
267 lines
9.3 KiB
Python
# Copyright (c) Alibaba Cloud.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Tokenization classes for QWen."""
|
|
|
|
import base64
|
|
import logging
|
|
import os
|
|
import unicodedata
|
|
from typing import Collection, Dict, List, Set, Tuple, Union
|
|
|
|
import tiktoken
|
|
from transformers import PreTrainedTokenizer, AddedToken
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
|
|
|
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
|
ENDOFTEXT = "<|endoftext|>"
|
|
IMSTART = "<|im_start|>"
|
|
IMEND = "<|im_end|>"
|
|
# as the default behavior is changed to allow special tokens in
|
|
# regular texts, the surface forms of special tokens need to be
|
|
# as different as possible to minimize the impact
|
|
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
|
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
|
SPECIAL_START_ID = 151643
|
|
SPECIAL_TOKENS = tuple(
|
|
enumerate(
|
|
(
|
|
(
|
|
ENDOFTEXT,
|
|
IMSTART,
|
|
IMEND,
|
|
)
|
|
+ EXTRAS
|
|
),
|
|
start=SPECIAL_START_ID,
|
|
)
|
|
)
|
|
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
|
|
|
|
|
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
|
with open(tiktoken_bpe_file, "rb") as f:
|
|
contents = f.read()
|
|
return {
|
|
base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)
|
|
}
|
|
|
|
|
|
class QWenTokenizer(PreTrainedTokenizer):
|
|
"""QWen tokenizer."""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
errors="replace",
|
|
extra_vocab_file=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
# how to handle errors in decoding UTF-8 byte sequences
|
|
# use ignore if you are in streaming inference
|
|
self.errors = errors
|
|
|
|
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
|
self.special_tokens = {token: index for index, token in SPECIAL_TOKENS}
|
|
|
|
# try load extra vocab from file
|
|
if extra_vocab_file is not None:
|
|
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
|
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
|
for token, index in extra_mergeable_ranks.items():
|
|
if token in self.mergeable_ranks:
|
|
logger.info(f"extra token {token} exists, skipping")
|
|
continue
|
|
if index in used_ids:
|
|
logger.info(f"the index {index} for extra token {token} exists, skipping")
|
|
continue
|
|
self.mergeable_ranks[token] = index
|
|
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
|
|
|
enc = tiktoken.Encoding(
|
|
"Qwen",
|
|
pat_str=PAT_STR,
|
|
mergeable_ranks=self.mergeable_ranks,
|
|
special_tokens=self.special_tokens,
|
|
)
|
|
assert (
|
|
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
|
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
|
|
|
self.decoder = {v: k for k, v in self.mergeable_ranks.items()} # type: dict[int, bytes|str]
|
|
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
|
|
|
self.tokenizer = enc # type: tiktoken.Encoding
|
|
|
|
self.eod_id = self.tokenizer.eot_token
|
|
self.im_start_id = self.special_tokens[IMSTART]
|
|
self.im_end_id = self.special_tokens[IMEND]
|
|
|
|
def __getstate__(self):
|
|
# for pickle lovers
|
|
state = self.__dict__.copy()
|
|
del state["tokenizer"]
|
|
return state
|
|
|
|
def __setstate__(self, state):
|
|
# tokenizer is not python native; don't pass it; rebuild it
|
|
self.__dict__.update(state)
|
|
enc = tiktoken.Encoding(
|
|
"Qwen",
|
|
pat_str=PAT_STR,
|
|
mergeable_ranks=self.mergeable_ranks,
|
|
special_tokens=self.special_tokens,
|
|
)
|
|
self.tokenizer = enc
|
|
|
|
def __len__(self) -> int:
|
|
return self.tokenizer.n_vocab
|
|
|
|
def get_vocab(self) -> Dict[bytes, int]:
|
|
return self.mergeable_ranks
|
|
|
|
def convert_tokens_to_ids(self, tokens: Union[bytes, str, List[Union[bytes, str]]]) -> List[int]:
|
|
ids = []
|
|
if isinstance(tokens, (str, bytes)):
|
|
if tokens in self.special_tokens:
|
|
return self.special_tokens[tokens]
|
|
else:
|
|
return self.mergeable_ranks.get(tokens)
|
|
for token in tokens:
|
|
if token in self.special_tokens:
|
|
ids.append(self.special_tokens[token])
|
|
else:
|
|
ids.append(self.mergeable_ranks.get(token))
|
|
return ids
|
|
|
|
def _add_tokens(
|
|
self,
|
|
new_tokens: Union[List[str], List[AddedToken]],
|
|
special_tokens: bool = False,
|
|
) -> int:
|
|
if not special_tokens and new_tokens:
|
|
raise ValueError("Adding regular tokens is not supported")
|
|
for token in new_tokens:
|
|
surface_form = token.content if isinstance(token, AddedToken) else token
|
|
if surface_form not in SPECIAL_TOKENS_SET:
|
|
raise ValueError("Adding unknown special tokens is not supported")
|
|
return 0
|
|
|
|
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
|
"""
|
|
Save only the vocabulary of the tokenizer (vocabulary).
|
|
|
|
Returns:
|
|
`Tuple(str)`: Paths to the files saved.
|
|
"""
|
|
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
|
with open(file_path, "w", encoding="utf8") as w:
|
|
for k, v in self.mergeable_ranks.items():
|
|
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
|
w.write(line)
|
|
return (file_path,)
|
|
|
|
def tokenize(
|
|
self,
|
|
text: str,
|
|
allowed_special: Union[Set, str] = "all",
|
|
disallowed_special: Union[Collection, str] = (),
|
|
**kwargs,
|
|
) -> List[Union[bytes, str]]:
|
|
"""
|
|
Converts a string in a sequence of tokens.
|
|
|
|
Args:
|
|
text (`str`):
|
|
The sequence to be encoded.
|
|
allowed_special (`Literal["all"]` or `set`):
|
|
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
|
Default to "all".
|
|
disallowed_special (`Literal["all"]` or `Collection`):
|
|
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
|
Default to an empty tuple.
|
|
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Will be passed to the underlying model specific encode method.
|
|
|
|
Returns:
|
|
`List[bytes|str]`: The list of tokens.
|
|
"""
|
|
tokens = []
|
|
text = unicodedata.normalize("NFC", text)
|
|
|
|
# this implementation takes a detour: text -> token id -> token surface forms
|
|
for t in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
|
|
tokens.append(self.decoder[t])
|
|
return tokens
|
|
|
|
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
|
"""
|
|
Converts a sequence of tokens in a single string.
|
|
"""
|
|
text = ""
|
|
temp = b""
|
|
for t in tokens:
|
|
if isinstance(t, str):
|
|
if temp:
|
|
text += temp.decode("utf-8", errors=self.errors)
|
|
temp = b""
|
|
text += t
|
|
elif isinstance(t, bytes):
|
|
temp += t
|
|
else:
|
|
raise TypeError("token should only be of type types or str")
|
|
if temp:
|
|
text += temp.decode("utf-8", errors=self.errors)
|
|
return text
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self.tokenizer.n_vocab
|
|
|
|
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
|
"""Converts an id to a token, special tokens included"""
|
|
if index in self.decoder:
|
|
return self.decoder[index]
|
|
raise ValueError("unknown ids")
|
|
|
|
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
|
"""Converts a token to an id using the vocab, special tokens included"""
|
|
if token in self.special_tokens:
|
|
return self.special_tokens[token]
|
|
if token in self.mergeable_ranks:
|
|
return self.mergeable_ranks[token]
|
|
raise ValueError("unknown token")
|
|
|
|
def _tokenize(self, text: str, **kwargs):
|
|
"""
|
|
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
|
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
|
|
|
Do NOT take care of added tokens.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def _decode(
|
|
self,
|
|
token_ids: Union[int, List[int]],
|
|
skip_special_tokens: bool = False,
|
|
errors: str = None,
|
|
**kwargs,
|
|
) -> str:
|
|
if isinstance(token_ids, int):
|
|
token_ids = [token_ids]
|
|
if skip_special_tokens:
|
|
token_ids = [i for i in token_ids if i < self.eod_id]
|
|
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|