172 lines
5.9 KiB
Python
172 lines
5.9 KiB
Python
import gc
|
|
import datetime
|
|
import inspect
|
|
|
|
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
|
|
dtype_memory_size_dict = {
|
|
torch.float64: 64 / 8,
|
|
torch.double: 64 / 8,
|
|
torch.float32: 32 / 8,
|
|
torch.float: 32 / 8,
|
|
torch.float16: 16 / 8,
|
|
torch.half: 16 / 8,
|
|
torch.int64: 64 / 8,
|
|
torch.long: 64 / 8,
|
|
torch.int32: 32 / 8,
|
|
torch.int: 32 / 8,
|
|
torch.int16: 16 / 8,
|
|
torch.short: 16 / 6,
|
|
torch.uint8: 8 / 8,
|
|
torch.int8: 8 / 8,
|
|
}
|
|
# compatibility of torch1.0
|
|
if getattr(torch, "bfloat16", None) is not None:
|
|
dtype_memory_size_dict[torch.bfloat16] = 16 / 8
|
|
if getattr(torch, "bool", None) is not None:
|
|
dtype_memory_size_dict[torch.bool] = (
|
|
8 / 8
|
|
) # pytorch use 1 byte for a bool, see https://github.com/pytorch/pytorch/issues/41571
|
|
|
|
|
|
def get_mem_space(x):
|
|
try:
|
|
ret = dtype_memory_size_dict[x]
|
|
except KeyError:
|
|
print(f"dtype {x} is not supported!")
|
|
return ret
|
|
|
|
|
|
class MemTracker(object):
|
|
"""
|
|
Class used to track pytorch memory usage
|
|
Arguments:
|
|
detail(bool, default True): whether the function shows the detail gpu memory usage
|
|
path(str): where to save log file
|
|
verbose(bool, default False): whether show the trivial exception
|
|
device(int): GPU number, default is 0
|
|
"""
|
|
|
|
def __init__(self, detail=True, path="", verbose=False, device=0):
|
|
self.print_detail = detail
|
|
self.last_tensor_sizes = set()
|
|
self.gpu_profile_fn = path + f"{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_track.txt"
|
|
self.verbose = verbose
|
|
self.begin = True
|
|
self.device = device
|
|
|
|
def get_tensors(self):
|
|
for obj in gc.get_objects():
|
|
try:
|
|
if torch.is_tensor(obj) or (hasattr(obj, "data") and torch.is_tensor(obj.data)):
|
|
tensor = obj
|
|
else:
|
|
continue
|
|
if tensor.is_cuda:
|
|
yield tensor
|
|
except Exception as e:
|
|
if self.verbose:
|
|
print("A trivial exception occured: {}".format(e))
|
|
|
|
def get_tensor_usage(self):
|
|
sizes = [np.prod(np.array(tensor.size())) * get_mem_space(tensor.dtype) for tensor in self.get_tensors()]
|
|
return np.sum(sizes) / 1024**2
|
|
|
|
def get_allocate_usage(self):
|
|
return torch.cuda.memory_allocated() / 1024**2
|
|
|
|
def clear_cache(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def print_all_gpu_tensor(self, file=None):
|
|
for x in self.get_tensors():
|
|
print(x.size(), x.dtype, np.prod(np.array(x.size())) * get_mem_space(x.dtype) / 1024**2, file=file)
|
|
|
|
def track(self):
|
|
"""
|
|
Track the GPU memory usage
|
|
"""
|
|
frameinfo = inspect.stack()[1]
|
|
where_str = frameinfo.filename + " line " + str(frameinfo.lineno) + ": " + frameinfo.function
|
|
|
|
with open(self.gpu_profile_fn, "a+") as f:
|
|
if self.begin:
|
|
f.write(
|
|
f"GPU Memory Track | {datetime.datetime.now():%d-%b-%y-%H:%M:%S} |"
|
|
f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb"
|
|
f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n"
|
|
)
|
|
self.begin = False
|
|
|
|
if self.print_detail is True:
|
|
ts_list = [(tensor.size(), tensor.dtype) for tensor in self.get_tensors()]
|
|
new_tensor_sizes = {
|
|
(
|
|
type(x),
|
|
tuple(x.size()),
|
|
ts_list.count((x.size(), x.dtype)),
|
|
np.prod(np.array(x.size())) * get_mem_space(x.dtype) / 1024**2,
|
|
x.dtype,
|
|
)
|
|
for x in self.get_tensors()
|
|
}
|
|
for t, s, n, m, data_type in new_tensor_sizes - self.last_tensor_sizes:
|
|
f.write(
|
|
f"+ | {str(n)} * Size:{str(s):<20} | Memory: {str(m*n)[:6]} M | {str(t):<20} | {data_type}\n"
|
|
)
|
|
for t, s, n, m, data_type in self.last_tensor_sizes - new_tensor_sizes:
|
|
f.write(
|
|
f"- | {str(n)} * Size:{str(s):<20} | Memory: {str(m*n)[:6]} M | {str(t):<20} | {data_type}\n"
|
|
)
|
|
|
|
self.last_tensor_sizes = new_tensor_sizes
|
|
|
|
f.write(
|
|
f"\nAt {where_str:<50}"
|
|
f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb"
|
|
f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n"
|
|
)
|
|
|
|
|
|
def ModelSize(model, input, type_size=4):
|
|
para = sum([np.prod(list(p.size())) for p in model.parameters()])
|
|
# print('Model {} : Number of params: {}'.format(model._get_name(), para))
|
|
print("Model {} : params: {:4f}M".format(model._get_name(), para * type_size / 1000 / 1000))
|
|
|
|
input_ = input.clone()
|
|
input_.requires_grad_(requires_grad=False)
|
|
|
|
mods = list(model.modules())
|
|
out_sizes = []
|
|
|
|
for i in range(1, len(mods)):
|
|
m = mods[i]
|
|
if isinstance(m, nn.ReLU):
|
|
if m.inplace:
|
|
continue
|
|
out = m(input_)
|
|
out_sizes.append(np.array(out.size()))
|
|
input_ = out
|
|
|
|
total_nums = 0
|
|
for i in range(len(out_sizes)):
|
|
s = out_sizes[i]
|
|
nums = np.prod(np.array(s))
|
|
total_nums += nums
|
|
|
|
# print('Model {} : Number of intermedite variables without backward: {}'.format(model._get_name(), total_nums))
|
|
# print('Model {} : Number of intermedite variables with backward: {}'.format(model._get_name(), total_nums*2))
|
|
print(
|
|
"Model {} : intermedite variables: {:3f} M (without backward)".format(
|
|
model._get_name(), total_nums * type_size / 1000 / 1000
|
|
)
|
|
)
|
|
print(
|
|
"Model {} : intermedite variables: {:3f} M (with backward)".format(
|
|
model._get_name(), total_nums * type_size * 2 / 1000 / 1000
|
|
)
|
|
)
|