256 lines
10 KiB
Python
256 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Convert BigScience BLOOM checkpoint."""
|
|
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
import re
|
|
|
|
import torch
|
|
|
|
from transformers import BloomConfig, BloomModel
|
|
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
|
|
from transformers.utils import logging
|
|
|
|
|
|
logging.set_verbosity_info()
|
|
|
|
WEIGHTS_TO_AVERAGE_ENDSWITH = [
|
|
"word_embeddings_layernorm.weight",
|
|
"word_embeddings_layernorm.bias",
|
|
"input_layernorm.weight",
|
|
"input_layernorm.bias",
|
|
"post_attention_layernorm.weight",
|
|
"post_attention_layernorm.bias",
|
|
"self_attention.dense.bias",
|
|
"mlp.dense_4h_to_h.bias",
|
|
"ln_f.weight",
|
|
"ln_f.bias",
|
|
]
|
|
|
|
WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN = [
|
|
"mlp.dense_4h_to_h.weight",
|
|
"self_attention.dense.weight",
|
|
]
|
|
|
|
|
|
def layer_name_mapping(key, file):
|
|
"""Convert Megatron-DeepSpeed TP/PP weights mapping in transformers PP only"""
|
|
# Handle first and last layers
|
|
layer_rename_map = {
|
|
"word_embeddings.weight": "word_embeddings.weight",
|
|
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
|
|
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
|
|
"weight": "ln_f.weight",
|
|
"bias": "ln_f.bias",
|
|
}
|
|
|
|
if key in layer_rename_map:
|
|
return layer_rename_map[key]
|
|
|
|
# Handle transformer blocks
|
|
layer_number = int(re.match(r".*layer_(\d*).*", file)[1])
|
|
layer_number -= 3
|
|
return f"h.{layer_number}." + key
|
|
|
|
|
|
def get_dtype_size(dtype):
|
|
if dtype == torch.bool:
|
|
return 1 / 8
|
|
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
|
|
if bit_search is None:
|
|
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
|
|
bit_size = int(bit_search.groups()[0])
|
|
return bit_size // 8
|
|
|
|
|
|
def convert_bloom_checkpoint_to_pytorch(
|
|
bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp
|
|
):
|
|
# Construct model
|
|
if bloom_config_file == "":
|
|
config = BloomConfig()
|
|
else:
|
|
config = BloomConfig.from_json_file(bloom_config_file)
|
|
|
|
if shard_model:
|
|
file_names = os.listdir(bloom_checkpoint_path)
|
|
file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
|
|
|
|
index_dict = {"weight_map": {}, "metadata": {}}
|
|
total_size = 0
|
|
|
|
missing_keys = None
|
|
|
|
config = BloomConfig()
|
|
|
|
for j, file in enumerate(file_names):
|
|
print("Processing file: {}".format(file))
|
|
tensors = None
|
|
|
|
for i in range(pretraining_tp):
|
|
# load all TP files
|
|
f_name = file.replace("model_00", f"model_0{i}")
|
|
temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
|
|
|
|
# Rename keys in the transformers names
|
|
keys = list(temp.keys())
|
|
for key in keys:
|
|
temp[layer_name_mapping(key, file)] = temp.pop(key)
|
|
|
|
if tensors is None:
|
|
tensors = temp
|
|
else:
|
|
for key in tensors.keys():
|
|
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
|
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
|
|
tensors[key] += temp[key]
|
|
else:
|
|
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
|
|
cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
|
|
# We concatenate these weights accross TP ranks
|
|
tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
|
|
|
|
# Divide by the number of TP the weights we want to average
|
|
for key in tensors.keys():
|
|
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
|
tensors[key] = tensors[key] / pretraining_tp
|
|
torch.save(
|
|
tensors,
|
|
os.path.join(
|
|
pytorch_dump_folder_path,
|
|
"pytorch_model_{}-of-{}.bin".format(str(j + 1).zfill(5), str(len(file_names)).zfill(5)),
|
|
),
|
|
)
|
|
|
|
for key in tensors.keys():
|
|
value = tensors[key]
|
|
total_size += value.numel() * get_dtype_size(value.dtype)
|
|
if key not in index_dict["weight_map"]:
|
|
index_dict["weight_map"][key] = "pytorch_model_{}-of-{}.bin".format(
|
|
str(j + 1).zfill(5), str(len(file_names)).zfill(5)
|
|
)
|
|
|
|
config = BloomConfig()
|
|
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
|
index_dict["metadata"]["total_size"] = total_size
|
|
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
|
f.write(config.to_json_string())
|
|
with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f:
|
|
json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n"
|
|
f.write(json_config)
|
|
else:
|
|
model = BloomModel(config)
|
|
|
|
file_names = os.listdir(bloom_checkpoint_path)
|
|
file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
|
|
|
|
missing_keys = None
|
|
for i, file in enumerate(file_names):
|
|
tensors = None
|
|
for i in range(pretraining_tp):
|
|
# load all TP files
|
|
f_name = file.replace("model_00", f"model_0{i}")
|
|
temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
|
|
|
|
# Rename keys in the transformers names
|
|
keys = list(temp.keys())
|
|
for key in keys:
|
|
temp[layer_name_mapping(key, file)] = temp.pop(key)
|
|
|
|
if tensors is None:
|
|
tensors = temp
|
|
else:
|
|
for key in tensors.keys():
|
|
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
|
|
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
|
tensors[key] += temp[key]
|
|
else:
|
|
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
|
|
cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
|
|
# We concatenate these weights accross TP ranks
|
|
tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
|
|
|
|
# Divide by the number of TP the weights we want to average
|
|
for key in tensors.keys():
|
|
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
|
tensors[key] = tensors[key] / pretraining_tp
|
|
|
|
other_keys = model.load_state_dict(tensors, strict=False)
|
|
assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected"
|
|
if missing_keys is None:
|
|
missing_keys = set(other_keys.missing_keys)
|
|
else:
|
|
missing_keys = missing_keys.intersection(set(other_keys.missing_keys))
|
|
|
|
assert not missing_keys, f"The keys {missing_keys} are missing"
|
|
|
|
# Save pytorch-model
|
|
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
|
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
|
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
|
print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}")
|
|
if config.torch_dtype is not None:
|
|
model = model.to(config.torch_dtype)
|
|
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
|
print(f"Save configuration file to {pytorch_config_dump_path}")
|
|
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
|
f.write(config.to_json_string())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
# Required parameters
|
|
parser.add_argument(
|
|
"--bloom_checkpoint_path",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="Path to the Megatron-LM checkpoint path.",
|
|
)
|
|
parser.add_argument(
|
|
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
|
)
|
|
parser.add_argument(
|
|
"--bloom_config_file",
|
|
default="",
|
|
type=str,
|
|
help=(
|
|
"An optional config json file corresponding to the pre-trained model. \n"
|
|
"This specifies the model architecture."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--shard_model",
|
|
action="store_true",
|
|
help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
|
|
)
|
|
parser.add_argument(
|
|
"--pretraining_tp",
|
|
default=4,
|
|
type=int,
|
|
help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
|
|
)
|
|
args = parser.parse_args()
|
|
convert_bloom_checkpoint_to_pytorch(
|
|
args.bloom_checkpoint_path,
|
|
args.bloom_config_file,
|
|
args.pytorch_dump_folder_path,
|
|
args.shard_model,
|
|
args.pretraining_tp,
|
|
)
|