CoreMark Benchmarking for SweRV

SweRV Nexys4 Reference Design Overview

11/20/2019

2

© 2019 Western Digital Corporation or its affiliates. All rights reserved.

SweRV CPU Configurations

- We added 64 KB ICCM and 64 KB DCCM to keep the code and data for the application
- We set the reset vector to `ICCM start address`
- We increase BTB and BHT size to 512 and 2048 to improve the performance

./swerv.config -set reset_vec=0xf0090000 -set=iccm_enable=1
-unset=icache_enable -iccm_region=0xf -iccm_offset=0x90000
-iccm_size=64 -dccm_region=0xf -dccm_offset=0x80000
-dccm_size=64 -btb_size=512 -bht_size=2048

I	swerv: Using target "default"	
I	swerv: target	= default
I	swerv: ret_stack_size	= 4
l	swerv: btb_size	= 512
I	swerv: bht_size	= 2048
I	swerv: dccm_enable	= 1
l	swerv: dccm_region	= Oxf
I	swerv: dccm_offset	= 0x80000
l	swerv: dccm_size	= 64
I	swerv: dccm_num_banks	= 8
I	swerv: iccm_enable	= 1
I	swerv: iccm_region	= Oxf
I	swerv: iccm_offset	= 0x90000
	swerv: iccm_size	= 64
	swerv: iccm_num_banks	= 8
	swerv: icache_enable	= 0
	swerv: icache_ecc	= 0
	swerv: icache_size	= 16
	swerv: pic_2cycle	= 0
	swerv: pic_region	= 0xf
	swerv: pic_offset	= 0x100000
	swerv: pic_size	= 32
	swerv: pic_total_int	= 8
1	swerv: lsu_stbuf_depth	= 8
I	swerv: lsu_wrbuf_depth	= 4
l	swerv: dma_buf_depth	= 2
I	swerv: lsu_num_nbload	= 4
I	swerv: dec_instbuf_depth	= 4
	swerv: opensource	= 1
I	swerv: no_secondary_alu	= 0
	<pre>swerv: Set(s) requested : reset_vec=0xf0090000 iccm_enable=1</pre>	
- 10		

FPGA Prototype

- We build the prototype on Nexys-4 DDR board
 - Artix 7 FPGA (Xilinx part number XC7A100T-1CSG324C)
 - 128MiB DDR2
 - Quad-SPI flash
- System clock runs at 40 MHz
- Shared JTAG/UART port is primarily used to download the bit file on FPGA and UART printfs.
- Olimex CPU JTAG probe is used to download and debug application software
- We used Xilinx Vivado 2018.2 toolchain for our reference design

FPGA Resource Utilization

Western Digital.

5

Debugging GDB+OpenOCD and Minicom

Western Digital.

11/20/2019

6

OpenOCD Extensions

- OpenOCD (Open On-Chip Debugger) is open-source software that interfaces with a hardware debugger's JTAG port
- It provides debugging and in-system programming for embedded target devices
- We enhance OpenOCD to provide access to ICCM and DCCM for loading and executing the code from internal memory
- We get the maximum performance when the code reside in ICCM and data at DCCM
- We added abstract commands (based on RISC-V Debug specification 0.13) to access the ICCM and DCCM (leverage and extend CREX OpenOCD work)

CoreMark

https://www.eembc.org/coremark

- CoreMark benchmark measures the performance of CPUs used in embedded systems
- It is becoming the industry standard for the embedded CPU benchmarking
- The code is written in C and contains implementation of following algorithms
 - Linked list processing (find and sort)
 - Matrix manipulation (common matrix operations)
 - State machine (determine if an input stream contains valid numbers)
 - CRC (cyclic redundancy check)
- It is designed to run on devices from 8-bit microcontrollers to 64-bit microprocessors
- All code used within the timed portion of the benchmark is part of the benchmark itself (no library calls)
- We compiled the CoreMark benchmark using RISCV 32-bit toolchain with GCC version 7.2.0

Note: CoreMark number was lower with latest version GCC 8.2.0. I got CoreMark score 4.84. It looks like GCC 7.2 generates more optimized code. We achieved 4.94.

a. © 2019 Western Digital Corporation or its affiliates. All rights reserved.

CoreMark Results - 4.94

Score =CoreMark/MHz (SweRV ran 1000 iterations)

Source: https://www.anandtech.com/show/13964/western-digitals-riscv-swerv-core-released-for-free

Western Digital. © 2019 Western Digital Co

@ 2019 Western Digital Corporation or its affiliates. All rights reserved.

11/20/2019

9

Western Digital.

© 2019 Western Digital Corporation or its affiliates. All rights reserved.

11/20/2019