Witllm/wit/MNBVC.py

105 lines
3.5 KiB
Python

import argparse
from functools import partial
from itertools import chain
from typing import Dict, Tuple
import datasets
import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
from transformers import (
BatchEncoding,
DefaultDataCollator,
PreTrainedTokenizer,
set_seed,
)
from tokenization_qwen import QWenTokenizer
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
num_proc = 8
seed = 42
def split_raw_dataset(
raw_dataset: datasets.DatasetDict,
) -> Tuple[datasets.Dataset, datasets.Dataset]:
if "validation" in raw_dataset:
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
else:
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
return train_dataset, val_dataset
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
result = BatchEncoding(result)
return result
def format_inputs(examples):
p = examples["段落"]
mergeLine = ""
for line in p:
mergeLine += line["内容"] + "\n"
return {"text": mergeLine}
def tokenize_inputs(
examples: Dict[str, list],
tokenizer: PreTrainedTokenizer,
column_name: str = "text",
) -> BatchEncoding:
logits = tokenizer(examples[column_name], return_attention_mask=False)
return logits
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(format_inputs),
batched=False,
num_proc=num_proc,
remove_columns=dataset_column_names,
)
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(tokenize_inputs, tokenizer=tokenizer),
batched=True,
num_proc=num_proc,
remove_columns=dataset_column_names,
)
dataset = dataset.map(
partial(group_texts, block_size=tokenizer.model_max_length),
batched=True,
num_proc=num_proc,
)
return dataset
if __name__ == "__main__":
set_seed(seed)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
train_dataset_list = []
val_dataset_list = []
for dn in dataset_name:
datanames = dn.split(".")
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
raw_dataset = datasets.load_dataset("json", data_files=dn)
elif datanames[-1] == "json":
raw_dataset = datasets.load_dataset("json", data_files=dn)
else:
raw_dataset = datasets.load_dataset(dn)
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
train_dataset = process_dataset(train_dataset, tokenizer)
val_dataset = process_dataset(val_dataset, tokenizer)
train_dataset_list.append(train_dataset)
val_dataset_list.append(val_dataset)