
Getting Started with ECP5 FPGAs on
the Colorlight i5 FPGA Development
Board
Jan 22, 2021

Introduction
The Colorlight i5 Module
Features of the Muse Lab Development Board
First Impressions
Design Documentation
From Unboxing to Blinky
Programming a Bitstream into SPI flash
Other Demo Bitstreams
From Verilog to Bitstream
Using the Board for Your Own Projects
Conclusion
References

Introduction
There are hundreds of FPGA development boards out there, and I don’t dare to count but I
must own a considerable fraction of them. Most of these are designed deliberately for
development purposes, but a few are not, and yet they can sometimes be a good match.

One board that falls in this category is the Colorlight i5.

Electronics etc... About

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 1/24

https://www.colorlight-led.com/product/colorlight-i5-led-display-receiver-card.html
https://tomverbeure.github.io/
https://tomverbeure.github.io/about/

Like other members of the Colorlight family (the Colorlight 5A-75B comes to mind), the i5 is
‘real’ product that is designed for one specific purpose: it is a controller for large LED video
panels. And that’s a huge plus, because in FPGA land, high volume means low cost, usually
much lower than buying individual components on Digikey or Mouser.

The Colorlight i5 is especially attractive because it’s a plug-in card, with a reappropriated
DDR SODIMM connector. Even better is that nothing about this module seems to be tailored
specifically for LED panels. Unlike the 5A-75B, there are no unidirectional 3V3 to 5V level
shifters: FPGA GPIO pins are routed straight to the SODIMM connector and can be used any
way you want: input or output, LVCMOS or LVDS or any configuration that’s supported by the
FPGA.

The Colorlight i5 uses a Lattice ECP5U-25, an FPGA that’s supported by the Yosys/NextPNR
open source tool flow, an extra bonus. The board is also supported by recent versions of
Icestudio.

That said, there’s still a hurdle to using this board as development platform: you need a way
to power it, there are no easy usable GPIO connectors (such as PMOD connectors), and while
are easily accessible test JTAG points to program the FPGA, you still need an external JTAG
programmer and solder a bunch of wires to make things work.

Or…

you could go to the AliExpress webstore of Muse Lab and buy their Colorlight i5
development board.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 2/24

https://github.com/q3k/chubby75
https://icestudio.io/#
https://www.aliexpress.com/item/1005001686186007.html
https://www.muselab-tech.com/

Muse Lab also sells a number of other interesting hobby FPGA boards, such as the ICE40
UP5K based iCESugar, but the ECP5 FPGA on Colorlight i5 has a much larger capacity, so I
bought their module + development board combo for $50 and gave it a try.

The Colorlight i5 Module
Skip to From Unboxing to Blinky if you want to get your hands dirty ASAP.

Let’s first go over characterstics of the module itself:

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 3/24

https://www.aliexpress.com/item/4001201771358.html

Low Cost: $30 and up

I’ve seen these modules for $18.50, but with a $25 shipping fee, which makes it only
attractive if you’re buying at least 3. For $35, you can get them with free shipping on
AliExpress. That’s still a fantastic deal for what you get.

Lattice ECP5 LFE5U-25F FPGA

Specifications:

24K LUTs
56x sysMEM block RAMs (of 18Kb each), good for up to 126KByte of on-chip RAM
194Kb of distributed RAM
28x DSPs with 18x18 multiplier and 36-bit accumulator
2 PLLs, 2 DLLs
0 SERDES
381 caBGA package

The -25 version is one of the smaller versions in the ECP5 family, but it’s still enough for
many applications. You can comfortably fit a VexRiscv-based Linux SOC in there.

EtronTech EM638325-6H 2M x 32bit SDRAM, 166MHz

Single data rate SDRAM is ancient and slow now, but sufficient for most hobby projects.
It’s also easier to use because there’s usually no trickery required with complex PLL/DLL
configurations.

2x Broadcom B50612D 1Gb Ethernet Transceivers

That’s right, not one but two. You could make your own firewall with this thing.

The PHYs are using an RGMII MAC interface.

The module only contains the transceivers, not the Ethernet transformers or RJ45
connectors. The 2x 4 differentials pairs are routed to the SODIMM pins.

Check out this Ethernet expansion board by Kazumoto Kojima:

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 4/24

https://github.com/kazkojima/colorlight-i5-tips#ethernet
https://twitter.com/1gkojima/status/1340430734444523521/photo/1

GD25B16C 16Mbit Quad SPI Serial Flash

According to the Lattice ECP5 sysCONFIG Usage Guide, the FPGA has a maximum
uncompressed bitstream size of 5.42Mb. That leaves more than 11Mb or ~1.4MByte for
user applications.

25MHz Oscillator

The Ethernet transceivers require a 25MHz oscillator. It also goes to the FPGA as its only
external clock input.

2 LEDs

A red LED seems to be connected to power and is always on, but the green LED is
controlled by the FPGA: a strict requirement to get that blinky going!

JTAG Interface

4 JTAG test points are not marked as such but they are easy to solder and accessible.

3x Mystery CD4051B 8 Channel Analog Multiplexer/Demultiplexer

These are only present on V7.0 of the board, not on V6.0. Its functionality hasn’t been
reverse engineered yet, but some of the demultiplexed ports are going to the SODIMM
pins.

DDR-SODIMM Connector

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 5/24

http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/EH/TN1260.pdf

3V3 to 6V power rail

There are voltage regulators on the module, but there are no pins back to the
connector with regulated voltage.

2x 4 differential Ethernet pairs
106x general purpose GPIO pins
2 mystery RCV_BK1 / RCV_BK2 pins

These have something to do with receiver backup power. Unknown how they are
connected on the module.

21 mystery pins

Related to the 8 channel analog multiplexers.
A heat sink

Not exactly a heavy duty one, but a piece of metal that squeezes against the FPGA and
the two Ethernet transceivers. Much better than nothing!

The heat sink is pretty easy to remove without damaging the board.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 6/24

There’s a lot to work with here. What’s even better is the potential for future upgrades:
Colorlight has i6, i9, and i9+ modules with the same SODIMM pinout as the i5, but with
larger FPGAs: the i9 board has a Lattice ECP5-45. The i9+ a Xilinx Artix A50T.

For the i5 board, V6.0 and V7.0 are pinout compatible too, with the exception of the mystery
pins.

Features of the Muse Lab Development Board
As I wrote earlier, the development board can be bought on AliExpress, but only as a
package deal: $50 for the development board and the i5 module, with free shipping.

It has the following features:

DDR-SODIMM socket for the i5 module
1x 30-pin connector for Ethernet (purple)

This connector has the 2x 4 differential Ethernet pairs.

4x 30-pin connectors for generic GPIOs (yellow)

Each connector has 20 GPIOs, ground, 3V3, and 5V pins. The pins are smartly organized
so that the connector is also compatible with 2 side-by-side PMOD connectors.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 7/24

https://www.aliexpress.com/item/1005001686186007.html

In this case, the center pins can’t be used and the number of usable GPIOs per 30-pin
connector drops to 16, 8 for each PMOD.
1x 30-pin mixed-use connector for generic GPIOs + special functions (orange)

Just like the 4 earlier connectors, there are 20 GPIOs on this connector, in the same
configuration, but 6 of the GPIOs have been assigned a special meaning: UART and SPI.

The UART and SPI pins are also routed to the microcontroller to be used as a potential
FPGA debug console, and, presumably to progam the SPI flash on the board.

As I write this, the MCU doesn’t use the SPI pins, so it’s something that could be used, in
theory, for data transfers between the FPGA and MCU (and then the host PC) at higher
rates than the UART. But this would obviously require custom STM32 firmware.

HDMI connector - video out only

This one is a surprise, since the FPGA on the module does not support high speed
SERDES IOs. Instead, the pins are connected to generic IOs that can be configured as
differential pairs inside the FPGA.

I doubt that these IOs meet the strict electrical requirements that are set by the HDMI
standard specification, but meeting these requirements is not necessary to drive an
image that can be decoded by most monitors.

Unfortunately, the I2C, HOTPLUG and CEC pins of the HDMI connector are not
connected. The lack of HOTPLUG makes it impossible to use the HDMI connector for
video input.

USB C Port

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 8/24

A USB C port is used to power the board, to program the FPGA, and to send FPGA UART
console traffic from and to a host PC.
STM32F103C8T6 microcontroller (MCU)

This STM32 MCU is identical to the one used on the dirt cheap and popular Blue Pill
development boards.

The MCU on this development board is used as programming and debug interface only.
On one side, it has a USB 1.1 interface to connect to a host PC. On the other, it controls
JTAG, UART, and SPI pins to the Colorlight module. It also controls 2 LEDs.

The user is not supposed to reflash the MCU with custom firmware, but if you’re so
inclined, the SWD pins to do so are located underneath the USB connector (on the other
side of the PCB.) You’d need one of those STLink programming dongles that I wrote
about a couple of years ago. If you even need to reflash the STM32 firmware to it
original stage, you can find the binary image here.

USB 5V -> 3.3V voltage regulator

An AMS1117-3.3V that’s used to convert the USB 5V to 3V3 to power the MCU and the
3v3 pins of the PMOD ports, but NOT the Colorlight module (which is powered by USB
5V rail and has its own voltage regulators.)

2 LEDs

Not to be confused with the 2 bright LEDs on the module itself, two tiny and faint LEDs
are controlled by the MCU. The red LED flickers when there’s USB traffic. A blue LED
seems to be always on and is hidden entirely underneath the module.

Power Button

When pressed, this button interrupts power to Colorlight module, but not to the MCU. If
you want to power off the MCU, you must unplug the USB cable.

JTAG Pogo Pins

While the i5 module has easy accessible JTAG test points, they are not connected to the
SODIMM connector. The development board makes the connection with the test points
with 4 pogo pins. It’s an elegant solution that removes the need for any soldering.

First Impressions
The package arrived with the i5 module (V7.0), the development board, a USB C cable, and 6
30-pin connectors that you need to solder yourself.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 9/24

https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html
https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html
https://tomverbeure.github.io/2018/03/22/stlink-blue-pill-stm32l4xx-debug.html#stlink-dongle
https://tomverbeure.github.io/2018/03/22/stlink-blue-pill-stm32l4xx-debug.html#stlink-dongle
https://github.com/wuxx/Colorlight-FPGA-Projects/blob/master/firmware/flash_image_20201029.bin

I’m not well qualified to judge the quality of the PCB, but it looks well made to me.

After inserting the 30-pin connectors into the PCB (it’s a bit of a hassle that requires wiggling
slightly bent pins in the right hole), I noticed a minor issue: my HDMI cable doesn’t fit
between the 2 30-pin connectors that surround the HDMI connector. As a result, the cable
can’t be plugged in completely:

You need a HDMI cable with a narrow connector to make things work, or don’t solder
connectors P2 and P3, which is what I did.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 10/24

The box doesn’t contain any documentation, not even a leaflet with a URL. You have to make
do with Google or a link on the AliExpress product page to a GitHub repo.

Without further instructions, I plugged the USB cable into the board and my PC, some LEDs
came up and I heard a little sound: my PC told me that it had seen a new “DAPLINK” USB
drive. So far so good!

I didn’t find any use of this USB drive. It’s supposed to enable flashing a binary through simple
drag-and-drop, but that functionality doesn’t work for this board.

Design Documentation
As I write this, there are 2 main sources of information about the development board:

Colorlight-FPGA-Projects

A GitHub repository that’s maintained by the creator of the board. Let’s call this the
official board documentation.

The repo covers the following topics:

a Getting Started document
pin assignment of FPGA IOs
schematic of the development board
datasheets of the module components and more
source code of demo designs and their precompiled bitstreams
tools to program and flash the FPGA

The demo designs borrow heavily from Radiona’s ULX3S FPGA development board. In
many cases, source code is a straight copy with just FPGA pin assignment changed.

The same is true for the tools directory (for example, it contains ujprog which stands
for “ULX3S JTAG programmer”). I won’t be using any of these tools, however, because I
found a better option using ecpdap . See below.

Colorlight i5 Tips

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 11/24

https://github.com/wuxx/Colorlight-FPGA-Projects
https://github.com/wuxx/Colorlight-FPGA-Projects
https://github.com/wuxx/Colorlight-FPGA-Projects/blob/master/get-start.md
https://github.com/wuxx/Colorlight-FPGA-Projects#component
https://github.com/wuxx/Colorlight-FPGA-Projects/tree/master/schematic
https://github.com/wuxx/Colorlight-FPGA-Projects/tree/master/doc
https://github.com/wuxx/Colorlight-FPGA-Projects/tree/master/src/i5
https://github.com/wuxx/Colorlight-FPGA-Projects/tree/master/demo/i5
https://github.com/wuxx/Colorlight-FPGA-Projects/tree/master/tools
https://radiona.org/ulx3s/
https://github.com/kazkojima/colorlight-i5-tips

A non-official repo that covers a variety of topics. From instruction on how to unlock the
SPI flash (I’ll cover that part later), to adding an Ethernet expansion board, to running
Linux on a VexRiscv based soft core CPU on the FPGA.

I’ve reverse engineered and brought up a number of FPGA boards that didn’t have any
documentation at all, so getting a Colorlight i5 to work with at least some documentation
wasn’t an issue, but it’d be a challenge for a beginner or somebody less experienced.

What follows are my notes on getting from unboxing to running an LED blinky, with all steps
explained along the way.

From Unboxing to Blinky
The normal sequence of things is to go from Verilog to synthesis to place-and-route to
loading a bitstream.

However, since the official GitHub repo already contains demos with prebaked bitstreams, I
will start with loading one of those first.

I’m assuming you’re using a Linux system. I’m running Ubuntu 18.04.

The official GitHub repo suggests using OpenOCD and their own tool dapprog to load
bitstreams and program the SPI flash. I’m using Adam Greig’s ecpdap instead: it has more
features, it’s easier to use, and it’s faster.

Step 1: Clone the GitHub repo

git clone https://github.com/wuxx/Colorlight-FPGA-Projects.git

Step 2: Download ecpdap

ecpdap is a tool that makes your PC talk to the STM32 controller on the development
board. It uses the CMSIS-DAP protocol to download bitstreams, erase the i5 SPI flash,
program the flash etc.

The ecpdap repo is here. You can compile it from source (it’s written in Rust), or you can
download a binary release, which is what I did. Make sure you use release v0.1.5 or later.
Earlier versions didn’t play well with the Colorlight development board.

Move the ecpdap to some location in your $PATH of your choice, such as
/usr/local/bin .

Step 3: Get everything ready for use

Plug in the Colorlight i5 module into the development board
Connect the development board to the PC with the USB cable
Check that the board is connected correctly

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 12/24

https://twitter.com/adamgreig/status/1345359218531045378
https://github.com/ARMmbed/DAPLink
https://github.com/adamgreig/ecpdap/
https://github.com/adamgreig/ecpdap/releases

The most comprehensive way is to do this is to check the kernel messages with dmesg
after plugging in the board:

> dmesg -w

[3188607.164686] usb 1-11.2: new full-speed USB device number 57 using xhci_h

[3188607.279905] usb 1-11.2: New USB device found, idVendor=0d28, idProduct=0

[3188607.279908] usb 1-11.2: New USB device strings: Mfr=1, Product=2, Serial

[3188607.279910] usb 1-11.2: Product: DAPLink CMSIS-DAP

[3188607.279911] usb 1-11.2: Manufacturer: ARM

[3188607.279913] usb 1-11.2: SerialNumber: 070000010670ff495356675287180632a5

[3188607.300937] usb-storage 1-11.2:1.0: USB Mass Storage device detected

[3188607.301467] scsi host6: usb-storage 1-11.2:1.0

[3188607.302123] cdc_acm 1-11.2:1.1: ttyACM0: USB ACM device

[3188607.304590] hid-generic 0003:0D28:0204.0039: hiddev0,hidraw4: USB HID v1

[3188608.329624] scsi 6:0:0:0: Direct-Access MBED VFS 0.

[3188608.329962] sd 6:0:0:0: Attached scsi generic sg1 type 0

[3188608.330509] sd 6:0:0:0: [sdb] 131200 512-byte logical blocks: (67.2 MB/6

[3188608.330780] sd 6:0:0:0: [sdb] Write Protect is off

[3188608.330782] sd 6:0:0:0: [sdb] Mode Sense: 03 00 00 00

[3188608.330973] sd 6:0:0:0: [sdb] No Caching mode page found

[3188608.330976] sd 6:0:0:0: [sdb] Assuming drive cache: write through

[3188608.354134] sdb:

[3188608.355706] sd 6:0:0:0: [sdb] Attached SCSI removable disk

There’s a lot going on here. The USB port presents multiple USB interfaces.

usb-storage 1-11.2:1.0: USB Mass Storage device detected

The board acts like a USB drive. (See above. We will not be using this.)

cdc_acm 1-11.2:1.1: ttyACM0: USB ACM device

There’s a serial port that will be used to bridge a UART on the FPGA (when there is
one) to the PC.

hid-generic 0003:0D28:0204.0039: hiddev0,hidraw4: USB HID v1.00 Device

[ARM DAPLink CMSIS-DAP] on usb-0000:00:14.0-11.2/input3

CMSIS-DAP is the protocol that’s used to send JTAG, SWD, and other debug
protocols from the PC to the MCU.

Step 4: Verify that ecpdap can talk to the board

Check that ecpdap finds the STM32 MCU:

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 13/24

$ ecpdap probes

Found 1 CMSIS-DAP probe:

 0d28:0204:070000010670ff495356675287180632a5a5a5a597969908 DAPLink CMSIS-DAP

Check that ecpdap can find the ECP5 FPGA:

$ ecpdap scan

Detected JTAG chain, closest to TDO first:

 - 0: 0x41111043 ECP5 LFE5U-25 [IR length: 8]

That was easy!

Step 5: Load a blink bitstream to the FPGA

The prebaked bitstreams are located in the ./Colorlight-FPGA-Projects/demo/i5
directory.

$ cd ./Colorlight-FPGA-Projects/demo/i5

Load the blink.bit bitstream.

$ ecpdap program --freq 5000 blink.bit

 Programming [==] 568.72KB/568.72KB (2

Finished in 21.58s

If all went well, you’ll now see the green LED on the i5 PCB blinking!

I’m absolutely not wild about the time it takes to download a bitstream to the FPGA. 26KB/s
is very slow but it’s unfortunately about as fast as you can go with the CMSIS-DAP v1
protocol that’s supported by the firmware of this board.

I’ll talk later about how to reduce this time for most of your designs.

Programming a Bitstream into SPI flash
In the previous section, a bitstream was loaded directly into the FPGA. After a power cycle,
the blinky will be gone. To make the board power up with the blinky, we need to program the
bitstream into the SPI flash of the Colorlight module.

Step 1: Unprotect the SPI flash

By default, the SPI flash on the Colorlight module has its protected mode enabled. As long as
this is the case, you can not reprogram it with new content.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 14/24

Removing the protection used to be a hassle (it required loading a custom Litex bitstream
and entering some commands over the UART), but with ecpdap , things are much easier.

Let’s first use ecpdap to check the status of the flash:

$ ecpdap flash scan

Reading flash ID...

Manufacturer 0xC8 (Apple Computer), Device 0x14/0x4015, Unique ID: 38483239311735

Reading flash parameters...

SFDP JEDEC Basic Flash Parameter Table v1.0

 Density: 16777216 bits (2048 KiB)

 Address bytes: Three

 Legacy information:

 4kB erase supported: true

 4kB erase opcode: 0x20

 Block Protect always volatile: false

 Volatile write enable opcode: 0x50

 Writes have byte granularity: true

 Erase instructions:

 1: Opcode 0x20: 4096 bytes

 2: Opcode 0x52: 32768 bytes

 3: Opcode 0xD8: 65536 bytes

 4: Not present

Reading status registers...

Status 1: 0x1C, status 2: 0x00, status 3: 0x00

BP0: true, BP1: true, BP2: true, SEC: false, TB: false

Finished in 0.25s

The next to last line shows that the write protection bits are set: BP0: true, BP1: true,
BP2: true .

Unprotect the flash:

$ ecpdap flash unprotect

Disabling flash write protection...

Flash protected disabled.

Finished in 0.22s

The flash will stay unprotected indefinitely, so you need to do this step only once.

If you ever feel the need to protect the flash again, you use ecpdap flash protect .

Step 2: Program the bitstream into the flash

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 15/24

$ ecpdap flash program --freq 5000 blink.bit

 Erasing [==] 576.00KB/576.00KB (450.2

 Writing [==] 568.72KB/568.72KB (16.67

 Reading [==] 568.72KB/568.72KB (26.49

Finished in 57.01s

When you powercycle the FPGA, by pressing the PWR button on the development board, or
by replugging the USB cable, the green LED should be blinking right away.

Other Demo Bitstreams
There are a few other demo bitstreams.

hdmi_dvi.bit

This bitstream sends a 640x480/60Hz test image to the HDMI connector.

litex_with_dram.bit

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 16/24

Litex is a powerful SOC RTL builder. The litex_with_dram.bit bitstream contains a VexRiscv
RISC-V CPU, an SDRAM controller, and some kind of BIOS to boot a secondary image over
Ethernet or over the serial port.

Load the bitstream:

$ ecpdap program --freq 5000 litex_with_dram.bit

 Programming [==] 688.69KB/688.69KB (2

Finished in 25.78s

The provided bitstream has the UART programmed at 38400 bps.

Start a serial terminal:

$ picocom -b 38400 /dev/ttyACM0

picocom v2.2

port is : /dev/ttyACM0

flowcontrol : none

baudrate is : 38400

parity is : none

databits are : 8

stopbits are : 1

escape is : C-a

local echo is : no

noinit is : no

noreset is : no

nolock is : no

send_cmd is : sz -vv

receive_cmd is : rz -vv -E

imap is :

omap is :

emap is : crcrlf,delbs,

Type [C-a] [C-h] to see available commands

Terminal ready

Network boot failed.

No boot medium found

--============= Console ================--

litex>

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 17/24

https://github.com/enjoy-digital/litex
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv

Where you’ll catch the Litex BIOS messages will depend on how fast you started the terminal
after loading the bitstream. But at some point, you should see the litex> prompt.

If you want to see the full boot sequence, either start picocom in a different terminal
window before loading the bitstream, or enter reboot at the prompt.

I did the latter, and was greeted with the following:

litex> reboot

 __ _ __ _ __

 / / (_) /____ | |/_/

 / /__/ / __/ -_)> <

 /____/_/__/__/_/|_|

 Build your hardware, easily!

 (c) Copyright 2012-2020 Enjoy-Digital

 (c) Copyright 2007-2015 M-Labs

 BIOS built on Oct 2 2020 22:57:04

 BIOS CRC passed (5d238c53)

 Migen git sha1: 7bc4eb1

 LiteX git sha1: 8bdf6941

--=============== SoC ==================--

CPU: VexRiscv @ 198MHz

BUS: WISHBONE 32-bit @ 4GiB

CSR: 8-bit data

ROM: 32KiB

SRAM: 8KiB

L2: 32KiB

MAIN-RAM: 4096KiB

--========== Initialization ============--

Ethernet init...

Initializing DRAM @0x40000000...

SDRAM now under software control

SDRAM now under hardware control

Memtest at 0x40000000...

[##]

[##]

Memtest OK

Memspeed at 0x40000000...

Writes: 461 Mbps

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 18/24

Reads: 382 Mbps

--============== Boot ==================--

Booting from serial...

Press Q or ESC to abort boot completely.

sL5DdSMmkekro

 Timeout

Booting from network...

Local IP : 192.168.1.50

Remote IP: 192.168.1.100

Booting from boot.json...

Booting from boot.bin...

Copying boot.bin to 0x40000000...

Network boot failed.

No boot medium found

--============= Console ================--

litex>

Litex itself is worth a few articles, but out of scope for this getting started blog post.

What’s important here is that the bitstream allows you to check the DRAM is working, and to
verify that the UART pipeline from PC to FPGA is functional.

Hint: Press [CTRL-A] [CTRL-A] to exit picocom.

From Verilog to Bitstream
Finally, after playing around with prebaked bitstreams, it’s time to compile our own.

If you’re lucky and don’t run into compilation issues, the process is pretty straightforward.

Step 1: Install the tools

You need Yosys, Project Trellis, and NextPnR-ECP5 to go from verilog to bitstream.

Compile and/or install Yosys

Most Linux distributions come with a Yosys package, but since Yosys is moving quickly, I
recommend compiling it from scratch.

You can find instruction here.

Compile and/or install Project Trellis

Project Trellis is name of the effort by David Shah to reverse engineer the internals of the
Lattice ECP5 FPGA family. This work is what allowed all of us to use ECP5 in a full open
source flow.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 19/24

https://github.com/YosysHQ/yosys
https://twitter.com/fpga_dave

You can find it in the prjtrellis GitHub repo.

I personally prefer to install prjtrellis in the /opt directory instead of the more
common /usr/lib environment. When you do so, make sure that nextpnr-ecp5 , the
place and route tool, knows about this location as well.

If you want to do the same, follow the project installation instructions, but run cmake
with these parameters:

cmake -DCMAKE_INSTALL_PREFIX=/opt/prjtrellis .

Compile and/or intall NextPnR

NextPnR takes a synthesized netlist from Yosys and performs the place-and-route
operation of the netlist into the FPGA.

You need to build a version of NextPnR that is specific to a particular FPGA family. In this
case, we’ll be building nextpnr-ecp5 .

The installation instructions are here.

Like prjtrellis , I prefer nextpnr-ecp5 to be installed in its own /opt/ directory, so I
changed the cmake command line parameters as follows:

cmake . -DARCH=ecp5 -DTRELLIS_INSTALL_PREFIX=/opt/prjtrellis/ -DCMAKE_INSTALL

Note: on my main Ubuntu 18.04 machine, I couldn’t compile nextprn , due to some weird
issue with not finding the pthread library. On my Ubuntu 18.04 laptop, things worked
without issue.

Make sure that Yosys, Project Trellis, and NextPnR are in your $PATH

In my case, I had to add this to ~/.profile :

PATH="$PATH:/opt/nextpnr-ecp5/bin:/opt/prjtrellis/bin"

Yosys was installed under /usr/local/ , which was already in my $PATH .

Step 2: Compile a project

Let’s compile the blinky project:

cd Colorlight-FPGA-Projects/src/i5/blink/

make clean

make

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 20/24

https://github.com/YosysHQ/prjtrellis
https://github.com/YosysHQ/nextpnr#nextpnr-ecp5

If all went well, you’ll see a lot of text scrolling over the screen, which will end with something
like this:

...

Info: [36103, 37397) |****************

Info: [37397, 38691) |*************

ecppack --svf blink.svf blink_out.config blink.bit

You will also find a new blink.bit file waiting for you. Load to the FPGA with ecpdap as
explained earlier.

Congratulations! You’ve cleaned the pipe from Verilog all the way to a working FPGA design!

Using the Board for Your Own Projects
It’s one thing to compile an existing project, it’s another to create one yourself. As a test, I
ported my SPDIF PMOD design from an Intel MAX10 to this development board.

The Colorlight i5 specific changes were minimal.

Some miscellaneous findings:

Lack of SODIMM/connector information

The information is all there to make things work, but it’s more of a hassle than needed.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 21/24

https://github.com/tomverbeure/spdif_pmod
https://github.com/tomverbeure/spdif_pmod/tree/main/fpga/colorlight_i5

Here’s an example: if you want to assign the pins of a PMOD on connector P6 to an
FPGA pin, you need to take the following steps tracing through the board schematic:

1. map pin 2 of your PMOD to pin 26 of connector P6.

There is some guess work involved here, because it could just as well be pin 5 on
connector P6.

2. check that pin 26 is connected to net PL38A.

PL38A happens to be the name of the IO pad of the FPGA silicon, but that’s NOT the
same as the FPGA package pin name.

3. look up that net PL38A aliases to net M4, connected to pin 72 of the SODIMM
connector, which happens to be the FPGA package pin name.

This gets tedious quickly.

This issue can easily be solved with a few more tables in the documentation.

I created my own FPGA pin to connector mapping diagram. You can find it here
Limited FPGA PLL support

This is a limitation of the ECP5 open source flow.

Project Trellis has the ecppll utility to generate PLL models. It works fine in simple
mode, but that has only very limited clock resolution: I wanted to generate a clock of
12.288MHz out of the 25MHz oscillator, but only got 12.5MHz.

ecppll has the --hires option which is supposed to increase the resolution, but
when I used the generated PLL for that, nextprn errored out. (Issue filed.)

Use bitstream compression to improve bitstream loading times

Like most modern FPGAs, the ECP5 supports bitstream compression. This significantly
reduces the size of the bitstream, especially for smaller designs, and improves load times
from PC into the FPGA.

For example, on my SPDIF example, which is very small, it reduces the bitstream from
582KB down to just 100KB.

There are 2 ways to enable bitstream compression:

use --compress as command line parameter of the ecppack tool
add SYSCONFIG COMPRESS_CONFIG=ON; to the project lpf file.

Fantastic compile/place & route turn around time

On my Intel Max10 development kit, it takes 33s to compile from Verilog to bitstream.
With Yosys/NextPnR, that same design takes 2.5s!!!

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 22/24

https://github.com/wuxx/Colorlight-FPGA-Projects/tree/master/schematic
https://tomverbeure.github.io/2021/01/30/Colorlight-i5-Extension-Board-Pin-Mapping.html
https://github.com/YosysHQ/nextpnr/issues/552
https://github.com/tomverbeure/spdif_pmod/blob/7dca2760ee0a58a72b10d0d659b04a55e3f34b80/fpga/colorlight_i5/spdif_test.lpf#L1

On the other hand, loading the bitstream with Quartus takes only 1 second, compared to
4s for the Colorlight i5 (after enabling bitstream compression.)

It’s still a major win for the Colorlight and the open source flow.

Conclusion
I really like the Colorlight i5 + development board combo. The FPGA is large enough for
interesting projects, it’s perfect if all you need is an FPGA, DRAM, and a lot of IOs. It’s
supported by open source tools. The HDMI output is a nice bonus. And, most of all, at $50,
it’s cheaper than anything else in its class.

The only negatives are documentation that’s lacking, and the absence of interfaces like
Ethernet, SDcard, etc. If you want those, you’ll need to add expansion PMODs, or you can
switch to a ULX3S development board… at a significantly higher price.

References
Colorlight i5 Product Page
Item on AliExpress
Official Development Board GitHub Repo
Colorlight i5 Tips GitHub Repo
Colorlight i5 Extension Board Pin Mapping

Using ColorLight FPGA board with cheap JTAG programmers

Similar FPGA boards

(Thanks pauluzs!)

ICESugar-pro

Another board by Muse Lab that uses the same expansion board, and also ECP5-
LFE5U025F FPGA, though with a different package. Features are similar, though there are
no Ethernet PHYs

Colorlight i6

Uses a Lattice ECP3-LFE3-35EA-6FN484C, and not supported by any open source tools.
I’m not aware of a reverse engineering effort.

Colorlight i9

Uses a Lattice ECP5-LFE5U-45F-6BG381C.

Colorlight i9+

Uses a Xilinx XC7AA50T-FGG484ABX1909.

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 23/24

https://www.colorlight-led.com/product/colorlight-i5-led-display-receiver-card.html
https://www.aliexpress.com/item/1005001686186007.html
https://github.com/wuxx/Colorlight-FPGA-Projects
https://github.com/kazkojima/colorlight-i5-tips
https://tomverbeure.github.io/2021/01/30/Colorlight-i5-Extension-Board-Pin-Mapping.html
https://github.com/benitoss/ColorLight_FPGA_boards
https://github.com/tomverbeure/tomverbeure.github.io/issues/10
https://github.com/wuxx/icesugar-pro
https://www.colorlightinside.com/Products/i%20Receiving-series/34_8.html
https://www.colorlightinside.com/Products/i%20Receiving-series/34_101.html
https://www.colorlightinside.com/Products/i%20Receiving-series/34_141.html

Linsn mini901

Uses a Xilinx XC6SLX16-CSG324DIV1645.

Extension Boards

Colorlight Dual Ethernet Board

Sold second hand by Muse Lab, this adds the IOs for 2 Ethernet ports as well as
connectors to drive LED matrices. The IOs are all buffered and thus output only!

Electronics etc... tomverbeure

 tom_verbeure

Electronics etc...

2025/4/1 10:13 Getting Started with ECP5 FPGAs on the Colorlight i5 FPGA Development Board | Electronics etc…

https://tomverbeure.github.io/2021/01/22/The-Colorlight-i5-as-FPGA-development-board.html 24/24

https://www.linsnled.com/linsn-mini901-led-receiver.html
https://www.aliexpress.com/item/1005002080383026.html
https://github.com/tomverbeure
https://github.com/tomverbeure
https://www.twitter.com/tom_verbeure
https://www.twitter.com/tom_verbeure

