abstractaccelerator/Flow/design/dbg/el2_dbg.sv

966 lines
41 KiB
Systemverilog
Raw Permalink Normal View History

2022-05-10 21:06:26 +08:00
// SPDX-License-Identifier: Apache-2.0
// Copyright 2020 Western Digital Corporation or its affiliates.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//********************************************************************************
// $Id$
//
// Function: Top level SWERV core file to control the debug mode
// Comments: Responsible to put the rest of the core in quiesce mode,
// Send the commands/address. sends WrData and Recieve read Data.
// And then Resume the core to do the normal mode
// Author :
//********************************************************************************
module el2_dbg
2022-05-23 22:16:04 +08:00
import el2_pkg::*;
2022-05-10 21:06:26 +08:00
#(
2022-05-23 22:16:04 +08:00
`include "el2_param.vh"
) (
// outputs to the core for command and data interface
output logic [31:0] dbg_cmd_addr,
output logic [31:0] dbg_cmd_wrdata,
output logic dbg_cmd_valid,
output logic dbg_cmd_write, // 1: write command, 0: read_command
output logic [ 1:0] dbg_cmd_type, // 0:gpr 1:csr 2: memory
output logic [ 1:0] dbg_cmd_size, // size of the abstract mem access debug command
output logic dbg_core_rst_l, // core reset from dm
// inputs back from the core/dec
input logic [31:0] core_dbg_rddata,
input logic core_dbg_cmd_done, // This will be treated like a valid signal
input logic core_dbg_cmd_fail, // Exception during command run
// Signals to dma to get a bubble
output logic dbg_dma_bubble, // Debug needs a bubble to send a valid
input logic dma_dbg_ready, // DMA is ready to accept debug request
// interface with the rest of the core to halt/resume handshaking
output logic dbg_halt_req, // This is a pulse
output logic dbg_resume_req, // Debug sends a resume requests. Pulse
input logic dec_tlu_debug_mode, // Core is in debug mode
input logic dec_tlu_dbg_halted, // The core has finished the queiscing sequence. Core is halted now
input logic dec_tlu_mpc_halted_only, // Only halted due to MPC
input logic dec_tlu_resume_ack, // core sends back an ack for the resume (pulse)
// inputs from the JTAG
input logic dmi_reg_en, // read or write
input logic [ 6:0] dmi_reg_addr, // address of DM register
input logic dmi_reg_wr_en, // write instruction
input logic [31:0] dmi_reg_wdata, // write data
// output
output logic [31:0] dmi_reg_rdata, // read data
// AXI Write Channels
output logic sb_axi_awvalid,
input logic sb_axi_awready,
output logic [pt.SB_BUS_TAG-1:0] sb_axi_awid,
output logic [ 31:0] sb_axi_awaddr,
output logic [ 3:0] sb_axi_awregion,
output logic [ 7:0] sb_axi_awlen,
output logic [ 2:0] sb_axi_awsize,
output logic [ 1:0] sb_axi_awburst,
output logic sb_axi_awlock,
output logic [ 3:0] sb_axi_awcache,
output logic [ 2:0] sb_axi_awprot,
output logic [ 3:0] sb_axi_awqos,
output logic sb_axi_wvalid,
input logic sb_axi_wready,
output logic [63:0] sb_axi_wdata,
output logic [ 7:0] sb_axi_wstrb,
output logic sb_axi_wlast,
input logic sb_axi_bvalid,
output logic sb_axi_bready,
input logic [1:0] sb_axi_bresp,
// AXI Read Channels
output logic sb_axi_arvalid,
input logic sb_axi_arready,
output logic [pt.SB_BUS_TAG-1:0] sb_axi_arid,
output logic [ 31:0] sb_axi_araddr,
output logic [ 3:0] sb_axi_arregion,
output logic [ 7:0] sb_axi_arlen,
output logic [ 2:0] sb_axi_arsize,
output logic [ 1:0] sb_axi_arburst,
output logic sb_axi_arlock,
output logic [ 3:0] sb_axi_arcache,
output logic [ 2:0] sb_axi_arprot,
output logic [ 3:0] sb_axi_arqos,
input logic sb_axi_rvalid,
output logic sb_axi_rready,
input logic [63:0] sb_axi_rdata,
input logic [ 1:0] sb_axi_rresp,
input logic dbg_bus_clk_en,
// general inputs
input logic clk,
input logic free_clk,
input logic rst_l, // This includes both top rst and debug rst
input logic dbg_rst_l,
input logic clk_override,
input logic scan_mode
2022-05-10 21:06:26 +08:00
);
2022-05-23 22:16:04 +08:00
typedef enum logic [3:0] {
IDLE = 4'h0,
HALTING = 4'h1,
HALTED = 4'h2,
CORE_CMD_START = 4'h3,
CORE_CMD_WAIT = 4'h4,
SB_CMD_START = 4'h5,
SB_CMD_SEND = 4'h6,
SB_CMD_RESP = 4'h7,
CMD_DONE = 4'h8,
RESUMING = 4'h9
} state_t;
typedef enum logic [3:0] {
SBIDLE = 4'h0,
WAIT_RD = 4'h1,
WAIT_WR = 4'h2,
CMD_RD = 4'h3,
CMD_WR = 4'h4,
CMD_WR_ADDR = 4'h5,
CMD_WR_DATA = 4'h6,
RSP_RD = 4'h7,
RSP_WR = 4'h8,
DONE = 4'h9
} sb_state_t;
state_t dbg_state;
state_t dbg_nxtstate;
logic dbg_state_en;
// these are the registers that the debug module implements
logic [31:0] dmstatus_reg; // [26:24]-dmerr, [17:16]-resume ack, [9:8]-halted, [3:0]-version
logic [31:0] dmcontrol_reg; // dmcontrol register has only 6 bits implemented. 31: haltreq, 30: resumereq, 29: haltreset, 28: ackhavereset, 1: ndmreset, 0: dmactive.
logic [31:0] command_reg;
logic [31:0] abstractcs_reg; // bits implemted are [12] - busy and [10:8]= command error
logic [31:0] haltsum0_reg;
logic [31:0] data0_reg;
logic [31:0] data1_reg;
// data 0
logic [31:0] data0_din;
logic data0_reg_wren, data0_reg_wren0, data0_reg_wren1, data0_reg_wren2;
// data 1
logic [31:0] data1_din;
logic data1_reg_wren, data1_reg_wren0, data1_reg_wren1;
// abstractcs
logic abstractcs_busy_wren;
logic abstractcs_busy_din;
logic [2:0] abstractcs_error_din;
logic
abstractcs_error_sel0,
abstractcs_error_sel1,
abstractcs_error_sel2,
abstractcs_error_sel3,
abstractcs_error_sel4,
abstractcs_error_sel5,
abstractcs_error_sel6;
logic dbg_sb_bus_error;
// abstractauto
logic abstractauto_reg_wren;
logic [1:0] abstractauto_reg;
// dmstatus
logic dmstatus_resumeack_wren;
logic dmstatus_resumeack_din;
logic dmstatus_haveresetn_wren;
logic dmstatus_resumeack;
logic dmstatus_unavail;
logic dmstatus_running;
logic dmstatus_halted;
logic dmstatus_havereset, dmstatus_haveresetn;
// dmcontrol
logic resumereq;
logic dmcontrol_wren, dmcontrol_wren_Q;
// command
logic execute_command_ns, execute_command;
logic command_wren, command_regno_wren;
logic command_transfer_din;
logic command_postexec_din;
logic [ 31:0] command_din;
logic [ 3:0] dbg_cmd_addr_incr;
logic [ 31:0] dbg_cmd_curr_addr;
logic [ 31:0] dbg_cmd_next_addr;
// needed to send the read data back for dmi reads
logic [ 31:0] dmi_reg_rdata_din;
sb_state_t sb_state;
sb_state_t sb_nxtstate;
logic sb_state_en;
//System bus section
logic sbcs_wren;
logic sbcs_sbbusy_wren;
logic sbcs_sbbusy_din;
logic sbcs_sbbusyerror_wren;
logic sbcs_sbbusyerror_din;
logic sbcs_sberror_wren;
logic [ 2:0] sbcs_sberror_din;
logic sbcs_unaligned;
logic sbcs_illegal_size;
logic [19:15] sbcs_reg_int;
// data
logic sbdata0_reg_wren0;
logic sbdata0_reg_wren1;
logic sbdata0_reg_wren;
logic [ 31:0] sbdata0_din;
logic sbdata1_reg_wren0;
logic sbdata1_reg_wren1;
logic sbdata1_reg_wren;
logic [ 31:0] sbdata1_din;
logic sbaddress0_reg_wren0;
logic sbaddress0_reg_wren1;
logic sbaddress0_reg_wren;
logic [ 31:0] sbaddress0_reg_din;
logic [ 3:0] sbaddress0_incr;
logic sbreadonaddr_access;
logic sbreadondata_access;
logic sbdata0wr_access;
logic sb_abmem_cmd_done_in, sb_abmem_data_done_in;
logic sb_abmem_cmd_done_en, sb_abmem_data_done_en;
logic sb_abmem_cmd_done, sb_abmem_data_done;
logic [31:0] abmem_addr;
logic abmem_addr_in_dccm_region, abmem_addr_in_iccm_region, abmem_addr_in_pic_region;
logic abmem_addr_core_local;
logic abmem_addr_external;
logic sb_cmd_pending, sb_abmem_cmd_pending;
logic sb_abmem_cmd_write;
logic [ 2:0] sb_abmem_cmd_size;
logic [31:0] sb_abmem_cmd_addr;
logic [31:0] sb_abmem_cmd_wdata;
logic [ 2:0] sb_cmd_size;
logic [31:0] sb_cmd_addr;
logic [63:0] sb_cmd_wdata;
logic sb_bus_cmd_read, sb_bus_cmd_write_addr, sb_bus_cmd_write_data;
logic sb_bus_rsp_read, sb_bus_rsp_write;
logic sb_bus_rsp_error;
logic [63:0] sb_bus_rdata;
//registers
logic [31:0] sbcs_reg;
logic [31:0] sbaddress0_reg;
logic [31:0] sbdata0_reg;
logic [31:0] sbdata1_reg;
logic sb_abmem_cmd_arvalid, sb_abmem_cmd_awvalid, sb_abmem_cmd_wvalid;
logic sb_abmem_read_pend;
logic sb_cmd_awvalid, sb_cmd_wvalid, sb_cmd_arvalid;
logic sb_read_pend;
logic [31:0] sb_axi_addr;
logic [63:0] sb_axi_wrdata;
logic [ 2:0] sb_axi_size;
logic dbg_dm_rst_l;
logic rst_l_sync;
//clken
logic dbg_free_clken;
logic dbg_free_clk;
logic sb_free_clken;
logic sb_free_clk;
// clocking
// used for the abstract commands.
assign dbg_free_clken = dmi_reg_en | execute_command | (dbg_state != IDLE) | dbg_state_en | dec_tlu_dbg_halted | dec_tlu_mpc_halted_only | dec_tlu_debug_mode | dbg_halt_req | clk_override;
// used for the system bus
assign sb_free_clken = dmi_reg_en | execute_command | sb_state_en | (sb_state != SBIDLE) | clk_override;
rvoclkhdr dbg_free_cgc (
.en(dbg_free_clken),
.l1clk(dbg_free_clk),
.*
);
rvoclkhdr sb_free_cgc (
.en(sb_free_clken),
.l1clk(sb_free_clk),
.*
);
// end clocking section
// Reset logic
assign dbg_dm_rst_l = dbg_rst_l & (dmcontrol_reg[0] | scan_mode);
assign dbg_core_rst_l = ~dmcontrol_reg[1] | scan_mode;
// synchronize the rst
rvsyncss #(1) rstl_syncff (
.din (rst_l),
.dout (rst_l_sync),
.clk (free_clk),
.rst_l(dbg_rst_l)
);
// system bus register
// sbcs[31:29], sbcs - [22]:sbbusyerror, [21]: sbbusy, [20]:sbreadonaddr, [19:17]:sbaccess, [16]:sbautoincrement, [15]:sbreadondata, [14:12]:sberror, sbsize=32, 128=0, 64/32/16/8 are legal
assign sbcs_reg[31:29] = 3'b1;
assign sbcs_reg[28:23] = '0;
assign sbcs_reg[19:15] = {sbcs_reg_int[19], ~sbcs_reg_int[18], sbcs_reg_int[17:15]};
assign sbcs_reg[11:5] = 7'h20;
assign sbcs_reg[4:0] = 5'b01111;
assign sbcs_wren = (dmi_reg_addr == 7'h38) & dmi_reg_en & dmi_reg_wr_en & (sb_state == SBIDLE);
assign sbcs_sbbusyerror_wren = (sbcs_wren & dmi_reg_wdata[22]) |
2022-05-10 21:06:26 +08:00
(sbcs_reg[21] & dmi_reg_en & ((dmi_reg_wr_en & (dmi_reg_addr == 7'h39)) | (dmi_reg_addr == 7'h3c) | (dmi_reg_addr == 7'h3d)));
2022-05-23 22:16:04 +08:00
assign sbcs_sbbusyerror_din = ~(sbcs_wren & dmi_reg_wdata[22]); // Clear when writing one
rvdffs #(1) sbcs_sbbusyerror_reg (
.din(sbcs_sbbusyerror_din),
.dout(sbcs_reg[22]),
.en(sbcs_sbbusyerror_wren),
.rst_l(dbg_dm_rst_l),
.clk(sb_free_clk)
);
rvdffs #(1) sbcs_sbbusy_reg (
.din(sbcs_sbbusy_din),
.dout(sbcs_reg[21]),
.en(sbcs_sbbusy_wren),
.rst_l(dbg_dm_rst_l),
.clk(sb_free_clk)
);
rvdffs #(1) sbcs_sbreadonaddr_reg (
.din(dmi_reg_wdata[20]),
.dout(sbcs_reg[20]),
.en(sbcs_wren),
.rst_l(dbg_dm_rst_l),
.clk(sb_free_clk)
);
rvdffs #(5) sbcs_misc_reg (
.din({dmi_reg_wdata[19], ~dmi_reg_wdata[18], dmi_reg_wdata[17:15]}),
.dout(sbcs_reg_int[19:15]),
.en(sbcs_wren),
.rst_l(dbg_dm_rst_l),
.clk(sb_free_clk)
);
rvdffs #(3) sbcs_error_reg (
.din(sbcs_sberror_din[2:0]),
.dout(sbcs_reg[14:12]),
.en(sbcs_sberror_wren),
.rst_l(dbg_dm_rst_l),
.clk(sb_free_clk)
);
assign sbcs_unaligned = ((sbcs_reg[19:17] == 3'b001) & sbaddress0_reg[0]) |
2022-05-10 21:06:26 +08:00
((sbcs_reg[19:17] == 3'b010) & (|sbaddress0_reg[1:0])) |
((sbcs_reg[19:17] == 3'b011) & (|sbaddress0_reg[2:0]));
2022-05-23 22:16:04 +08:00
assign sbcs_illegal_size = sbcs_reg[19]; // Anything bigger than 64 bits is illegal
2022-05-10 21:06:26 +08:00
2022-05-23 22:16:04 +08:00
assign sbaddress0_incr[3:0] = ({4{(sbcs_reg[19:17] == 3'h0)}} & 4'b0001) |
2022-05-10 21:06:26 +08:00
({4{(sbcs_reg[19:17] == 3'h1)}} & 4'b0010) |
({4{(sbcs_reg[19:17] == 3'h2)}} & 4'b0100) |
({4{(sbcs_reg[19:17] == 3'h3)}} & 4'b1000);
2022-05-23 22:16:04 +08:00
// sbdata
assign sbdata0_reg_wren0 = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h3c); // write data only when single read is 0
assign sbdata0_reg_wren1 = (sb_state == RSP_RD) & sb_state_en & ~sbcs_sberror_wren;
assign sbdata0_reg_wren = sbdata0_reg_wren0 | sbdata0_reg_wren1;
2022-05-10 21:06:26 +08:00
2022-05-23 22:16:04 +08:00
assign sbdata1_reg_wren0 = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h3d); // write data only when single read is 0;
assign sbdata1_reg_wren1 = (sb_state == RSP_RD) & sb_state_en & ~sbcs_sberror_wren;
assign sbdata1_reg_wren = sbdata1_reg_wren0 | sbdata1_reg_wren1;
2022-05-10 21:06:26 +08:00
2022-05-23 22:16:04 +08:00
assign sbdata0_din[31:0] = ({32{sbdata0_reg_wren0}} & dmi_reg_wdata[31:0]) |
2022-05-10 21:06:26 +08:00
({32{sbdata0_reg_wren1}} & sb_bus_rdata[31:0]);
2022-05-23 22:16:04 +08:00
assign sbdata1_din[31:0] = ({32{sbdata1_reg_wren0}} & dmi_reg_wdata[31:0]) |
2022-05-10 21:06:26 +08:00
({32{sbdata1_reg_wren1}} & sb_bus_rdata[63:32]);
2022-05-23 22:16:04 +08:00
rvdffe #(32) dbg_sbdata0_reg (
.*,
.din(sbdata0_din[31:0]),
.dout(sbdata0_reg[31:0]),
.en(sbdata0_reg_wren),
.rst_l(dbg_dm_rst_l)
);
rvdffe #(32) dbg_sbdata1_reg (
.*,
.din(sbdata1_din[31:0]),
.dout(sbdata1_reg[31:0]),
.en(sbdata1_reg_wren),
.rst_l(dbg_dm_rst_l)
);
// sbaddress
assign sbaddress0_reg_wren0 = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h39);
assign sbaddress0_reg_wren = sbaddress0_reg_wren0 | sbaddress0_reg_wren1;
assign sbaddress0_reg_din[31:0]= ({32{sbaddress0_reg_wren0}} & dmi_reg_wdata[31:0]) |
2022-05-10 21:06:26 +08:00
({32{sbaddress0_reg_wren1}} & (sbaddress0_reg[31:0] + {28'b0,sbaddress0_incr[3:0]}));
2022-05-23 22:16:04 +08:00
rvdffe #(32) dbg_sbaddress0_reg (
.*,
.din(sbaddress0_reg_din[31:0]),
.dout(sbaddress0_reg[31:0]),
.en(sbaddress0_reg_wren),
.rst_l(dbg_dm_rst_l)
);
assign sbreadonaddr_access = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h39) & sbcs_reg[20]; // if readonaddr is set the next command will start upon writing of addr0
assign sbreadondata_access = dmi_reg_en & ~dmi_reg_wr_en & (dmi_reg_addr == 7'h3c) & sbcs_reg[15]; // if readondata is set the next command will start upon reading of data0
assign sbdata0wr_access = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h3c); // write to sbdata0 will start write command to system bus
// memory mapped registers
// dmcontrol register has only 5 bits implemented. 31: haltreq, 30: resumereq, 28: ackhavereset, 1: ndmreset, 0: dmactive.
// rest all the bits are zeroed out
// dmactive flop is reset based on core rst_l, all other flops use dm_rst_l
assign dmcontrol_wren = (dmi_reg_addr == 7'h10) & dmi_reg_en & dmi_reg_wr_en;
assign dmcontrol_reg[29] = '0;
assign dmcontrol_reg[27:2] = '0;
assign resumereq = dmcontrol_reg[30] & ~dmcontrol_reg[31] & dmcontrol_wren_Q;
rvdffs #(4) dmcontrolff (
.din({dmi_reg_wdata[31:30], dmi_reg_wdata[28], dmi_reg_wdata[1]}),
.dout({dmcontrol_reg[31:30], dmcontrol_reg[28], dmcontrol_reg[1]}),
.en(dmcontrol_wren),
.rst_l(dbg_dm_rst_l),
.clk(dbg_free_clk)
);
rvdffs #(1) dmcontrol_dmactive_ff (
.din(dmi_reg_wdata[0]),
.dout(dmcontrol_reg[0]),
.en(dmcontrol_wren),
.rst_l(dbg_rst_l),
.clk(dbg_free_clk)
);
rvdff #(1) dmcontrol_wrenff (
.din (dmcontrol_wren),
.dout (dmcontrol_wren_Q),
.rst_l(dbg_dm_rst_l),
.clk (dbg_free_clk)
);
// dmstatus register bits that are implemented
// [19:18]-havereset,[17:16]-resume ack, [9:8]-halted, [3:0]-version
// rest all the bits are zeroed out
//assign dmstatus_wren = (dmi_reg_addr[31:0] == 32'h11) & dmi_reg_en;
assign dmstatus_reg[31:20] = '0;
assign dmstatus_reg[19:18] = {2{dmstatus_havereset}};
assign dmstatus_reg[15:14] = '0;
assign dmstatus_reg[7] = '1;
assign dmstatus_reg[6:4] = '0;
assign dmstatus_reg[17:16] = {2{dmstatus_resumeack}};
assign dmstatus_reg[13:12] = {2{dmstatus_unavail}};
assign dmstatus_reg[11:10] = {2{dmstatus_running}};
assign dmstatus_reg[9:8] = {2{dmstatus_halted}};
assign dmstatus_reg[3:0] = 4'h2;
assign dmstatus_resumeack_wren = ((dbg_state == RESUMING) & dec_tlu_resume_ack) | (dmstatus_resumeack & resumereq & dmstatus_halted);
assign dmstatus_resumeack_din = (dbg_state == RESUMING) & dec_tlu_resume_ack;
assign dmstatus_haveresetn_wren = (dmi_reg_addr == 7'h10) & dmi_reg_wdata[28] & dmi_reg_en & dmi_reg_wr_en & dmcontrol_reg[0]; // clear the havereset
assign dmstatus_havereset = ~dmstatus_haveresetn;
assign dmstatus_unavail = dmcontrol_reg[1] | ~rst_l_sync;
assign dmstatus_running = ~(dmstatus_unavail | dmstatus_halted);
rvdffs #(1) dmstatus_resumeack_reg (
.din(dmstatus_resumeack_din),
.dout(dmstatus_resumeack),
.en(dmstatus_resumeack_wren),
.rst_l(dbg_dm_rst_l),
.clk(dbg_free_clk)
);
rvdff #(1) dmstatus_halted_reg (
.din (dec_tlu_dbg_halted & ~dec_tlu_mpc_halted_only),
.dout (dmstatus_halted),
.rst_l(dbg_dm_rst_l),
.clk (dbg_free_clk)
);
rvdffs #(1) dmstatus_haveresetn_reg (
.din(1'b1),
.dout(dmstatus_haveresetn),
.en(dmstatus_haveresetn_wren),
.rst_l(rst_l),
.clk(dbg_free_clk)
);
// haltsum0 register
assign haltsum0_reg[31:1] = '0;
assign haltsum0_reg[0] = dmstatus_halted;
// abstractcs register
// bits implemted are [12] - busy and [10:8]= command error
assign abstractcs_reg[31:13] = '0;
assign abstractcs_reg[11] = '0;
assign abstractcs_reg[7:4] = '0;
assign abstractcs_reg[3:0] = 4'h2; // One data register
assign abstractcs_error_sel0 = abstractcs_reg[12] & ~(|abstractcs_reg[10:8]) & dmi_reg_en & ((dmi_reg_wr_en & ((dmi_reg_addr == 7'h16) | (dmi_reg_addr == 7'h17)) | (dmi_reg_addr == 7'h18)) |
2022-05-10 21:06:26 +08:00
(dmi_reg_addr == 7'h4) | (dmi_reg_addr == 7'h5));
2022-05-23 22:16:04 +08:00
assign abstractcs_error_sel1 = execute_command & ~(|abstractcs_reg[10:8]) &
2022-05-10 21:06:26 +08:00
((~((command_reg[31:24] == 8'b0) | (command_reg[31:24] == 8'h2))) | // Illegal command
2022-05-23 22:16:04 +08:00
(((command_reg[22:20] == 3'b011) | (command_reg[22])) & (command_reg[31:24] == 8'h2)) | // Illegal abstract memory size (can't be DW or higher)
((command_reg[22:20] != 3'b010) & ((command_reg[31:24] == 8'h0) & command_reg[17])) | // Illegal abstract reg size
((command_reg[31:24] == 8'h0) & command_reg[18])); //postexec for abstract register access
assign abstractcs_error_sel2 = ((core_dbg_cmd_done & core_dbg_cmd_fail) | // exception from core
(execute_command & (command_reg[31:24] == 8'h0) & // unimplemented regs
(((command_reg[15:12] == 4'h1) & (command_reg[11:5] != 0)) | (command_reg[15:13] != 0)))) & ~(|abstractcs_reg[10:8]);
assign abstractcs_error_sel3 = execute_command & (dbg_state != HALTED) & ~(|abstractcs_reg[10:8]);
assign abstractcs_error_sel4 = dbg_sb_bus_error & dbg_bus_clk_en & ~(|abstractcs_reg[10:8]);// sb bus error for abstract memory command
assign abstractcs_error_sel5 = execute_command & (command_reg[31:24] == 8'h2) & ~(|abstractcs_reg[10:8]) &
2022-05-10 21:06:26 +08:00
(((command_reg[22:20] == 3'b001) & data1_reg[0]) | ((command_reg[22:20] == 3'b010) & (|data1_reg[1:0]))); //Unaligned address for abstract memory
2022-05-23 22:16:04 +08:00
assign abstractcs_error_sel6 = (dmi_reg_addr == 7'h16) & dmi_reg_en & dmi_reg_wr_en;
assign abstractcs_error_din[2:0] = abstractcs_error_sel0 ? 3'b001 : // writing command or abstractcs while a command was executing. Or accessing data0
abstractcs_error_sel1 ? 3'b010 : // writing a illegal command type to cmd field of command
abstractcs_error_sel2 ? 3'b011 : // exception while running command
abstractcs_error_sel3 ? 3'b100 : // writing a comnand when not in the halted state
abstractcs_error_sel4 ? 3'b101 : // Bus error
abstractcs_error_sel5 ? 3'b111 : // unaligned or illegal size abstract memory command
abstractcs_error_sel6 ? (~dmi_reg_wdata[10:8] & abstractcs_reg[10:8]) : //W1C
abstractcs_reg[10:8]; //hold
rvdffs #(1) dmabstractcs_busy_reg (
.din(abstractcs_busy_din),
.dout(abstractcs_reg[12]),
.en(abstractcs_busy_wren),
.rst_l(dbg_dm_rst_l),
.clk(dbg_free_clk)
);
rvdff #(3) dmabstractcs_error_reg (
.din (abstractcs_error_din[2:0]),
.dout (abstractcs_reg[10:8]),
.rst_l(dbg_dm_rst_l),
.clk (dbg_free_clk)
);
// abstract auto reg
assign abstractauto_reg_wren = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h18) & ~abstractcs_reg[12];
rvdffs #(2) dbg_abstractauto_reg (
.*,
.din(dmi_reg_wdata[1:0]),
.dout(abstractauto_reg[1:0]),
.en(abstractauto_reg_wren),
.rst_l(dbg_dm_rst_l),
.clk(dbg_free_clk)
);
// command register - implemented all the bits in this register
// command[16] = 1: write, 0: read
assign execute_command_ns = command_wren |
2022-05-10 21:06:26 +08:00
(dmi_reg_en & ~abstractcs_reg[12] & (((dmi_reg_addr == 7'h4) & abstractauto_reg[0]) | ((dmi_reg_addr == 7'h5) & abstractauto_reg[1])));
2022-05-23 22:16:04 +08:00
assign command_wren = (dmi_reg_addr == 7'h17) & dmi_reg_en & dmi_reg_wr_en;
assign command_regno_wren = command_wren | ((command_reg[31:24] == 8'h0) & command_reg[19] & (dbg_state == CMD_DONE) & ~(|abstractcs_reg[10:8])); // aarpostincrement
assign command_postexec_din = (dmi_reg_wdata[31:24] == 8'h0) & dmi_reg_wdata[18];
assign command_transfer_din = (dmi_reg_wdata[31:24] == 8'h0) & dmi_reg_wdata[17];
assign command_din[31:16] = {
dmi_reg_wdata[31:24],
1'b0,
dmi_reg_wdata[22:19],
command_postexec_din,
command_transfer_din,
dmi_reg_wdata[16]
};
assign command_din[15:0] = command_wren ? dmi_reg_wdata[15:0] : dbg_cmd_next_addr[15:0];
rvdff #(1) execute_commandff (
.*,
.din (execute_command_ns),
.dout (execute_command),
.clk (dbg_free_clk),
.rst_l(dbg_dm_rst_l)
);
rvdffe #(16) dmcommand_reg (
.*,
.din(command_din[31:16]),
.dout(command_reg[31:16]),
.en(command_wren),
.rst_l(dbg_dm_rst_l)
);
rvdffe #(16) dmcommand_regno_reg (
.*,
.din(command_din[15:0]),
.dout(command_reg[15:0]),
.en(command_regno_wren),
.rst_l(dbg_dm_rst_l)
);
2022-05-10 21:06:26 +08:00
// data0 reg
2022-05-23 22:16:04 +08:00
assign data0_reg_wren0 = (dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h4) & (dbg_state == HALTED) & ~abstractcs_reg[12]);
assign data0_reg_wren1 = core_dbg_cmd_done & (dbg_state == CORE_CMD_WAIT) & ~command_reg[16];
assign data0_reg_wren = data0_reg_wren0 | data0_reg_wren1 | data0_reg_wren2;
2022-05-10 21:06:26 +08:00
2022-05-23 22:16:04 +08:00
assign data0_din[31:0] = ({32{data0_reg_wren0}} & dmi_reg_wdata[31:0]) |
2022-05-10 21:06:26 +08:00
({32{data0_reg_wren1}} & core_dbg_rddata[31:0]) |
({32{data0_reg_wren2}} & sb_bus_rdata[31:0]);
2022-05-23 22:16:04 +08:00
rvdffe #(32) dbg_data0_reg (
.*,
.din(data0_din[31:0]),
.dout(data0_reg[31:0]),
.en(data0_reg_wren),
.rst_l(dbg_dm_rst_l)
);
2022-05-10 21:06:26 +08:00
2022-05-23 22:16:04 +08:00
// data 1
assign data1_reg_wren0 = (dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h5) & (dbg_state == HALTED) & ~abstractcs_reg[12]);
assign data1_reg_wren1 = (dbg_state == CMD_DONE) & (command_reg[31:24] == 8'h2) & command_reg[19] & ~(|abstractcs_reg[10:8]); // aampostincrement
assign data1_reg_wren = data1_reg_wren0 | data1_reg_wren1;
2022-05-10 21:06:26 +08:00
2022-05-23 22:16:04 +08:00
assign data1_din[31:0] = ({32{data1_reg_wren0}} & dmi_reg_wdata[31:0]) |
2022-05-10 21:06:26 +08:00
({32{data1_reg_wren1}} & dbg_cmd_next_addr[31:0]);
2022-05-23 22:16:04 +08:00
rvdffe #(32) dbg_data1_reg (
.*,
.din(data1_din[31:0]),
.dout(data1_reg[31:0]),
.en(data1_reg_wren),
.rst_l(dbg_dm_rst_l)
);
rvdffs #(1) sb_abmem_cmd_doneff (
.din(sb_abmem_cmd_done_in),
.dout(sb_abmem_cmd_done),
.en(sb_abmem_cmd_done_en),
.clk(dbg_free_clk),
.rst_l(dbg_dm_rst_l),
.*
);
rvdffs #(1) sb_abmem_data_doneff (
.din(sb_abmem_data_done_in),
.dout(sb_abmem_data_done),
.en(sb_abmem_data_done_en),
.clk(dbg_free_clk),
.rst_l(dbg_dm_rst_l),
.*
);
// FSM to control the debug mode entry, command send/recieve, and Resume flow.
always_comb begin
dbg_nxtstate = IDLE;
dbg_state_en = 1'b0;
abstractcs_busy_wren = 1'b0;
abstractcs_busy_din = 1'b0;
dbg_halt_req = dmcontrol_wren_Q & dmcontrol_reg[31]; // single pulse output to the core. Need to drive every time this register is written since core might be halted due to MPC
dbg_resume_req = 1'b0; // single pulse output to the core
dbg_sb_bus_error = 1'b0;
data0_reg_wren2 = 1'b0;
sb_abmem_cmd_done_in = 1'b0;
sb_abmem_data_done_in = 1'b0;
sb_abmem_cmd_done_en = 1'b0;
sb_abmem_data_done_en = 1'b0;
case (dbg_state)
IDLE: begin
dbg_nxtstate = (dmstatus_reg[9] | dec_tlu_mpc_halted_only) ? HALTED : HALTING; // initiate the halt command to the core
dbg_state_en = dmcontrol_reg[31] | dmstatus_reg[9] | dec_tlu_mpc_halted_only; // when the jtag writes the halt bit in the DM register, OR when the status indicates H
dbg_halt_req = dmcontrol_reg[31]; // only when jtag has written the halt_req bit in the control. Removed debug mode qualification during MPC changes
end
HALTING: begin
dbg_nxtstate = HALTED; // Goto HALTED once the core sends an ACK
dbg_state_en = dmstatus_reg[9] | dec_tlu_mpc_halted_only; // core indicates halted
end
HALTED: begin
// wait for halted to go away before send to resume. Else start of new command
dbg_nxtstate = dmstatus_reg[9] ? (resumereq ? RESUMING : (((command_reg[31:24] == 8'h2) & abmem_addr_external) ? SB_CMD_START : CORE_CMD_START)) :
2022-05-10 21:06:26 +08:00
(dmcontrol_reg[31] ? HALTING : IDLE); // This is MPC halted case
2022-05-23 22:16:04 +08:00
dbg_state_en = (dmstatus_reg[9] & resumereq) | execute_command | ~(dmstatus_reg[9] | dec_tlu_mpc_halted_only);
abstractcs_busy_wren = dbg_state_en & ((dbg_nxtstate == CORE_CMD_START) | (dbg_nxtstate == SB_CMD_START)); // write busy when a new command was written by jtag
abstractcs_busy_din = 1'b1;
dbg_resume_req = dbg_state_en & (dbg_nxtstate == RESUMING); // single cycle pulse to core if resuming
end
CORE_CMD_START: begin
// Don't execute the command if cmderror or transfer=0 for abstract register access
dbg_nxtstate = ((|abstractcs_reg[10:8]) | ((command_reg[31:24] == 8'h0) & ~command_reg[17])) ? CMD_DONE : CORE_CMD_WAIT; // new command sent to the core
dbg_state_en = dbg_cmd_valid | (|abstractcs_reg[10:8]) | ((command_reg[31:24] == 8'h0) & ~command_reg[17]);
end
CORE_CMD_WAIT: begin
dbg_nxtstate = CMD_DONE;
dbg_state_en = core_dbg_cmd_done; // go to done state for one cycle after completing current command
end
SB_CMD_START: begin
dbg_nxtstate = (|abstractcs_reg[10:8]) ? CMD_DONE : SB_CMD_SEND;
dbg_state_en = (dbg_bus_clk_en & ~sb_cmd_pending) | (|abstractcs_reg[10:8]);
end
SB_CMD_SEND: begin
sb_abmem_cmd_done_in = 1'b1;
sb_abmem_data_done_in = 1'b1;
sb_abmem_cmd_done_en = (sb_bus_cmd_read | sb_bus_cmd_write_addr) & dbg_bus_clk_en;
sb_abmem_data_done_en = (sb_bus_cmd_read | sb_bus_cmd_write_data) & dbg_bus_clk_en;
dbg_nxtstate = SB_CMD_RESP;
dbg_state_en = (sb_abmem_cmd_done | sb_abmem_cmd_done_en) & (sb_abmem_data_done | sb_abmem_data_done_en) & dbg_bus_clk_en;
end
SB_CMD_RESP: begin
dbg_nxtstate = CMD_DONE;
dbg_state_en = (sb_bus_rsp_read | sb_bus_rsp_write) & dbg_bus_clk_en;
dbg_sb_bus_error = (sb_bus_rsp_read | sb_bus_rsp_write) & sb_bus_rsp_error & dbg_bus_clk_en;
data0_reg_wren2 = dbg_state_en & ~sb_abmem_cmd_write & ~dbg_sb_bus_error;
end
CMD_DONE: begin
dbg_nxtstate = HALTED;
dbg_state_en = 1'b1;
abstractcs_busy_wren = dbg_state_en; // remove the busy bit from the abstracts ( bit 12 )
abstractcs_busy_din = 1'b0;
sb_abmem_cmd_done_in = 1'b0;
sb_abmem_data_done_in = 1'b0;
sb_abmem_cmd_done_en = 1'b1;
sb_abmem_data_done_en = 1'b1;
end
RESUMING: begin
dbg_nxtstate = IDLE;
dbg_state_en = dmstatus_reg[17]; // resume ack has been updated in the dmstatus register
end
default: begin
dbg_nxtstate = IDLE;
dbg_state_en = 1'b0;
abstractcs_busy_wren = 1'b0;
abstractcs_busy_din = 1'b0;
dbg_halt_req = 1'b0; // single pulse output to the core
dbg_resume_req = 1'b0; // single pulse output to the core
dbg_sb_bus_error = 1'b0;
data0_reg_wren2 = 1'b0;
sb_abmem_cmd_done_in = 1'b0;
sb_abmem_data_done_in = 1'b0;
sb_abmem_cmd_done_en = 1'b0;
sb_abmem_data_done_en = 1'b0;
end
endcase
end // always_comb begin
assign dmi_reg_rdata_din[31:0] = ({32{dmi_reg_addr == 7'h4}} & data0_reg[31:0]) |
2022-05-10 21:06:26 +08:00
({32{dmi_reg_addr == 7'h5}} & data1_reg[31:0]) |
({32{dmi_reg_addr == 7'h10}} & {2'b0,dmcontrol_reg[29],1'b0,dmcontrol_reg[27:0]}) | // Read0 to Write only bits
({32{dmi_reg_addr == 7'h11}} & dmstatus_reg[31:0]) |
({32{dmi_reg_addr == 7'h16}} & abstractcs_reg[31:0]) |
({32{dmi_reg_addr == 7'h17}} & command_reg[31:0]) |
({32{dmi_reg_addr == 7'h18}} & {30'h0,abstractauto_reg[1:0]}) |
({32{dmi_reg_addr == 7'h40}} & haltsum0_reg[31:0]) |
({32{dmi_reg_addr == 7'h38}} & sbcs_reg[31:0]) |
({32{dmi_reg_addr == 7'h39}} & sbaddress0_reg[31:0]) |
({32{dmi_reg_addr == 7'h3c}} & sbdata0_reg[31:0]) |
({32{dmi_reg_addr == 7'h3d}} & sbdata1_reg[31:0]);
2022-05-23 22:16:04 +08:00
rvdffs #($bits(
state_t
)) dbg_state_reg (
.din(dbg_nxtstate),
.dout({dbg_state}),
.en(dbg_state_en),
.rst_l(dbg_dm_rst_l & rst_l),
.clk(dbg_free_clk)
);
rvdffe #(32) dmi_rddata_reg (
.din(dmi_reg_rdata_din[31:0]),
.dout(dmi_reg_rdata[31:0]),
.en(dmi_reg_en),
.rst_l(dbg_dm_rst_l),
.clk(clk),
.*
);
assign abmem_addr[31:0] = data1_reg[31:0];
assign abmem_addr_core_local = (abmem_addr_in_dccm_region | abmem_addr_in_iccm_region | abmem_addr_in_pic_region);
assign abmem_addr_external = ~abmem_addr_core_local;
assign abmem_addr_in_dccm_region = (abmem_addr[31:28] == pt.DCCM_REGION) & pt.DCCM_ENABLE;
assign abmem_addr_in_iccm_region = (abmem_addr[31:28] == pt.ICCM_REGION) & pt.ICCM_ENABLE;
assign abmem_addr_in_pic_region = (abmem_addr[31:28] == pt.PIC_REGION);
// interface for the core
assign dbg_cmd_addr[31:0] = (command_reg[31:24] == 8'h2) ? data1_reg[31:0] : {20'b0, command_reg[11:0]};
assign dbg_cmd_wrdata[31:0] = data0_reg[31:0];
assign dbg_cmd_valid = (dbg_state == CORE_CMD_START) & ~((|abstractcs_reg[10:8]) | ((command_reg[31:24] == 8'h0) & ~command_reg[17]) | ((command_reg[31:24] == 8'h2) & abmem_addr_external)) & dma_dbg_ready;
assign dbg_cmd_write = command_reg[16];
assign dbg_cmd_type[1:0] = (command_reg[31:24] == 8'h2) ? 2'b10 : {1'b0, (command_reg[15:12] == 4'b0)};
assign dbg_cmd_size[1:0] = command_reg[21:20];
assign dbg_cmd_addr_incr[3:0] = (command_reg[31:24] == 8'h2) ? (4'h1 << sb_abmem_cmd_size[1:0]) : 4'h1;
assign dbg_cmd_curr_addr[31:0] = (command_reg[31:24] == 8'h2) ? data1_reg[31:0] : {16'b0, command_reg[15:0]};
assign dbg_cmd_next_addr[31:0] = dbg_cmd_curr_addr[31:0] + {28'h0, dbg_cmd_addr_incr[3:0]};
// Ask DMA to stop taking bus trxns since debug request is done
assign dbg_dma_bubble = ((dbg_state == CORE_CMD_START) & ~(|abstractcs_reg[10:8])) | (dbg_state == CORE_CMD_WAIT);
assign sb_cmd_pending = (sb_state == CMD_RD) | (sb_state == CMD_WR) | (sb_state == CMD_WR_ADDR) | (sb_state == CMD_WR_DATA) | (sb_state == RSP_RD) | (sb_state == RSP_WR);
assign sb_abmem_cmd_pending = (dbg_state == SB_CMD_START) | (dbg_state == SB_CMD_SEND) | (dbg_state== SB_CMD_RESP);
2022-05-10 21:06:26 +08:00
// system bus FSM
always_comb begin
2022-05-23 22:16:04 +08:00
sb_nxtstate = SBIDLE;
sb_state_en = 1'b0;
sbcs_sbbusy_wren = 1'b0;
sbcs_sbbusy_din = 1'b0;
sbcs_sberror_wren = 1'b0;
sbcs_sberror_din[2:0] = 3'b0;
sbaddress0_reg_wren1 = 1'b0;
case (sb_state)
SBIDLE: begin
sb_nxtstate = sbdata0wr_access ? WAIT_WR : WAIT_RD;
sb_state_en = (sbdata0wr_access | sbreadondata_access | sbreadonaddr_access) & ~(|sbcs_reg[14:12]) & ~sbcs_reg[22];
sbcs_sbbusy_wren = sb_state_en; // set the single read bit if it is a singlread command
sbcs_sbbusy_din = 1'b1;
sbcs_sberror_wren = sbcs_wren & (|dmi_reg_wdata[14:12]); // write to clear the error bits
sbcs_sberror_din[2:0] = ~dmi_reg_wdata[14:12] & sbcs_reg[14:12];
end
WAIT_RD: begin
sb_nxtstate = (sbcs_unaligned | sbcs_illegal_size) ? DONE : CMD_RD;
sb_state_en = (dbg_bus_clk_en & ~sb_abmem_cmd_pending) | sbcs_unaligned | sbcs_illegal_size;
sbcs_sberror_wren = sbcs_unaligned | sbcs_illegal_size;
sbcs_sberror_din[2:0] = sbcs_unaligned ? 3'b011 : 3'b100;
end
WAIT_WR: begin
sb_nxtstate = (sbcs_unaligned | sbcs_illegal_size) ? DONE : CMD_WR;
sb_state_en = (dbg_bus_clk_en & ~sb_abmem_cmd_pending) | sbcs_unaligned | sbcs_illegal_size;
sbcs_sberror_wren = sbcs_unaligned | sbcs_illegal_size;
sbcs_sberror_din[2:0] = sbcs_unaligned ? 3'b011 : 3'b100;
end
CMD_RD: begin
sb_nxtstate = RSP_RD;
sb_state_en = sb_bus_cmd_read & dbg_bus_clk_en;
end
CMD_WR: begin
sb_nxtstate = (sb_bus_cmd_write_addr & sb_bus_cmd_write_data) ? RSP_WR : (sb_bus_cmd_write_data ? CMD_WR_ADDR : CMD_WR_DATA);
sb_state_en = (sb_bus_cmd_write_addr | sb_bus_cmd_write_data) & dbg_bus_clk_en;
end
CMD_WR_ADDR: begin
sb_nxtstate = RSP_WR;
sb_state_en = sb_bus_cmd_write_addr & dbg_bus_clk_en;
end
CMD_WR_DATA: begin
sb_nxtstate = RSP_WR;
sb_state_en = sb_bus_cmd_write_data & dbg_bus_clk_en;
end
RSP_RD: begin
sb_nxtstate = DONE;
sb_state_en = sb_bus_rsp_read & dbg_bus_clk_en;
sbcs_sberror_wren = sb_state_en & sb_bus_rsp_error;
sbcs_sberror_din[2:0] = 3'b010;
end
RSP_WR: begin
sb_nxtstate = DONE;
sb_state_en = sb_bus_rsp_write & dbg_bus_clk_en;
sbcs_sberror_wren = sb_state_en & sb_bus_rsp_error;
sbcs_sberror_din[2:0] = 3'b010;
end
DONE: begin
sb_nxtstate = SBIDLE;
sb_state_en = 1'b1;
sbcs_sbbusy_wren = 1'b1; // reset the single read
sbcs_sbbusy_din = 1'b0;
sbaddress0_reg_wren1 = sbcs_reg[16] & (sbcs_reg[14:12] == 3'b0); // auto increment was set and no error. Update to new address after completing the current command
end
default: begin
sb_nxtstate = SBIDLE;
sb_state_en = 1'b0;
sbcs_sbbusy_wren = 1'b0;
sbcs_sbbusy_din = 1'b0;
sbcs_sberror_wren = 1'b0;
sbcs_sberror_din[2:0] = 3'b0;
sbaddress0_reg_wren1 = 1'b0;
end
endcase
end // always_comb begin
rvdffs #($bits(
sb_state_t
)) sb_state_reg (
.din(sb_nxtstate),
.dout({sb_state}),
.en(sb_state_en),
.rst_l(dbg_dm_rst_l),
.clk(sb_free_clk)
);
assign sb_abmem_cmd_write = command_reg[16];
assign sb_abmem_cmd_size[2:0] = {1'b0, command_reg[21:20]};
assign sb_abmem_cmd_addr[31:0] = abmem_addr[31:0];
assign sb_abmem_cmd_wdata[31:0] = data0_reg[31:0];
assign sb_cmd_size[2:0] = sbcs_reg[19:17];
assign sb_cmd_wdata[63:0] = {sbdata1_reg[31:0], sbdata0_reg[31:0]};
assign sb_cmd_addr[31:0] = sbaddress0_reg[31:0];
assign sb_abmem_cmd_awvalid = (dbg_state == SB_CMD_SEND) & sb_abmem_cmd_write & ~sb_abmem_cmd_done;
assign sb_abmem_cmd_wvalid = (dbg_state == SB_CMD_SEND) & sb_abmem_cmd_write & ~sb_abmem_data_done;
assign sb_abmem_cmd_arvalid = (dbg_state == SB_CMD_SEND) & ~sb_abmem_cmd_write & ~sb_abmem_cmd_done & ~sb_abmem_data_done;
assign sb_abmem_read_pend = (dbg_state == SB_CMD_RESP) & ~sb_abmem_cmd_write;
assign sb_cmd_awvalid = ((sb_state == CMD_WR) | (sb_state == CMD_WR_ADDR));
assign sb_cmd_wvalid = ((sb_state == CMD_WR) | (sb_state == CMD_WR_DATA));
assign sb_cmd_arvalid = (sb_state == CMD_RD);
assign sb_read_pend = (sb_state == RSP_RD);
assign sb_axi_size[2:0] = (sb_abmem_cmd_awvalid | sb_abmem_cmd_wvalid | sb_abmem_cmd_arvalid | sb_abmem_read_pend) ? sb_abmem_cmd_size[2:0] : sb_cmd_size[2:0];
assign sb_axi_addr[31:0] = (sb_abmem_cmd_awvalid | sb_abmem_cmd_wvalid | sb_abmem_cmd_arvalid | sb_abmem_read_pend) ? sb_abmem_cmd_addr[31:0] : sb_cmd_addr[31:0];
assign sb_axi_wrdata[63:0] = (sb_abmem_cmd_awvalid | sb_abmem_cmd_wvalid) ? {2{sb_abmem_cmd_wdata[31:0]}} : sb_cmd_wdata[63:0];
// Generic bus response signals
assign sb_bus_cmd_read = sb_axi_arvalid & sb_axi_arready;
assign sb_bus_cmd_write_addr = sb_axi_awvalid & sb_axi_awready;
assign sb_bus_cmd_write_data = sb_axi_wvalid & sb_axi_wready;
assign sb_bus_rsp_read = sb_axi_rvalid & sb_axi_rready;
assign sb_bus_rsp_write = sb_axi_bvalid & sb_axi_bready;
assign sb_bus_rsp_error = (sb_bus_rsp_read & (|(sb_axi_rresp[1:0]))) | (sb_bus_rsp_write & (|(sb_axi_bresp[1:0])));
// AXI Request signals
assign sb_axi_awvalid = sb_abmem_cmd_awvalid | sb_cmd_awvalid;
assign sb_axi_awaddr[31:0] = sb_axi_addr[31:0];
assign sb_axi_awid[pt.SB_BUS_TAG-1:0] = '0;
assign sb_axi_awsize[2:0] = sb_axi_size[2:0];
assign sb_axi_awprot[2:0] = 3'b001;
assign sb_axi_awcache[3:0] = 4'b1111;
assign sb_axi_awregion[3:0] = sb_axi_addr[31:28];
assign sb_axi_awlen[7:0] = '0;
assign sb_axi_awburst[1:0] = 2'b01;
assign sb_axi_awqos[3:0] = '0;
assign sb_axi_awlock = '0;
assign sb_axi_wvalid = sb_abmem_cmd_wvalid | sb_cmd_wvalid;
assign sb_axi_wdata[63:0] = ({64{(sb_axi_size[2:0] == 3'h0)}} & {8{sb_axi_wrdata[7:0]}}) |
2022-05-10 21:06:26 +08:00
({64{(sb_axi_size[2:0] == 3'h1)}} & {4{sb_axi_wrdata[15:0]}}) |
({64{(sb_axi_size[2:0] == 3'h2)}} & {2{sb_axi_wrdata[31:0]}}) |
({64{(sb_axi_size[2:0] == 3'h3)}} & {sb_axi_wrdata[63:0]});
2022-05-23 22:16:04 +08:00
assign sb_axi_wstrb[7:0] = ({8{(sb_axi_size[2:0] == 3'h0)}} & (8'h1 << sb_axi_addr[2:0])) |
2022-05-10 21:06:26 +08:00
({8{(sb_axi_size[2:0] == 3'h1)}} & (8'h3 << {sb_axi_addr[2:1],1'b0})) |
({8{(sb_axi_size[2:0] == 3'h2)}} & (8'hf << {sb_axi_addr[2],2'b0})) |
({8{(sb_axi_size[2:0] == 3'h3)}} & 8'hff);
2022-05-23 22:16:04 +08:00
assign sb_axi_wlast = '1;
assign sb_axi_arvalid = sb_abmem_cmd_arvalid | sb_cmd_arvalid;
assign sb_axi_araddr[31:0] = sb_axi_addr[31:0];
assign sb_axi_arid[pt.SB_BUS_TAG-1:0] = '0;
assign sb_axi_arsize[2:0] = sb_axi_size[2:0];
assign sb_axi_arprot[2:0] = 3'b001;
assign sb_axi_arcache[3:0] = 4'b0;
assign sb_axi_arregion[3:0] = sb_axi_addr[31:28];
assign sb_axi_arlen[7:0] = '0;
assign sb_axi_arburst[1:0] = 2'b01;
assign sb_axi_arqos[3:0] = '0;
assign sb_axi_arlock = '0;
// AXI Response signals
assign sb_axi_bready = 1'b1;
assign sb_axi_rready = 1'b1;
assign sb_bus_rdata[63:0] = ({64{sb_axi_size == 3'h0}} & ((sb_axi_rdata[63:0] >> 8*sb_axi_addr[2:0]) & 64'hff)) |
2022-05-10 21:06:26 +08:00
({64{sb_axi_size == 3'h1}} & ((sb_axi_rdata[63:0] >> 16*sb_axi_addr[2:1]) & 64'hffff)) |
({64{sb_axi_size == 3'h2}} & ((sb_axi_rdata[63:0] >> 32*sb_axi_addr[2]) & 64'hffff_ffff)) |
({64{sb_axi_size == 3'h3}} & sb_axi_rdata[63:0]);
endmodule