// SPDX-License-Identifier: Apache-2.0 // Copyright 2019 Western Digital Corporation or its affiliates. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // all flops call the rvdff flop module rvdff #( parameter WIDTH=1 ) ( input logic [WIDTH-1:0] din, input logic clk, input logic rst_l, output logic [WIDTH-1:0] dout ); `ifdef CLOCKGATE always @(posedge tb_top.clk) begin #0 $strobe("CG: %0t %m din %x dout %x clk %b width %d",$time,din,dout,clk,WIDTH); end `endif always_ff @(posedge clk or negedge rst_l) begin if (rst_l == 0) dout[WIDTH-1:0] <= 0; else dout[WIDTH-1:0] <= din[WIDTH-1:0]; end endmodule // rvdff with 2:1 input mux to flop din iff sel==1 module rvdffs #( parameter WIDTH=1 ) ( input logic [WIDTH-1:0] din, input logic en, input logic clk, input logic rst_l, output logic [WIDTH-1:0] dout ); rvdff #(WIDTH) dffs (.din((en) ? din[WIDTH-1:0] : dout[WIDTH-1:0]), .*); endmodule // rvdff with en and clear module rvdffsc #( parameter WIDTH=1 ) ( input logic [WIDTH-1:0] din, input logic en, input logic clear, input logic clk, input logic rst_l, output logic [WIDTH-1:0] dout ); logic [WIDTH-1:0] din_new; assign din_new = {WIDTH{~clear}} & (en ? din[WIDTH-1:0] : dout[WIDTH-1:0]); rvdff #(WIDTH) dffsc (.din(din_new[WIDTH-1:0]), .*); endmodule module `TEC_RV_ICG ( input logic TE, E, CP, output Q ); logic en_ff; logic enable; assign enable = E | TE; `ifdef VERILATOR always @(negedge CP) begin en_ff <= enable; end `else always @(CP, enable) begin if(!CP) en_ff = enable; end `endif assign Q = CP & en_ff; endmodule module rvclkhdr ( input logic en, input logic clk, input logic scan_mode, output logic l1clk ); logic TE; assign TE = scan_mode; `TEC_RV_ICG rvclkhdr ( .*, .E(en), .CP(clk), .Q(l1clk)); endmodule module rvdffe #( parameter WIDTH=1 ) ( input logic [WIDTH-1:0] din, input logic en, input logic clk, input logic rst_l, input logic scan_mode, output logic [WIDTH-1:0] dout ); logic l1clk; `ifndef PHYSICAL if (WIDTH >= 8) begin: genblock `endif rvclkhdr clkhdr ( .* ); rvdff #(WIDTH) dff (.*, .clk(l1clk)); `ifndef PHYSICAL end else $error("%m: rvdffe width must be >= 8"); `endif endmodule // rvdffe module rvsyncss #(parameter WIDTH = 251) ( input logic clk, input logic rst_l, input logic [WIDTH-1:0] din, output logic [WIDTH-1:0] dout ); logic [WIDTH-1:0] din_ff1; rvdff #(WIDTH) sync_ff1 (.*, .din (din[WIDTH-1:0]), .dout(din_ff1[WIDTH-1:0])); rvdff #(WIDTH) sync_ff2 (.*, .din (din_ff1[WIDTH-1:0]), .dout(dout[WIDTH-1:0])); endmodule // rvsyncss module rvlsadder ( input logic [31:0] rs1, input logic [11:0] offset, output logic [31:0] dout ); logic cout; logic sign; logic [31:12] rs1_inc; logic [31:12] rs1_dec; assign {cout,dout[11:0]} = {1'b0,rs1[11:0]} + {1'b0,offset[11:0]}; assign rs1_inc[31:12] = rs1[31:12] + 1; assign rs1_dec[31:12] = rs1[31:12] - 1; assign sign = offset[11]; assign dout[31:12] = ({20{ sign ^~ cout}} & rs1[31:12]) | ({20{ ~sign & cout}} & rs1_inc[31:12]) | ({20{ sign & ~cout}} & rs1_dec[31:12]); endmodule // rvlsadder // assume we only maintain pc[31:1] in the pipe module rvbradder ( input [31:1] pc, input [12:1] offset, output [31:1] dout ); logic cout; logic sign; logic [31:13] pc_inc; logic [31:13] pc_dec; assign {cout,dout[12:1]} = {1'b0,pc[12:1]} + {1'b0,offset[12:1]}; assign pc_inc[31:13] = pc[31:13] + 1; assign pc_dec[31:13] = pc[31:13] - 1; assign sign = offset[12]; assign dout[31:13] = ({19{ sign ^~ cout}} & pc[31:13]) | ({19{ ~sign & cout}} & pc_inc[31:13]) | ({19{ sign & ~cout}} & pc_dec[31:13]); endmodule // rvbradder // 2s complement circuit module rvtwoscomp #( parameter WIDTH=32 ) ( input logic [WIDTH-1:0] din, output logic [WIDTH-1:0] dout ); logic [WIDTH-1:1] dout_temp; // holding for all other bits except for the lsb. LSB is always din genvar i; for ( i = 1; i < WIDTH; i++ ) begin : flip_after_first_one assign dout_temp[i] = (|din[i-1:0]) ? ~din[i] : din[i]; end : flip_after_first_one assign dout[WIDTH-1:0] = { dout_temp[WIDTH-1:1], din[0] }; endmodule // 2'scomp // find first module rvfindfirst1 #( parameter WIDTH=32, SHIFT=$clog2(WIDTH) ) ( input logic [WIDTH-1:0] din, output logic [SHIFT-1:0] dout ); logic done; always_comb begin dout[SHIFT-1:0] = {SHIFT{1'b0}}; done = 1'b0; for ( int i = WIDTH-1; i > 0; i-- ) begin : find_first_one done |= din[i]; dout[SHIFT-1:0] += done ? 1'b0 : 1'b1; end : find_first_one end endmodule // rvfindfirst1 module rvfindfirst1hot #( parameter WIDTH=32 ) ( input logic [WIDTH-1:0] din, output logic [WIDTH-1:0] dout ); logic done; always_comb begin dout[WIDTH-1:0] = {WIDTH{1'b0}}; done = 1'b0; for ( int i = 0; i < WIDTH; i++ ) begin : find_first_one dout[i] = ~done & din[i]; done |= din[i]; end : find_first_one end endmodule // rvfindfirst1hot // mask and match function matches bits after finding the first 0 position // find first starting from LSB. Skip that location and match the rest of the bits module rvmaskandmatch #( parameter WIDTH=32 ) ( input logic [WIDTH-1:0] mask, // this will have the mask in the lower bit positions input logic [WIDTH-1:0] data, // this is what needs to be matched on the upper bits with the mask's upper bits input logic masken, // when 1 : do mask. 0 : full match output logic match ); logic [WIDTH-1:0] matchvec; logic masken_or_fullmask; assign masken_or_fullmask = masken & ~(&mask[WIDTH-1:0]); assign matchvec[0] = masken_or_fullmask | (mask[0] == data[0]); genvar i; for ( i = 1; i < WIDTH; i++ ) begin : match_after_first_zero assign matchvec[i] = (&mask[i-1:0] & masken_or_fullmask) ? 1'b1 : (mask[i] == data[i]); end : match_after_first_zero assign match = &matchvec[WIDTH-1:0]; // all bits either matched or were masked off endmodule // rvmaskandmatch module rvbtb_tag_hash ( input logic [31:1] pc, output logic [`RV_BTB_BTAG_SIZE-1:0] hash ); `ifndef RV_BTB_BTAG_FOLD assign hash = {(pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE+1] ^ pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+1] ^ pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+1])}; `else assign hash = {( pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+1] ^ pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+1])}; `endif // assign hash = {pc[`RV_BTB_ADDR_HI+1],(pc[`RV_BTB_ADDR_HI+13:`RV_BTB_ADDR_HI+10] ^ // pc[`RV_BTB_ADDR_HI+9:`RV_BTB_ADDR_HI+6] ^ // pc[`RV_BTB_ADDR_HI+5:`RV_BTB_ADDR_HI+2])}; endmodule module rvbtb_addr_hash ( input logic [31:1] pc, output logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] hash ); assign hash[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] = pc[`RV_BTB_INDEX1_HI:`RV_BTB_INDEX1_LO] ^ `ifndef RV_BTB_FOLD2_INDEX_HASH pc[`RV_BTB_INDEX2_HI:`RV_BTB_INDEX2_LO] ^ `endif pc[`RV_BTB_INDEX3_HI:`RV_BTB_INDEX3_LO]; endmodule module rvbtb_ghr_hash ( input logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] hashin, input logic [`RV_BHT_GHR_RANGE] ghr, output logic [`RV_BHT_ADDR_HI:`RV_BHT_ADDR_LO] hash ); // The hash function is too complex to write in verilog for all cases. // The config script generates the logic string based on the bp config. assign hash[`RV_BHT_ADDR_HI:`RV_BHT_ADDR_LO] = `RV_BHT_HASH_STRING; endmodule // Check if the S_ADDR <= addr < E_ADDR module rvrangecheck #(CCM_SADR = 32'h0, CCM_SIZE = 128) ( input logic [31:0] addr, // Address to be checked for range output logic in_range, // S_ADDR <= start_addr < E_ADDR output logic in_region ); localparam REGION_BITS = 4; localparam MASK_BITS = 10 + $clog2(CCM_SIZE); logic [31:0] start_addr; logic [3:0] region; assign start_addr[31:0] = CCM_SADR; assign region[REGION_BITS-1:0] = start_addr[31:(32-REGION_BITS)]; assign in_region = (addr[31:(32-REGION_BITS)] == region[REGION_BITS-1:0]); if (CCM_SIZE == 48) assign in_range = (addr[31:MASK_BITS] == start_addr[31:MASK_BITS]) & ~(&addr[MASK_BITS-1 : MASK_BITS-2]); else assign in_range = (addr[31:MASK_BITS] == start_addr[31:MASK_BITS]); endmodule // rvrangechecker // 16 bit even parity generator module rveven_paritygen #(WIDTH = 16) ( input logic [WIDTH-1:0] data_in, // Data output logic parity_out // generated even parity ); assign parity_out = ^(data_in[WIDTH-1:0]) ; endmodule // rveven_paritygen module rveven_paritycheck #(WIDTH = 16) ( input logic [WIDTH-1:0] data_in, // Data input logic parity_in, output logic parity_err // Parity error ); assign parity_err = ^(data_in[WIDTH-1:0]) ^ parity_in ; endmodule // rveven_paritycheck module rvecc_encode ( input [31:0] din, output [6:0] ecc_out ); logic [5:0] ecc_out_temp; assign ecc_out_temp[0] = din[0]^din[1]^din[3]^din[4]^din[6]^din[8]^din[10]^din[11]^din[13]^din[15]^din[17]^din[19]^din[21]^din[23]^din[25]^din[26]^din[28]^din[30]; assign ecc_out_temp[1] = din[0]^din[2]^din[3]^din[5]^din[6]^din[9]^din[10]^din[12]^din[13]^din[16]^din[17]^din[20]^din[21]^din[24]^din[25]^din[27]^din[28]^din[31]; assign ecc_out_temp[2] = din[1]^din[2]^din[3]^din[7]^din[8]^din[9]^din[10]^din[14]^din[15]^din[16]^din[17]^din[22]^din[23]^din[24]^din[25]^din[29]^din[30]^din[31]; assign ecc_out_temp[3] = din[4]^din[5]^din[6]^din[7]^din[8]^din[9]^din[10]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25]; assign ecc_out_temp[4] = din[11]^din[12]^din[13]^din[14]^din[15]^din[16]^din[17]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25]; assign ecc_out_temp[5] = din[26]^din[27]^din[28]^din[29]^din[30]^din[31]; assign ecc_out[6:0] = {(^din[31:0])^(^ecc_out_temp[5:0]),ecc_out_temp[5:0]}; endmodule // rvecc_encode module rvecc_decode ( input en, input [31:0] din, input [6:0] ecc_in, input sed_ded, // only do detection and no correction. Used for the I$ output [31:0] dout, output [6:0] ecc_out, output single_ecc_error, output double_ecc_error ); logic [6:0] ecc_check; logic [38:0] error_mask; logic [38:0] din_plus_parity, dout_plus_parity; // Generate the ecc bits assign ecc_check[0] = ecc_in[0]^din[0]^din[1]^din[3]^din[4]^din[6]^din[8]^din[10]^din[11]^din[13]^din[15]^din[17]^din[19]^din[21]^din[23]^din[25]^din[26]^din[28]^din[30]; assign ecc_check[1] = ecc_in[1]^din[0]^din[2]^din[3]^din[5]^din[6]^din[9]^din[10]^din[12]^din[13]^din[16]^din[17]^din[20]^din[21]^din[24]^din[25]^din[27]^din[28]^din[31]; assign ecc_check[2] = ecc_in[2]^din[1]^din[2]^din[3]^din[7]^din[8]^din[9]^din[10]^din[14]^din[15]^din[16]^din[17]^din[22]^din[23]^din[24]^din[25]^din[29]^din[30]^din[31]; assign ecc_check[3] = ecc_in[3]^din[4]^din[5]^din[6]^din[7]^din[8]^din[9]^din[10]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25]; assign ecc_check[4] = ecc_in[4]^din[11]^din[12]^din[13]^din[14]^din[15]^din[16]^din[17]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25]; assign ecc_check[5] = ecc_in[5]^din[26]^din[27]^din[28]^din[29]^din[30]^din[31]; // This is the parity bit assign ecc_check[6] = ((^din[31:0])^(^ecc_in[6:0])) & ~sed_ded; assign single_ecc_error = en & (ecc_check[6:0] != 0) & ecc_check[6]; // this will never be on for sed_ded assign double_ecc_error = en & (ecc_check[6:0] != 0) & ~ecc_check[6]; // all errors in the sed_ded case will be recorded as DE // Generate the mask for error correctiong for (genvar i=1; i<40; i++) begin assign error_mask[i-1] = (ecc_check[5:0] == i); end // Generate the corrected data assign din_plus_parity[38:0] = {ecc_in[6], din[31:26], ecc_in[5], din[25:11], ecc_in[4], din[10:4], ecc_in[3], din[3:1], ecc_in[2], din[0], ecc_in[1:0]}; assign dout_plus_parity[38:0] = single_ecc_error ? (error_mask[38:0] ^ din_plus_parity[38:0]) : din_plus_parity[38:0]; assign dout[31:0] = {dout_plus_parity[37:32], dout_plus_parity[30:16], dout_plus_parity[14:8], dout_plus_parity[6:4], dout_plus_parity[2]}; assign ecc_out[6:0] = {(dout_plus_parity[38] ^ (ecc_check[6:0] == 7'b1000000)), dout_plus_parity[31], dout_plus_parity[15], dout_plus_parity[7], dout_plus_parity[3], dout_plus_parity[1:0]}; endmodule // rvecc_decode