ebe48f8efc | ||
---|---|---|
chatglm | ||
tools | ||
.gitignore | ||
RMSNorm_weight.png | ||
Readme.md | ||
demo.py | ||
embedding.py | ||
rotary_pos_emb.png | ||
tensor.py |
Readme.md
data flow
input_ids = tokenizer.build_chat_input(query, history=history, role=role)
for input_ids -> [1, 6] 1:batch_num 6:sequence_length inputs_embeds -> [6, 1, 4096] 4096:hidden_size rotary_pos_emb -> [6, 1, 32, 2] 32:pos的编码维度 2:cos+sin
hidden_states = inputs_embeds for layers : GLMBlock(hidden_states, rotary_pos_emb) hidden_states = RMSNorm(hidden_states) hidden_states = hidden_states[-1:] 截取最后一个sequence lm_logits = self.output_layer(hidden_states) lm_logits = lm_logits.transpose(0, 1).contiguous() -> [1, 1, 65024]
probs = softmax(lm_logits) -> [1, 65024] next_tokens = torch.multinomial(probs, num_samples=1) 采样 -> [1] 1:batch_num
if next_tokens == eos_token_id 推理结束退出循环
input_ids = torch.cat([input_ids, next_tokens) -> [1, 7] 1:batch_num
response = tokenizer.decode(outputs)
RMSNorm
hidden_states -> [6, 1, 4096] 4096:hidden_size variance = hidden_states.pow(2).mean(-1, keepdim=True) -> [6, 1, 1] hidden_states = hidden_states * torch.rsqrt(variance + self.eps) 平方根倒数 self.weight -> [4096] return (self.weight * hidden_states) -> [6, 1, 4096]