// SPDX-License-Identifier: Apache-2.0 // Copyright 2019 Western Digital Corporation or its affiliates. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //******************************************************************************** // dec_tlu_ctl.sv // // // Function: CSRs, Commit/WB, flushing, exceptions, interrupts // Comments: // //******************************************************************************** module dec_tlu_ctl import swerv_types::*; ( input logic clk, input logic active_clk, input logic free_clk, input logic rst_l, input logic scan_mode, input logic [31:1] rst_vec, // reset vector, from core pins input logic nmi_int, // nmi pin input logic [31:1] nmi_vec, // nmi vector input logic i_cpu_halt_req, // Asynchronous Halt request to CPU input logic i_cpu_run_req, // Asynchronous Restart request to CPU input logic mpc_debug_halt_req, // Async halt request input logic mpc_debug_run_req, // Async run request input logic mpc_reset_run_req, // Run/halt after reset // perf counter inputs input logic [1:0] ifu_pmu_instr_aligned, // aligned instructions input logic ifu_pmu_align_stall, // aligner stalled input logic ifu_pmu_fetch_stall, // fetch unit stalled input logic ifu_pmu_ic_miss, // icache miss input logic ifu_pmu_ic_hit, // icache hit input logic ifu_pmu_bus_error, // Instruction side bus error input logic ifu_pmu_bus_busy, // Instruction side bus busy input logic ifu_pmu_bus_trxn, // Instruction side bus transaction input logic [1:0] dec_pmu_instr_decoded, // decoded instructions input logic dec_pmu_decode_stall, // decode stall input logic dec_pmu_presync_stall, // decode stall due to presync'd inst input logic dec_pmu_postsync_stall,// decode stall due to postsync'd inst input logic lsu_freeze_dc3, // lsu freeze stall input logic lsu_store_stall_any, // SB or WB is full, stall decode input logic dma_dccm_stall_any, // DMA stall of lsu input logic dma_iccm_stall_any, // DMA stall of ifu input logic exu_pmu_i0_br_misp, // pipe 0 branch misp input logic exu_pmu_i0_br_ataken, // pipe 0 branch actual taken input logic exu_pmu_i0_pc4, // pipe 0 4 byte branch input logic exu_pmu_i1_br_misp, // pipe 1 branch misp input logic exu_pmu_i1_br_ataken, // pipe 1 branch actual taken input logic exu_pmu_i1_pc4, // pipe 1 4 byte branch input logic lsu_pmu_bus_trxn, // D side bus transaction input logic lsu_pmu_bus_misaligned, // D side bus misaligned input logic lsu_pmu_bus_error, // D side bus error input logic lsu_pmu_bus_busy, // D side bus busy input logic dma_mem_dccm_req, input logic iccm_dma_sb_error, // I side dma single bit error input lsu_error_pkt_t lsu_error_pkt_dc3, // lsu precise exception/error packet input logic lsu_single_ecc_error_incr, // Increment the counter for Single ECC error input logic lsu_load_ecc_stbuf_full_dc3, // STBUF full, ecc errors should be rfpc'd input logic dec_pause_state, // Pause counter not zero input logic lsu_imprecise_error_store_any, // store bus error input logic lsu_imprecise_error_load_any, // store bus error input logic [31:0] lsu_imprecise_error_addr_any, // store bus error address input logic lsu_freeze_external_ints_dc3, // load to side effect region input logic dec_csr_wen_unq_d, // valid csr with write - for csr legal input logic dec_csr_any_unq_d, // valid csr - for csr legal input logic dec_csr_wen_wb, // csr write enable at wb input logic [11:0] dec_csr_rdaddr_d, // read address for csr input logic [11:0] dec_csr_wraddr_wb, // write address for csr input logic [31:0] dec_csr_wrdata_wb, // csr write data at wb input logic dec_csr_stall_int_ff, // csr is mie/mstatus input logic dec_tlu_i0_valid_e4, // pipe 0 op at e4 is valid input logic dec_tlu_i1_valid_e4, // pipe 1 op at e4 is valid input logic dec_i0_load_e4, // during cycle after freeze asserts, load is in i0 input logic dec_fence_pending, // tell TLU to stall DMA input logic [31:1] exu_npc_e4, // for NPC tracking input logic exu_i0_flush_lower_e4, // pipe 0 branch mp flush input logic exu_i1_flush_lower_e4, // pipe 1 branch mp flush input logic [31:1] exu_i0_flush_path_e4, // pipe 0 correct path for mp, merge with lower path input logic [31:1] exu_i1_flush_path_e4, // pipe 1 correct path for mp, merge with lower path input logic [31:1] dec_tlu_i0_pc_e4, // for PC/NPC tracking input logic [31:1] dec_tlu_i1_pc_e4, // for PC/NPC tracking input trap_pkt_t dec_tlu_packet_e4, // exceptions known at decode input logic [31:0] dec_illegal_inst, // For mtval input logic dec_i0_decode_d, // decode valid, used for clean icache diagnostics // branch info from pipe0 for errors or counter updates input logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] exu_i0_br_index_e4, // index input logic [1:0] exu_i0_br_hist_e4, // history input logic [1:0] exu_i0_br_bank_e4, // bank input logic exu_i0_br_error_e4, // error input logic exu_i0_br_start_error_e4, // start error input logic exu_i0_br_valid_e4, // valid input logic exu_i0_br_mp_e4, // mispredict input logic exu_i0_br_middle_e4, // middle of bank input logic [`RV_BHT_GHR_RANGE] exu_i0_br_fghr_e4, // FGHR when predicted // branch info from pipe1 for errors or counter updates input logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] exu_i1_br_index_e4, // index input logic [1:0] exu_i1_br_hist_e4, // history input logic [1:0] exu_i1_br_bank_e4, // bank input logic exu_i1_br_error_e4, // error input logic exu_i1_br_start_error_e4, // start error input logic exu_i1_br_valid_e4, // valid input logic exu_i1_br_mp_e4, // mispredict input logic exu_i1_br_middle_e4, // middle of bank input logic [`RV_BHT_GHR_RANGE] exu_i1_br_fghr_e4, // FGHR when predicted `ifdef RV_BTB_48 input logic [1:0] exu_i1_br_way_e4, // way hit or repl input logic [1:0] exu_i0_br_way_e4, // way hit or repl `else input logic exu_i1_br_way_e4, // way hit or repl input logic exu_i0_br_way_e4, // way hit or repl `endif // Debug start output logic dec_dbg_cmd_done, // abstract command done output logic dec_dbg_cmd_fail, // abstract command failed output logic dec_tlu_flush_noredir_wb , // Tell fetch to idle on this flush output logic dec_tlu_mpc_halted_only, // Core is halted only due to MPC output logic dec_tlu_dbg_halted, // Core is halted and ready for debug command output logic dec_tlu_pmu_fw_halted, // Core is halted due to Power management unit or firmware halt output logic dec_tlu_debug_mode, // Core is in debug mode output logic dec_tlu_resume_ack, // Resume acknowledge output logic dec_tlu_debug_stall, // stall decode while waiting on core to empty output logic dec_tlu_flush_leak_one_wb, // single step output logic dec_tlu_flush_err_wb, // iside perr/ecc rfpc output logic dec_tlu_stall_dma, // stall dma access when there's a halt request input logic dbg_halt_req, // DM requests a halt input logic dbg_resume_req, // DM requests a resume input logic ifu_miss_state_idle, // I-side miss buffer empty input logic lsu_halt_idle_any, // lsu is idle output trigger_pkt_t [3:0] trigger_pkt_any, // trigger info for trigger blocks `ifdef RV_ICACHE_ECC input logic [41:0] ifu_ic_debug_rd_data, // diagnostic icache read data `else input logic [33:0] ifu_ic_debug_rd_data, // diagnostic icache read data `endif input logic ifu_ic_debug_rd_data_valid, // diagnostic icache read data valid output cache_debug_pkt_t dec_tlu_ic_diag_pkt, // packet of DICAWICS, DICAD0/1, DICAGO info for icache diagnostics // Debug end input logic [7:0] pic_claimid, // pic claimid for csr input logic [3:0] pic_pl, // pic priv level for csr input logic mhwakeup, // high priority external int, wakeup if halted input logic mexintpend, // external interrupt pending input logic timer_int, // timer interrupt pending output logic o_cpu_halt_status, // PMU interface, halted output logic o_cpu_halt_ack, // halt req ack output logic o_cpu_run_ack, // run req ack output logic o_debug_mode_status, // Core to the PMU that core is in debug mode. When core is in debug mode, the PMU should refrain from sendng a halt or run request output logic mpc_debug_halt_ack, // Halt ack output logic mpc_debug_run_ack, // Run ack output logic debug_brkpt_status, // debug breakpoint output logic [3:0] dec_tlu_meicurpl, // to PIC output logic [3:0] dec_tlu_meipt, // to PIC output br_tlu_pkt_t dec_tlu_br0_wb_pkt, // branch pkt to bp output br_tlu_pkt_t dec_tlu_br1_wb_pkt, // branch pkt to bp output logic [31:0] dec_csr_rddata_d, // csr read data at wb output logic dec_csr_legal_d, // csr indicates legal operation output logic dec_tlu_i0_kill_writeb_wb, // I0 is flushed, don't writeback any results to arch state output logic dec_tlu_i1_kill_writeb_wb, // I1 is flushed, don't writeback any results to arch state output logic dec_tlu_flush_lower_wb, // commit has a flush (exception, int, mispredict at e4) output logic [31:1] dec_tlu_flush_path_wb, // flush pc output logic dec_tlu_fence_i_wb, // flush is a fence_i rfnpc, flush icache output logic dec_tlu_presync_d, // CSR read needs to be presync'd output logic dec_tlu_postsync_d, // CSR needs to be presync'd output logic [31:0] dec_tlu_mrac_ff, // CSR for memory region control output logic dec_tlu_cancel_e4, // Cancel lsu op at DC4 due to future trigger hit output logic dec_tlu_wr_pause_wb, // CSR write to pause reg is at WB. output logic dec_tlu_flush_pause_wb, // Flush is due to pause output logic [1:0] dec_tlu_perfcnt0, // toggles when pipe0 perf counter 0 has an event inc output logic [1:0] dec_tlu_perfcnt1, // toggles when pipe0 perf counter 1 has an event inc output logic [1:0] dec_tlu_perfcnt2, // toggles when pipe0 perf counter 2 has an event inc output logic [1:0] dec_tlu_perfcnt3, // toggles when pipe0 perf counter 3 has an event inc output logic dec_tlu_i0_valid_wb1, // pipe 0 valid output logic dec_tlu_i1_valid_wb1, // pipe 1 valid output logic dec_tlu_i0_exc_valid_wb1, // pipe 0 exception valid output logic dec_tlu_i1_exc_valid_wb1, // pipe 1 exception valid output logic dec_tlu_int_valid_wb1, // pipe 2 int valid output logic [4:0] dec_tlu_exc_cause_wb1, // exception or int cause output logic [31:0] dec_tlu_mtval_wb1, // MTVAL value // feature disable from mfdc output logic dec_tlu_sideeffect_posted_disable, // disable posted writes to side-effect address output logic dec_tlu_dual_issue_disable, // disable dual issue output logic dec_tlu_core_ecc_disable, // disable core ECC output logic dec_tlu_sec_alu_disable, // disable secondary ALU output logic dec_tlu_dccm_nonblock_dma_disable, // disable dma nonblock output logic dec_tlu_non_blocking_disable, // disable non blocking loads output logic dec_tlu_fast_div_disable, // disable fast divider output logic dec_tlu_bpred_disable, // disable branch prediction output logic dec_tlu_wb_coalescing_disable, // disable writebuffer coalescing output logic dec_tlu_ld_miss_byp_wb_disable, // disable loads miss bypass write buffer output logic dec_tlu_pipelining_disable, // disable pipelining output logic [2:0] dec_tlu_dma_qos_prty, // DMA QoS priority coming from MFDC [18:16] // clock gating overrides from mcgc output logic dec_tlu_misc_clk_override, // override misc clock domain gating output logic dec_tlu_dec_clk_override, // override decode clock domain gating output logic dec_tlu_exu_clk_override, // override exu clock domain gating output logic dec_tlu_ifu_clk_override, // override fetch clock domain gating output logic dec_tlu_lsu_clk_override, // override load/store clock domain gating output logic dec_tlu_bus_clk_override, // override bus clock domain gating output logic dec_tlu_pic_clk_override, // override PIC clock domain gating output logic dec_tlu_dccm_clk_override, // override DCCM clock domain gating output logic dec_tlu_icm_clk_override // override ICCM clock domain gating ); logic dec_csr_wen_wb_mod, clk_override, e4e5_int_clk, nmi_lsu_load_type, nmi_lsu_store_type, nmi_int_detected_f, nmi_lsu_load_type_f, nmi_lsu_store_type_f, allow_dbg_halt_csr_write, dbg_cmd_done_ns, i_cpu_run_req_d1_raw, debug_mode_status, lsu_single_ecc_error_wb, i0_mp_e4, i1_mp_e4, sel_npc_e4, sel_npc_wb, ce_int, mtval_capture_lsu_wb, wr_mdeau_wb, micect_cout_nc, miccmect_cout_nc, mdccmect_cout_nc, nmi_in_debug_mode, dpc_capture_npc, dpc_capture_pc, tdata_load, tdata_opcode, tdata_action, perfcnt_halted, tdata_chain, tdata_kill_write; logic reset_delayed, reset_detect, reset_detected; logic wr_mstatus_wb, wr_mtvec_wb, wr_mie_wb, wr_mcyclel_wb, wr_mcycleh_wb, wr_minstretl_wb, wr_minstreth_wb, wr_mscratch_wb, wr_mepc_wb, wr_mcause_wb, wr_mtval_wb, wr_mrac_wb, wr_meihap_wb, wr_meicurpl_wb, wr_meipt_wb, wr_dcsr_wb, wr_dpc_wb, wr_meicidpl_wb, wr_meivt_wb, wr_meicpct_wb, wr_micect_wb, wr_miccmect_wb, wr_mdccmect_wb,wr_mhpme3_wb, wr_mhpme4_wb, wr_mhpme5_wb, wr_mhpme6_wb; logic wr_mgpmc_wb, mgpmc_b, mgpmc; logic wr_mtsel_wb, wr_mtdata1_t0_wb, wr_mtdata1_t1_wb, wr_mtdata1_t2_wb, wr_mtdata1_t3_wb, wr_mtdata2_t0_wb, wr_mtdata2_t1_wb, wr_mtdata2_t2_wb, wr_mtdata2_t3_wb; logic [31:0] mtdata2_t0, mtdata2_t1, mtdata2_t2, mtdata2_t3, mtdata2_tsel_out, mtdata1_tsel_out; logic [9:0] mtdata1_t0_ns, mtdata1_t0, mtdata1_t1_ns, mtdata1_t1, mtdata1_t2_ns, mtdata1_t2, mtdata1_t3_ns, mtdata1_t3; logic [27:0] tdata_wrdata_wb; logic [1:0] mtsel_ns, mtsel; logic tlu_i0_kill_writeb_e4, tlu_i1_kill_writeb_e4; logic [1:0] mstatus_ns, mstatus; logic mstatus_mie_ns; logic [30:0] mtvec_ns, mtvec; logic [15:2] dcsr_ns, dcsr; logic [5:0] mip_ns, mip; logic [5:0] mie_ns, mie; logic [31:0] mcyclel_ns, mcyclel; logic [31:0] mcycleh_ns, mcycleh; logic [31:0] minstretl_ns, minstretl; logic [31:0] minstreth_ns, minstreth; logic [31:0] micect_ns, micect, miccmect_ns, miccmect, mdccmect_ns, mdccmect; logic [26:0] micect_inc, miccmect_inc, mdccmect_inc; logic [31:0] mscratch; logic [31:0] mhpmc3, mhpmc3_ns, mhpmc4, mhpmc4_ns, mhpmc5, mhpmc5_ns, mhpmc6, mhpmc6_ns; logic [31:0] mhpmc3h, mhpmc3h_ns, mhpmc4h, mhpmc4h_ns, mhpmc5h, mhpmc5h_ns, mhpmc6h, mhpmc6h_ns; logic [5:0] mhpme3, mhpme4, mhpme5, mhpme6; logic [31:0] mrac; logic [9:2] meihap; logic [31:10] meivt; logic [3:0] meicurpl_ns, meicurpl; logic [3:0] meicidpl_ns, meicidpl; logic [3:0] meipt_ns, meipt; logic [31:0] mdseac; logic mdseac_locked_ns, mdseac_locked_f, mdseac_en, nmi_lsu_detected; logic [31:1] mepc_ns, mepc; logic [31:1] dpc_ns, dpc; logic [31:0] mcause_ns, mcause; logic [31:0] mtval_ns, mtval; logic mret_wb; logic dec_pause_state_f, dec_tlu_wr_pause_wb_f, pause_expired_e4, pause_expired_wb; logic tlu_flush_lower_e4, tlu_flush_lower_wb; logic [31:1] tlu_flush_path_e4, tlu_flush_path_wb; logic i0_valid_wb, i1_valid_wb; logic [5:0] vectored_cause; logic vpath_overflow_nc; logic [31:1] vectored_path, interrupt_path; logic [18:2] dicawics_ns, dicawics; logic wr_dicawics_wb, wr_dicad0_wb, wr_dicad1_wb; logic [31:0] dicad0_ns, dicad0; `ifdef RV_ICACHE_ECC logic [9:0] dicad1_ns, dicad1; `else logic [1:0] dicad1_ns, dicad1; `endif logic ebreak_e4, ebreak_to_debug_mode_e4, ecall_e4, illegal_e4, illegal_e4_qual, mret_e4, inst_acc_e4, fence_i_e4, ic_perr_e4, iccm_sbecc_e4, ebreak_to_debug_mode_wb, kill_ebreak_count_wb, inst_acc_second_e4; logic ebreak_wb, ecall_wb, illegal_wb, illegal_raw_wb, inst_acc_wb, inst_acc_second_wb, fence_i_wb, ic_perr_wb, iccm_sbecc_wb; logic ce_int_ready, ext_int_ready, timer_int_ready, int_timer0_int_ready, int_timer1_int_ready, mhwakeup_ready, take_ext_int, take_ce_int, take_timer_int, take_int_timer0_int, take_int_timer1_int, take_nmi, take_nmi_wb, int_timer0_int_possible, int_timer1_int_possible; logic i0_exception_valid_e4, interrupt_valid, i0_exception_valid_wb, interrupt_valid_wb, exc_or_int_valid, exc_or_int_valid_wb, mdccme_ce_req, miccme_ce_req, mice_ce_req; logic synchronous_flush_e4; logic [4:0] exc_cause_e4, exc_cause_wb; logic mcyclel_cout, mcyclel_cout_f; logic [31:0] mcyclel_inc; logic mcycleh_cout_nc; logic [31:0] mcycleh_inc; logic minstretl_cout, minstretl_cout_f, minstret_enable; logic [31:0] minstretl_inc, minstretl_read; logic minstreth_cout_nc; logic [31:0] minstreth_inc, minstreth_read; logic [31:1] pc_e4, pc_wb, npc_e4, npc_wb; logic mtval_capture_pc_wb, mtval_capture_inst_wb, mtval_clear_wb, mtval_capture_pc_plus2_wb; logic valid_csr; logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] dec_tlu_br0_addr_e4, dec_tlu_br1_addr_e4; logic [1:0] dec_tlu_br0_bank_e4, dec_tlu_br1_bank_e4; logic rfpc_i0_e4, rfpc_i1_e4; logic lsu_i0_rfnpc_dc4, lsu_i1_rfnpc_dc4; logic lsu_i0_rfpc_dc4, lsu_i1_rfpc_dc4; logic dec_tlu_br0_error_e4, dec_tlu_br0_start_error_e4, dec_tlu_br0_v_e4; logic dec_tlu_br1_error_e4, dec_tlu_br1_start_error_e4, dec_tlu_br1_v_e4; logic lsu_i0_exc_dc4, lsu_i1_exc_dc4, lsu_i0_exc_dc4_raw, lsu_i1_exc_dc4_raw, lsu_exc_ma_dc4, lsu_exc_acc_dc4, lsu_exc_st_dc4, lsu_exc_valid_e4, lsu_exc_valid_e4_raw, lsu_exc_valid_wb, lsu_i0_exc_wb, block_interrupts, lsu_block_interrupts_dc3, lsu_block_interrupts_e4, lsu_load_ecc_stbuf_full_dc4; logic tlu_i0_commit_cmt, tlu_i1_commit_cmt; logic i0_trigger_eval_e4, i1_trigger_eval_e4, lsu_freeze_e4, lsu_freeze_pulse_e3, lsu_freeze_pulse_e4; logic request_debug_mode_e4, request_debug_mode_wb, request_debug_mode_done, request_debug_mode_done_f; logic take_halt, take_halt_f, halt_taken, halt_taken_f, internal_dbg_halt_mode, dbg_tlu_halted_f, take_reset, dbg_tlu_halted, core_empty, lsu_halt_idle_any_f, ifu_miss_state_idle_f, resume_ack_ns, debug_halt_req_f, debug_resume_req_f_raw, debug_resume_req_f, enter_debug_halt_req, dcsr_single_step_done, dcsr_single_step_done_f, debug_halt_req_d1, debug_halt_req_ns, dcsr_single_step_running, dcsr_single_step_running_f, internal_dbg_halt_timers; logic [3:0] i0_trigger_e4, i1_trigger_e4, trigger_action, trigger_enabled, i0_trigger_chain_masked_e4, i1_trigger_chain_masked_e4; logic [2:0] trigger_chain; logic i0_trigger_hit_e4, i0_trigger_hit_raw_e4, i0_trigger_action_e4, trigger_hit_e4, trigger_hit_wb, i0_trigger_hit_wb, mepc_trigger_hit_sel_pc_e4, i0_trigger_set_hit_e4, i1_trigger_set_hit_e4, mepc_trigger_hit_sel_pc_wb; logic i1_trigger_hit_e4, i1_trigger_hit_raw_e4, i1_trigger_action_e4; logic [3:0] update_hit_bit_e4, update_hit_bit_wb, i0_iside_trigger_has_pri_e4, i1_iside_trigger_has_pri_e4, i0_lsu_trigger_has_pri_e4, i1_lsu_trigger_has_pri_e4; logic cpu_halt_status, cpu_halt_ack, cpu_run_ack, ext_halt_pulse, i_cpu_halt_req_d1, i_cpu_run_req_d1; logic inst_acc_e4_raw, trigger_hit_dmode_e4, trigger_hit_dmode_wb, trigger_hit_for_dscr_cause_wb; logic wr_mcgc_wb, wr_mfdc_wb; logic [8:0] mcgc; logic [18:0] mfdc; logic [14:0] mfdc_int, mfdc_ns; logic i_cpu_halt_req_sync_qual, i_cpu_run_req_sync_qual, pmu_fw_halt_req_ns, pmu_fw_halt_req_f, int_timer_stalled, fw_halt_req, enter_pmu_fw_halt_req, pmu_fw_tlu_halted, pmu_fw_tlu_halted_f, internal_pmu_fw_halt_mode, internal_pmu_fw_halt_mode_f, int_timer0_int_hold, int_timer1_int_hold, int_timer0_int_hold_f, int_timer1_int_hold_f; logic dcsr_single_step_running_ff; logic nmi_int_delayed, nmi_int_detected; logic [3:0] trigger_execute, trigger_data, trigger_store; logic mpc_run_state_ns, debug_brkpt_status_ns, mpc_debug_halt_ack_ns, mpc_debug_run_ack_ns, dbg_halt_state_ns, dbg_run_state_ns, dbg_halt_state_f, mpc_debug_halt_req_sync_f, mpc_debug_run_req_sync_f, mpc_halt_state_f, mpc_halt_state_ns, mpc_run_state_f, debug_brkpt_status_f, mpc_debug_halt_ack_f, mpc_debug_run_ack_f, dbg_run_state_f, dbg_halt_state_ff, mpc_debug_halt_req_sync_pulse, mpc_debug_run_req_sync_pulse, debug_brkpt_valid, debug_halt_req, debug_resume_req, dec_tlu_mpc_halted_only_ns; logic wr_mpmc_wb, set_mie_pmu_fw_halt; logic [1:1] mpmc_b_ns, mpmc, mpmc_b; // internal timer, isolated for size reasons logic [31:0] dec_timer_rddata_d; logic dec_timer_read_d, dec_timer_t0_pulse, dec_timer_t1_pulse; dec_timer_ctl int_timers(.*); // end of internal timers assign clk_override = dec_tlu_dec_clk_override; // Async inputs to the core have to be sync'd to the core clock. logic nmi_int_sync, timer_int_sync, i_cpu_halt_req_sync, i_cpu_run_req_sync, mpc_debug_halt_req_sync, mpc_debug_run_req_sync; rvsyncss #(6) syncro_ff(.*, .clk(free_clk), .din ({nmi_int, timer_int, i_cpu_halt_req, i_cpu_run_req, mpc_debug_halt_req, mpc_debug_run_req}), .dout({nmi_int_sync, timer_int_sync, i_cpu_halt_req_sync, i_cpu_run_req_sync, mpc_debug_halt_req_sync, mpc_debug_run_req_sync})); // for CSRs that have inpipe writes only logic csr_wr_clk; rvoclkhdr csrwr_wb_cgc ( .en(dec_csr_wen_wb_mod | clk_override), .l1clk(csr_wr_clk), .* ); logic lsu_e3_e4_clk, lsu_e4_e5_clk; rvoclkhdr lsu_e3_e4_cgc ( .en(lsu_error_pkt_dc3.exc_valid | lsu_error_pkt_dc4.exc_valid | lsu_error_pkt_dc3.single_ecc_error | lsu_error_pkt_dc4.single_ecc_error | clk_override), .l1clk(lsu_e3_e4_clk), .* ); rvoclkhdr lsu_e4_e5_cgc ( .en(lsu_error_pkt_dc4.exc_valid | lsu_exc_valid_wb | clk_override), .l1clk(lsu_e4_e5_clk), .* ); logic freeze_rfpc_e4, rfpc_postsync_in, rfpc_postsync, dma_mem_dccm_req_f; logic e4e5_clk, e4_valid, e5_valid, e4e5_valid, internal_dbg_halt_mode_f, internal_dbg_halt_mode_f2, internal_dbg_halt_mode_f3; assign e4_valid = dec_tlu_i0_valid_e4 | dec_tlu_i1_valid_e4; assign e4e5_valid = e4_valid | e5_valid | freeze_rfpc_e4; rvoclkhdr e4e5_cgc ( .en(e4e5_valid | clk_override), .l1clk(e4e5_clk), .* ); rvoclkhdr e4e5_int_cgc ( .en(e4e5_valid | internal_dbg_halt_mode_f | i_cpu_run_req_d1 | interrupt_valid | interrupt_valid_wb | reset_delayed | pause_expired_e4 | pause_expired_wb | clk_override), .l1clk(e4e5_int_clk), .* ); assign lsu_freeze_pulse_e3 = lsu_freeze_dc3 & ~lsu_freeze_e4; rvdff #(10) freeff (.*, .clk(free_clk), .din({internal_dbg_halt_mode_f2,internal_dbg_halt_mode_f, lsu_freeze_dc3, lsu_freeze_pulse_e3, e4_valid, lsu_block_interrupts_dc3, internal_dbg_halt_mode, tlu_flush_lower_e4, tlu_i0_kill_writeb_e4, tlu_i1_kill_writeb_e4 }), .dout({internal_dbg_halt_mode_f3, internal_dbg_halt_mode_f2, lsu_freeze_e4, lsu_freeze_pulse_e4, e5_valid, lsu_block_interrupts_e4, internal_dbg_halt_mode_f, tlu_flush_lower_wb, dec_tlu_i0_kill_writeb_wb, dec_tlu_i1_kill_writeb_wb})); rvdff #(2) reset_ff (.*, .clk(free_clk), .din({1'b1, reset_detect}), .dout({reset_detect, reset_detected})); assign reset_delayed = reset_detect ^ reset_detected; rvdff #(4) nmi_ff (.*, .clk(free_clk), .din({nmi_int_sync, nmi_int_detected, nmi_lsu_load_type, nmi_lsu_store_type}), .dout({nmi_int_delayed, nmi_int_detected_f, nmi_lsu_load_type_f, nmi_lsu_store_type_f})); // Filter subsequent bus errors after the first, until the lock on MDSEAC is cleared assign nmi_lsu_detected = ~mdseac_locked_f & (lsu_imprecise_error_load_any | lsu_imprecise_error_store_any); assign nmi_int_detected = (nmi_int_sync & ~nmi_int_delayed) | nmi_lsu_detected | (nmi_int_detected_f & ~take_nmi_wb); // if the first nmi is a lsu type, note it. If there's already an nmi pending, ignore assign nmi_lsu_load_type = (nmi_lsu_detected & lsu_imprecise_error_load_any & ~(nmi_int_detected_f & ~take_nmi_wb)) | (nmi_lsu_load_type_f & ~take_nmi_wb); assign nmi_lsu_store_type = (nmi_lsu_detected & lsu_imprecise_error_store_any & ~(nmi_int_detected_f & ~take_nmi_wb)) | (nmi_lsu_store_type_f & ~take_nmi_wb); `define MSTATUS_MIE 0 `define MIP_MCEIP 5 `define MIP_MITIP0 4 `define MIP_MITIP1 3 `define MIP_MEIP 2 `define MIP_MTIP 1 `define MIP_MSIP 0 `define MIE_MCEIE 5 `define MIE_MITIE0 4 `define MIE_MITIE1 3 `define MIE_MEIE 2 `define MIE_MTIE 1 `define MIE_MSIE 0 `define DCSR_EBREAKM 15 `define DCSR_STEPIE 11 `define DCSR_STOPC 10 //`define DCSR_STOPT 9 `define DCSR_STEP 2 // ---------------------------------------------------------------------- // MPC halt // - can interact with debugger halt and v-v rvdff #(11) mpvhalt_ff (.*, .clk(free_clk), .din({mpc_debug_halt_req_sync, mpc_debug_run_req_sync, mpc_halt_state_ns, mpc_run_state_ns, debug_brkpt_status_ns, mpc_debug_halt_ack_ns, mpc_debug_run_ack_ns, dbg_halt_state_ns, dbg_run_state_ns, dbg_halt_state_f, dec_tlu_mpc_halted_only_ns}), .dout({mpc_debug_halt_req_sync_f, mpc_debug_run_req_sync_f, mpc_halt_state_f, mpc_run_state_f, debug_brkpt_status_f, mpc_debug_halt_ack_f, mpc_debug_run_ack_f, dbg_halt_state_f, dbg_run_state_f, dbg_halt_state_ff, dec_tlu_mpc_halted_only})); // turn level sensitive requests into pulses assign mpc_debug_halt_req_sync_pulse = mpc_debug_halt_req_sync & ~mpc_debug_halt_req_sync_f; assign mpc_debug_run_req_sync_pulse = mpc_debug_run_req_sync & ~mpc_debug_run_req_sync_f; // states assign mpc_halt_state_ns = (mpc_halt_state_f | mpc_debug_halt_req_sync_pulse | (reset_delayed & ~mpc_reset_run_req)) & ~mpc_debug_run_req_sync; assign mpc_run_state_ns = (mpc_run_state_f | (mpc_debug_run_req_sync_pulse & ~mpc_debug_run_ack_f)) & (internal_dbg_halt_mode_f & ~dcsr_single_step_running_f); // note, MPC halt can allow the jtag debugger to just start sending commands. When that happens, set the interal debugger halt state to prevent // MPC run from starting the core. assign dbg_halt_state_ns = (dbg_halt_state_f | (dbg_halt_req | dcsr_single_step_done_f | trigger_hit_dmode_wb | ebreak_to_debug_mode_wb)) & ~dbg_resume_req; assign dbg_run_state_ns = (dbg_run_state_f | dbg_resume_req) & (internal_dbg_halt_mode_f & ~dcsr_single_step_running_f); // tell dbg we are only MPC halted assign dec_tlu_mpc_halted_only_ns = ~dbg_halt_state_f & mpc_halt_state_f; // this asserts from detection of bkpt until after we leave debug mode assign debug_brkpt_valid = ebreak_to_debug_mode_wb | trigger_hit_dmode_wb; assign debug_brkpt_status_ns = (debug_brkpt_valid | debug_brkpt_status_f) & (internal_dbg_halt_mode & ~dcsr_single_step_running_f); // acks back to interface assign mpc_debug_halt_ack_ns = mpc_halt_state_f & internal_dbg_halt_mode_f & mpc_debug_halt_req_sync & core_empty; assign mpc_debug_run_ack_ns = (mpc_debug_run_req_sync & ~internal_dbg_halt_mode & ~mpc_debug_halt_req_sync) | (mpc_debug_run_ack_f & mpc_debug_run_req_sync) ; // Pins assign mpc_debug_halt_ack = mpc_debug_halt_ack_f; assign mpc_debug_run_ack = mpc_debug_run_ack_f; assign debug_brkpt_status = debug_brkpt_status_f; // combine MPC and DBG halt requests assign debug_halt_req = (dbg_halt_req | mpc_debug_halt_req_sync | (reset_delayed & ~mpc_reset_run_req)) & ~internal_dbg_halt_mode_f; assign debug_resume_req = ~debug_resume_req_f & // squash back to back resumes ((mpc_run_state_ns & ~dbg_halt_state_ns) | // MPC run req (dbg_run_state_ns & ~mpc_halt_state_ns)); // dbg request is a pulse // HALT // dbg/pmu/fw requests halt, service as soon as lsu is not blocking interrupts assign take_halt = (debug_halt_req_f | pmu_fw_halt_req_f) & ~lsu_block_interrupts_e4 & ~synchronous_flush_e4 & ~mret_e4 & ~halt_taken_f & ~dec_tlu_flush_noredir_wb & ~take_reset; // hold after we take a halt, so we don't keep taking halts assign halt_taken = (dec_tlu_flush_noredir_wb & ~dec_tlu_flush_pause_wb) | (halt_taken_f & ~dbg_tlu_halted_f & ~pmu_fw_tlu_halted_f & ~interrupt_valid_wb); // After doing halt flush (RFNPC) wait until core is idle before asserting a particular halt mode // It takes a cycle for mb_empty to assert after a fetch, take_halt covers that cycle assign core_empty = lsu_halt_idle_any & lsu_halt_idle_any_f & ifu_miss_state_idle & ifu_miss_state_idle_f & ~debug_halt_req & ~debug_halt_req_d1; //-------------------------------------------------------------------------------- // Debug start // assign enter_debug_halt_req = (~internal_dbg_halt_mode_f & debug_halt_req) | dcsr_single_step_done_f | trigger_hit_dmode_wb | ebreak_to_debug_mode_wb; // dbg halt state active from request until non-step resume assign internal_dbg_halt_mode = debug_halt_req_ns | (internal_dbg_halt_mode_f & ~(debug_resume_req_f & ~dcsr[`DCSR_STEP])); // dbg halt can access csrs as long as we are not stepping assign allow_dbg_halt_csr_write = internal_dbg_halt_mode_f & ~dcsr_single_step_running_f; // hold debug_halt_req_ns high until we enter debug halt assign debug_halt_req_ns = enter_debug_halt_req | (debug_halt_req_f & ~dbg_tlu_halted); assign dbg_tlu_halted = (debug_halt_req_f & core_empty & halt_taken) | (dbg_tlu_halted_f & ~debug_resume_req_f); assign resume_ack_ns = (debug_resume_req_f & dbg_tlu_halted_f & dbg_run_state_ns); assign dcsr_single_step_done = dec_tlu_i0_valid_e4 & ~dec_tlu_dbg_halted & dcsr[`DCSR_STEP] & ~rfpc_i0_e4; assign dcsr_single_step_running = (debug_resume_req_f & dcsr[`DCSR_STEP]) | (dcsr_single_step_running_f & ~dcsr_single_step_done_f); assign dbg_cmd_done_ns = dec_tlu_i0_valid_e4 & dec_tlu_dbg_halted; // used to hold off commits after an in-pipe debug mode request (triggers, DCSR) assign request_debug_mode_e4 = (trigger_hit_dmode_e4 | ebreak_to_debug_mode_e4) | (request_debug_mode_wb & ~dec_tlu_flush_lower_wb); assign request_debug_mode_done = (request_debug_mode_wb | request_debug_mode_done_f) & ~dbg_tlu_halted_f; rvdff #(22) halt_ff (.*, .clk(free_clk), .din({halt_taken, take_halt, lsu_halt_idle_any, ifu_miss_state_idle, dbg_tlu_halted, resume_ack_ns, dbg_cmd_done_ns, debug_halt_req_ns, debug_resume_req, trigger_hit_dmode_e4, dcsr_single_step_done, debug_halt_req, update_hit_bit_e4[3:0], dec_tlu_wr_pause_wb, dec_pause_state, request_debug_mode_e4, request_debug_mode_done, dcsr_single_step_running, dcsr_single_step_running_f}), .dout({halt_taken_f, take_halt_f, lsu_halt_idle_any_f, ifu_miss_state_idle_f, dbg_tlu_halted_f, dec_tlu_resume_ack, dec_dbg_cmd_done, debug_halt_req_f, debug_resume_req_f_raw, trigger_hit_dmode_wb, dcsr_single_step_done_f, debug_halt_req_d1, update_hit_bit_wb[3:0], dec_tlu_wr_pause_wb_f, dec_pause_state_f, request_debug_mode_wb, request_debug_mode_done_f, dcsr_single_step_running_f, dcsr_single_step_running_ff})); // MPC run collides with DBG halt, fix it here assign debug_resume_req_f = debug_resume_req_f_raw & ~dbg_halt_req; assign dec_tlu_debug_stall = debug_halt_req_f; assign dec_tlu_dbg_halted = dbg_tlu_halted_f; assign dec_tlu_debug_mode = internal_dbg_halt_mode_f; assign dec_tlu_pmu_fw_halted = pmu_fw_tlu_halted_f; // kill fetch redirection on flush if going to halt, or if there's a fence during db-halt assign dec_tlu_flush_noredir_wb = take_halt_f | (fence_i_wb & internal_dbg_halt_mode_f) | dec_tlu_flush_pause_wb | (trigger_hit_wb & trigger_hit_dmode_wb); // 1 cycle after writing the PAUSE counter, flush with noredir to idle F1-D. assign dec_tlu_flush_pause_wb = dec_tlu_wr_pause_wb_f & ~interrupt_valid_wb; // detect end of pause counter and rfpc assign pause_expired_e4 = ~dec_pause_state & dec_pause_state_f & ~(ext_int_ready | ce_int_ready | timer_int_ready | int_timer0_int_hold_f | int_timer1_int_hold_f | nmi_int_detected) & ~interrupt_valid_wb & ~debug_halt_req_f & ~pmu_fw_halt_req_f & ~halt_taken_f; // stall dma fifo if a fence is pending, decode is waiting for lsu to idle before decoding the fence inst. assign dec_tlu_stall_dma = dec_fence_pending & dec_tlu_dccm_nonblock_dma_disable; // Stall the DMA for fences when chicken bit is set; assign dec_tlu_flush_leak_one_wb = dec_tlu_flush_lower_wb & dcsr[`DCSR_STEP] & (dec_tlu_resume_ack | dcsr_single_step_running); assign dec_tlu_flush_err_wb = dec_tlu_flush_lower_wb & (ic_perr_wb | iccm_sbecc_wb); // If DM attempts to access an illegal CSR, send cmd_fail back assign dec_dbg_cmd_fail = illegal_raw_wb & dec_dbg_cmd_done; //-------------------------------------------------------------------------------- //-------------------------------------------------------------------------------- // Triggers // `define MTDATA1_DMODE 9 `define MTDATA1_SEL 7 `define MTDATA1_ACTION 6 `define MTDATA1_CHAIN 5 `define MTDATA1_MATCH 4 `define MTDATA1_M_ENABLED 3 `define MTDATA1_EXE 2 `define MTDATA1_ST 1 `define MTDATA1_LD 0 // Prioritize trigger hits with other exceptions. // // Trigger should have highest priority except: // - trigger is an execute-data and there is an inst_access exception (lsu triggers won't fire, inst. is nop'd by decode) // - trigger is a store-data and there is a lsu_acc_exc or lsu_ma_exc. assign trigger_execute[3:0] = {mtdata1_t3[`MTDATA1_EXE], mtdata1_t2[`MTDATA1_EXE], mtdata1_t1[`MTDATA1_EXE], mtdata1_t0[`MTDATA1_EXE]}; assign trigger_data[3:0] = {mtdata1_t3[`MTDATA1_SEL], mtdata1_t2[`MTDATA1_SEL], mtdata1_t1[`MTDATA1_SEL], mtdata1_t0[`MTDATA1_SEL]}; assign trigger_store[3:0] = {mtdata1_t3[`MTDATA1_ST], mtdata1_t2[`MTDATA1_ST], mtdata1_t1[`MTDATA1_ST], mtdata1_t0[`MTDATA1_ST]}; // MSTATUS[MIE] needs to be on to take triggers unless the action is trigger to debug mode. assign trigger_enabled[3:0] = {(mtdata1_t3[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t3[`MTDATA1_M_ENABLED], (mtdata1_t2[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t2[`MTDATA1_M_ENABLED], (mtdata1_t1[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t1[`MTDATA1_M_ENABLED], (mtdata1_t0[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t0[`MTDATA1_M_ENABLED]}; // iside exceptions are always in i0 assign i0_iside_trigger_has_pri_e4[3:0] = ~( (trigger_execute[3:0] & trigger_data[3:0] & {4{inst_acc_e4_raw}}) | // exe-data with inst_acc ({4{exu_i0_br_error_e4 | exu_i0_br_start_error_e4}})); // branch error in i0 assign i1_iside_trigger_has_pri_e4[3:0] = ~( ({4{exu_i1_br_error_e4 | exu_i1_br_start_error_e4}}) ); // branch error in i1 // lsu excs have to line up with their respective triggers since the lsu op can be in either i0 or i1 but not both assign i0_lsu_trigger_has_pri_e4[3:0] = ~(trigger_store[3:0] & trigger_data[3:0] & {4{lsu_i0_exc_dc4_raw}}); assign i1_lsu_trigger_has_pri_e4[3:0] = ~(trigger_store[3:0] & trigger_data[3:0] & {4{lsu_i1_exc_dc4_raw}}); // Qual trigger hits assign i0_trigger_eval_e4 = dec_tlu_i0_valid_e4 | ( dec_i0_load_e4 & lsu_freeze_pulse_e4); assign i1_trigger_eval_e4 = dec_tlu_i1_valid_e4 | (~dec_i0_load_e4 & lsu_freeze_pulse_e4); assign i0_trigger_e4[3:0] = {4{i0_trigger_eval_e4}} & dec_tlu_packet_e4.i0trigger[3:0] & i0_iside_trigger_has_pri_e4[3:0] & i0_lsu_trigger_has_pri_e4[3:0] & trigger_enabled[3:0]; assign i1_trigger_e4[3:0] = {4{i1_trigger_eval_e4}} & dec_tlu_packet_e4.i1trigger[3:0] & i1_iside_trigger_has_pri_e4[3:0] & i1_lsu_trigger_has_pri_e4[3:0] & trigger_enabled[3:0]; assign trigger_chain[2:0] = {mtdata1_t2[`MTDATA1_CHAIN], mtdata1_t1[`MTDATA1_CHAIN], mtdata1_t0[`MTDATA1_CHAIN]}; // chaining can mask raw trigger info assign i0_trigger_chain_masked_e4[3:0] = {i0_trigger_e4[3] & (~trigger_chain[2] | i0_trigger_e4[2]), i0_trigger_e4[2] & (~trigger_chain[2] | i0_trigger_e4[3]), i0_trigger_e4[1] & (~trigger_chain[0] | i0_trigger_e4[0]), i0_trigger_e4[0] & (~trigger_chain[0] | i0_trigger_e4[1])}; assign i1_trigger_chain_masked_e4[3:0] = {i1_trigger_e4[3] & (~trigger_chain[2] | i1_trigger_e4[2]), i1_trigger_e4[2] & (~trigger_chain[2] | i1_trigger_e4[3]), i1_trigger_e4[1] & (~trigger_chain[0] | i1_trigger_e4[0]), i1_trigger_e4[0] & (~trigger_chain[0] | i1_trigger_e4[1])}; // This is the highest priority by this point. assign i0_trigger_hit_raw_e4 = |i0_trigger_chain_masked_e4[3:0]; assign i1_trigger_hit_raw_e4 = |i1_trigger_chain_masked_e4[3:0]; // Qual trigger hits assign i0_trigger_hit_e4 = ~(dec_tlu_flush_lower_wb | dec_tlu_dbg_halted | lsu_freeze_pulse_e4) & i0_trigger_hit_raw_e4; assign i1_trigger_hit_e4 = ~(dec_tlu_flush_lower_wb | ~tlu_i0_commit_cmt | exu_i0_br_mp_e4 | dec_tlu_dbg_halted | lsu_freeze_pulse_e4 | lsu_i0_rfnpc_dc4) & i1_trigger_hit_raw_e4; assign dec_tlu_cancel_e4 = (i0_trigger_hit_raw_e4 | i1_trigger_hit_raw_e4) & lsu_freeze_pulse_e4; // Actions include breakpoint, or dmode. Dmode is only possible if the DMODE bit is set. // Otherwise, take a breakpoint. assign trigger_action[3:0] = {mtdata1_t3[`MTDATA1_ACTION] & mtdata1_t3[`MTDATA1_DMODE], mtdata1_t2[`MTDATA1_ACTION] & mtdata1_t2[`MTDATA1_DMODE] & ~mtdata1_t2[`MTDATA1_CHAIN], mtdata1_t1[`MTDATA1_ACTION] & mtdata1_t1[`MTDATA1_DMODE], mtdata1_t0[`MTDATA1_ACTION] & mtdata1_t0[`MTDATA1_DMODE] & ~mtdata1_t0[`MTDATA1_CHAIN]}; // this is needed to set the HIT bit in the triggers assign i0_trigger_set_hit_e4 = |i0_trigger_e4[3:0] & ~(dec_tlu_flush_lower_wb | dec_tlu_dbg_halted | rfpc_i0_e4); assign i1_trigger_set_hit_e4 = |i1_trigger_e4[3:0] & ~(dec_tlu_flush_lower_wb | dec_tlu_dbg_halted | ~tlu_i0_commit_cmt | exu_i0_br_mp_e4 | dec_tlu_dbg_halted | lsu_freeze_pulse_e4 | lsu_i0_rfnpc_dc4 | rfpc_i1_e4); assign update_hit_bit_e4[3:0] = ({4{i0_trigger_set_hit_e4}} & {i0_trigger_chain_masked_e4[3], i0_trigger_e4[2], i0_trigger_chain_masked_e4[1], i0_trigger_e4[0]} ) | ({4{i1_trigger_set_hit_e4}} & {i1_trigger_chain_masked_e4[3], i1_trigger_e4[2], i1_trigger_chain_masked_e4[1], i1_trigger_e4[0]} ); // action, 1 means dmode. Simultaneous triggers with at least 1 set for dmode force entire action to dmode. assign i0_trigger_action_e4 = |(i0_trigger_chain_masked_e4[3:0] & trigger_action[3:0]); assign i1_trigger_action_e4 = |(i1_trigger_chain_masked_e4[3:0] & trigger_action[3:0]); assign trigger_hit_e4 = i0_trigger_hit_e4 | i1_trigger_hit_e4; assign trigger_hit_dmode_e4 = (i0_trigger_hit_e4 & i0_trigger_action_e4) | (i1_trigger_hit_e4 & ~i0_trigger_hit_e4 & i1_trigger_action_e4); assign mepc_trigger_hit_sel_pc_e4 = trigger_hit_e4 & ~trigger_hit_dmode_e4; // // Debug end //-------------------------------------------------------------------------------- //---------------------------------------------------------------------- // // Commit // //---------------------------------------------------------------------- //-------------------------------------------------------------------------------- // External halt (not debug halt) // - Fully interlocked handshake // i_cpu_halt_req ____|--------------|_______________ // core_empty ---------------|___________ // o_cpu_halt_ack _________________|----|__________ // o_cpu_halt_status _______________|---------------------|_________ // i_cpu_run_req ______|----------|____ // o_cpu_run_ack ____________|------|________ // // debug mode has priority, ignore PMU/FW halt/run while in debug mode assign i_cpu_halt_req_sync_qual = i_cpu_halt_req_sync & ~dec_tlu_debug_mode; assign i_cpu_run_req_sync_qual = i_cpu_run_req_sync & ~dec_tlu_debug_mode & pmu_fw_tlu_halted_f; rvdff #(10) exthaltff (.*, .clk(free_clk), .din({i_cpu_halt_req_sync_qual, i_cpu_run_req_sync_qual, cpu_halt_status, cpu_halt_ack, cpu_run_ack, internal_pmu_fw_halt_mode, pmu_fw_halt_req_ns, pmu_fw_tlu_halted, int_timer0_int_hold, int_timer1_int_hold}), .dout({i_cpu_halt_req_d1, i_cpu_run_req_d1_raw, o_cpu_halt_status, o_cpu_halt_ack, o_cpu_run_ack, internal_pmu_fw_halt_mode_f, pmu_fw_halt_req_f, pmu_fw_tlu_halted_f, int_timer0_int_hold_f, int_timer1_int_hold_f})); // only happens if we aren't in dgb_halt assign ext_halt_pulse = i_cpu_halt_req_sync_qual & ~i_cpu_halt_req_d1; assign enter_pmu_fw_halt_req = ext_halt_pulse | fw_halt_req; assign pmu_fw_halt_req_ns = (enter_pmu_fw_halt_req | (pmu_fw_halt_req_f & ~pmu_fw_tlu_halted)) & ~debug_halt_req_f; assign internal_pmu_fw_halt_mode = pmu_fw_halt_req_ns | (internal_pmu_fw_halt_mode_f & ~i_cpu_run_req_d1 & ~debug_halt_req_f); // debug halt has priority assign pmu_fw_tlu_halted = ((pmu_fw_halt_req_f & core_empty & halt_taken & ~enter_debug_halt_req) | (pmu_fw_tlu_halted_f & ~i_cpu_run_req_d1)) & ~debug_halt_req_f; assign cpu_halt_ack = i_cpu_halt_req_d1 & pmu_fw_tlu_halted_f; assign cpu_halt_status = (pmu_fw_tlu_halted_f & ~i_cpu_run_req_d1) | (o_cpu_halt_status & ~i_cpu_run_req_d1 & ~internal_dbg_halt_mode_f); assign cpu_run_ack = (o_cpu_halt_status & i_cpu_run_req_d1_raw) | (o_cpu_run_ack & i_cpu_run_req_sync); assign debug_mode_status = internal_dbg_halt_mode_f; assign o_debug_mode_status = debug_mode_status;// & ~mpc_debug_run_ack_f; `ifdef ASSERT_ON assert_commit_while_halted: assert #0 (~((tlu_i0_commit_cmt | tlu_i1_commit_cmt) & o_cpu_halt_status)) else $display("ERROR: Commiting while cpu_halt_status asserted!"); `endif // high priority interrupts can wakeup from external halt, so can unmasked timer interrupts assign i_cpu_run_req_d1 = i_cpu_run_req_d1_raw | ((nmi_int_detected | timer_int_ready | int_timer0_int_hold_f | int_timer1_int_hold_f | (mhwakeup & mhwakeup_ready)) & o_cpu_halt_status); //-------------------------------------------------------------------------------- //-------------------------------------------------------------------------------- // LSU exceptions (LSU responsible for prioritizing simultaneous cases) lsu_error_pkt_t lsu_error_pkt_dc4; rvdff #( $bits(lsu_error_pkt_t)+1 ) lsu_error_dc4ff (.*, .clk(lsu_e3_e4_clk), .din({lsu_error_pkt_dc3, lsu_load_ecc_stbuf_full_dc3}), .dout({lsu_error_pkt_dc4, lsu_load_ecc_stbuf_full_dc4})); logic lsu_single_ecc_error_wb_ns; assign lsu_single_ecc_error_wb_ns = lsu_single_ecc_error_incr; rvdff #(2) lsu_dccm_errorff (.*, .clk(free_clk), .din({mdseac_locked_ns, lsu_single_ecc_error_wb_ns}), .dout({mdseac_locked_f, lsu_single_ecc_error_wb})); logic [31:0] lsu_error_pkt_addr_dc4, lsu_error_pkt_addr_wb; assign lsu_error_pkt_addr_dc4[31:0] = lsu_error_pkt_dc4.addr[31:0]; rvdff #(34) lsu_error_wbff (.*, .clk(lsu_e4_e5_clk), .din({lsu_error_pkt_addr_dc4[31:0], lsu_exc_valid_e4, lsu_i0_exc_dc4}), .dout({lsu_error_pkt_addr_wb[31:0], lsu_exc_valid_wb, lsu_i0_exc_wb})); // lsu exception is valid unless it's in pipe1 and there was a rfpc_i0_e4, brmp, or an iside exception in pipe0. assign lsu_exc_valid_e4_raw = lsu_error_pkt_dc4.exc_valid & ~(lsu_error_pkt_dc4.inst_pipe & (rfpc_i0_e4 | i0_exception_valid_e4 | exu_i0_br_mp_e4)) & ~dec_tlu_flush_lower_wb; assign lsu_i0_exc_dc4_raw = lsu_error_pkt_dc4.exc_valid & ~lsu_error_pkt_dc4.inst_pipe; assign lsu_i1_exc_dc4_raw = lsu_error_pkt_dc4.exc_valid & lsu_error_pkt_dc4.inst_pipe; assign lsu_i0_exc_dc4 = lsu_i0_exc_dc4_raw & lsu_exc_valid_e4_raw & ~i0_trigger_hit_e4; assign lsu_i1_exc_dc4 = lsu_i1_exc_dc4_raw & lsu_exc_valid_e4_raw & ~trigger_hit_e4; assign lsu_exc_valid_e4 = lsu_i0_exc_dc4 | lsu_i1_exc_dc4; assign lsu_exc_ma_dc4 = (lsu_i0_exc_dc4 | lsu_i1_exc_dc4) & ~lsu_error_pkt_dc4.exc_type; assign lsu_exc_acc_dc4 = (lsu_i0_exc_dc4 | lsu_i1_exc_dc4) & lsu_error_pkt_dc4.exc_type; assign lsu_exc_st_dc4 = (lsu_i0_exc_dc4 | lsu_i1_exc_dc4) & lsu_error_pkt_dc4.inst_type; // If the stbuf is not full, then // Single bit ECC errors on loads are RFNPC corrected, with the corrected data written to the GPR. // LSU turns the load into a store and patches the data in the DCCM assign lsu_i0_rfnpc_dc4 = dec_tlu_i0_valid_e4 & ~lsu_error_pkt_dc4.inst_pipe & ~lsu_error_pkt_dc4.inst_type & lsu_error_pkt_dc4.single_ecc_error & ~lsu_error_pkt_dc4.dma_valid & ~i0_trigger_hit_e4 & ~lsu_load_ecc_stbuf_full_dc4; assign lsu_i1_rfnpc_dc4 = dec_tlu_i1_valid_e4 & lsu_error_pkt_dc4.inst_pipe & ~lsu_error_pkt_dc4.inst_type & lsu_error_pkt_dc4.single_ecc_error & ~lsu_error_pkt_dc4.dma_valid & ~i0_trigger_hit_e4 & ~i1_trigger_hit_e4 & ~lsu_load_ecc_stbuf_full_dc4; // otherwise, they are rfpcs assign lsu_i0_rfpc_dc4 = dec_tlu_i0_valid_e4 & ~lsu_error_pkt_dc4.inst_pipe & ~lsu_error_pkt_dc4.inst_type & lsu_error_pkt_dc4.single_ecc_error & ~lsu_error_pkt_dc4.dma_valid & lsu_load_ecc_stbuf_full_dc4; assign lsu_i1_rfpc_dc4 = dec_tlu_i1_valid_e4 & lsu_error_pkt_dc4.inst_pipe & ~lsu_error_pkt_dc4.inst_type & lsu_error_pkt_dc4.single_ecc_error & ~lsu_error_pkt_dc4.dma_valid & lsu_load_ecc_stbuf_full_dc4; // Branch prediction updating assign dec_tlu_br0_addr_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] = exu_i0_br_index_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO]; assign dec_tlu_br0_bank_e4[1:0] = exu_i0_br_bank_e4[1:0]; assign dec_tlu_br1_addr_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] = exu_i1_br_index_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO]; assign dec_tlu_br1_bank_e4[1:0] = exu_i1_br_bank_e4[1:0]; // Final commit valids assign tlu_i0_commit_cmt = dec_tlu_i0_valid_e4 & ~rfpc_i0_e4 & ~lsu_i0_exc_dc4 & ~inst_acc_e4 & ~dec_tlu_dbg_halted & ~request_debug_mode_wb & ~i0_trigger_hit_e4; assign tlu_i1_commit_cmt = dec_tlu_i1_valid_e4 & ~rfpc_i0_e4 & ~rfpc_i1_e4 & ~exu_i0_br_mp_e4 & ~lsu_i0_exc_dc4 & ~lsu_i1_exc_dc4 & ~lsu_i0_rfnpc_dc4 & ~inst_acc_e4 & ~request_debug_mode_wb & ~trigger_hit_e4; // unified place to manage the killing of arch state writebacks assign tlu_i0_kill_writeb_e4 = rfpc_i0_e4 | lsu_i0_exc_dc4 | inst_acc_e4 | (illegal_e4 & dec_tlu_dbg_halted) | i0_trigger_hit_e4 ; assign tlu_i1_kill_writeb_e4 = rfpc_i0_e4 | rfpc_i1_e4 | lsu_exc_valid_e4 | exu_i0_br_mp_e4 | inst_acc_e4 | (illegal_e4 & dec_tlu_dbg_halted) | trigger_hit_e4 | lsu_i0_rfnpc_dc4; // Auto postsync loads that freeze when DMA requests are stalled, if not disabled with MFDC[13]. assign freeze_rfpc_e4 = (lsu_block_interrupts_e4 | (dma_mem_dccm_req_f & lsu_freeze_e4)) & ~dec_tlu_flush_lower_wb & mfdc[13]; assign rfpc_postsync_in = (freeze_rfpc_e4 | rfpc_postsync) & ~tlu_i0_commit_cmt; assign dec_tlu_dccm_nonblock_dma_disable = ~mfdc[13]; rvdff #(2) freezerfpc_ff (.*, .clk(free_clk), .din({rfpc_postsync_in, dma_mem_dccm_req}), .dout({rfpc_postsync, dma_mem_dccm_req_f})); // refetch PC, microarch flush // ic errors only in pipe0 assign rfpc_i0_e4 = freeze_rfpc_e4 | ( dec_tlu_i0_valid_e4 & ~tlu_flush_lower_wb & (exu_i0_br_error_e4 | exu_i0_br_start_error_e4 | ic_perr_e4 | iccm_sbecc_e4 | lsu_i0_rfpc_dc4) & ~i0_trigger_hit_e4); assign rfpc_i1_e4 = dec_tlu_i1_valid_e4 & ~tlu_flush_lower_wb & ~i0_exception_valid_e4 & ~exu_i0_br_mp_e4 & ~lsu_i0_exc_dc4 & ~lsu_i0_rfnpc_dc4 & ~(exu_i0_br_error_e4 | exu_i0_br_start_error_e4 | ic_perr_e4 | iccm_sbecc_e4 | lsu_i0_rfpc_dc4) & (exu_i1_br_error_e4 | exu_i1_br_start_error_e4 | lsu_i1_rfpc_dc4) & ~trigger_hit_e4; // go ahead and repair the branch error on other flushes, doesn't have to be the rfpc flush assign dec_tlu_br0_error_e4 = exu_i0_br_error_e4 & dec_tlu_i0_valid_e4 & ~tlu_flush_lower_wb; assign dec_tlu_br0_start_error_e4 = exu_i0_br_start_error_e4 & dec_tlu_i0_valid_e4 & ~tlu_flush_lower_wb; assign dec_tlu_br0_v_e4 = exu_i0_br_valid_e4 & dec_tlu_i0_valid_e4 & ~tlu_flush_lower_wb & ~exu_i0_br_mp_e4; assign dec_tlu_br1_error_e4 = exu_i1_br_error_e4 & dec_tlu_i1_valid_e4 & ~tlu_flush_lower_wb & ~exu_i0_br_mp_e4; assign dec_tlu_br1_start_error_e4 = exu_i1_br_start_error_e4 & dec_tlu_i1_valid_e4 & ~tlu_flush_lower_wb & ~exu_i0_br_mp_e4; assign dec_tlu_br1_v_e4 = exu_i1_br_valid_e4 & ~tlu_flush_lower_wb & dec_tlu_i1_valid_e4 & ~exu_i0_br_mp_e4 & ~exu_i1_br_mp_e4; `ifdef RV_BTB_48 rvdff #(20) `else rvdff #(18) `endif bp_wb_ff (.*, .clk(e4e5_clk), .din({exu_i0_br_hist_e4[1:0], dec_tlu_br0_error_e4, dec_tlu_br0_start_error_e4, dec_tlu_br0_v_e4, exu_i1_br_hist_e4[1:0], dec_tlu_br1_error_e4, dec_tlu_br1_start_error_e4, dec_tlu_br1_v_e4, dec_tlu_br0_bank_e4[1:0], dec_tlu_br1_bank_e4[1:0], exu_i0_br_way_e4, exu_i1_br_way_e4, exu_i0_br_middle_e4, exu_i1_br_middle_e4 }), .dout({dec_tlu_br0_wb_pkt.hist[1:0], dec_tlu_br0_wb_pkt.br_error, dec_tlu_br0_wb_pkt.br_start_error, dec_tlu_br0_wb_pkt.valid, dec_tlu_br1_wb_pkt.hist[1:0], dec_tlu_br1_wb_pkt.br_error, dec_tlu_br1_wb_pkt.br_start_error, dec_tlu_br1_wb_pkt.valid, dec_tlu_br0_wb_pkt.bank[1:0], dec_tlu_br1_wb_pkt.bank[1:0], dec_tlu_br0_wb_pkt.way, dec_tlu_br1_wb_pkt.way, dec_tlu_br0_wb_pkt.middle, dec_tlu_br1_wb_pkt.middle })); rvdff #(`RV_BHT_GHR_SIZE*2) bp_wb_ghrff (.*, .clk(e4e5_clk), .din({exu_i0_br_fghr_e4[`RV_BHT_GHR_RANGE], exu_i1_br_fghr_e4[`RV_BHT_GHR_RANGE] }), .dout({dec_tlu_br0_wb_pkt.fghr[`RV_BHT_GHR_RANGE], dec_tlu_br1_wb_pkt.fghr[`RV_BHT_GHR_RANGE] })); rvdff #(2*$bits(dec_tlu_br0_addr_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO])) bp_wb_index_ff (.*, .clk(e4e5_clk), .din({dec_tlu_br0_addr_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO], dec_tlu_br1_addr_e4[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO]}), .dout({dec_tlu_br0_wb_pkt.index[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO], dec_tlu_br1_wb_pkt.index[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO]})); // only expect these in pipe 0 assign ebreak_e4 = (dec_tlu_packet_e4.pmu_i0_itype == EBREAK) & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4 & ~dcsr[`DCSR_EBREAKM]; assign ecall_e4 = (dec_tlu_packet_e4.pmu_i0_itype == ECALL) & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4; assign illegal_e4 = ~dec_tlu_packet_e4.legal & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4; assign mret_e4 = (dec_tlu_packet_e4.pmu_i0_itype == MRET) & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4; // fence_i includes debug only fence_i's assign fence_i_e4 = (dec_tlu_packet_e4.fence_i & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4); //| csr_fence_i_wb; assign ic_perr_e4 = dec_tlu_packet_e4.perr & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4; assign iccm_sbecc_e4 = dec_tlu_packet_e4.sbecc & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4; assign inst_acc_e4_raw = dec_tlu_packet_e4.icaf & dec_tlu_i0_valid_e4; assign inst_acc_e4 = inst_acc_e4_raw & ~rfpc_i0_e4 & ~i0_trigger_hit_e4; assign inst_acc_second_e4 = dec_tlu_packet_e4.icaf_second; assign ebreak_to_debug_mode_e4 = (dec_tlu_packet_e4.pmu_i0_itype == EBREAK) & dec_tlu_i0_valid_e4 & ~i0_trigger_hit_e4 & dcsr[`DCSR_EBREAKM]; assign illegal_e4_qual = illegal_e4 & ~dec_tlu_dbg_halted; rvdff #(11) exctype_wb_ff (.*, .clk(e4e5_clk), .din({ic_perr_e4, iccm_sbecc_e4, ebreak_e4, ebreak_to_debug_mode_e4, ecall_e4, illegal_e4, illegal_e4_qual, inst_acc_e4, inst_acc_second_e4, fence_i_e4, mret_e4}), .dout({ic_perr_wb, iccm_sbecc_wb, ebreak_wb, ebreak_to_debug_mode_wb, ecall_wb, illegal_raw_wb, illegal_wb, inst_acc_wb, inst_acc_second_wb, fence_i_wb, mret_wb})); assign dec_tlu_fence_i_wb = fence_i_wb; // // Exceptions // // - MEPC <- PC // - PC <- MTVEC, assert flush_lower // - MCAUSE <- cause // - MTVAL <- // - MPIE <- MIE // - MIE <- 0 // assign i0_exception_valid_e4 = (ebreak_e4 | ecall_e4 | illegal_e4 | inst_acc_e4) & ~rfpc_i0_e4 & ~dec_tlu_dbg_halted; // Cause: // // 0x2 : illegal // 0x3 : breakpoint // 0xb : Environment call M-mode assign exc_cause_e4[4:0] = ( ({5{take_ext_int}} & 5'h0b) | ({5{take_timer_int}} & 5'h07) | ({5{take_int_timer0_int}} & 5'h1d) | ({5{take_int_timer1_int}} & 5'h1c) | ({5{take_ce_int}} & 5'h1e) | ({5{illegal_e4}} & 5'h02) | ({5{ecall_e4}} & 5'h0b) | ({5{inst_acc_e4}} & 5'h01) | ({5{ebreak_e4 | trigger_hit_e4}} & 5'h03) | ({5{lsu_exc_ma_dc4 & ~lsu_exc_st_dc4}} & 5'h04) | ({5{lsu_exc_acc_dc4 & ~lsu_exc_st_dc4}} & 5'h05) | ({5{lsu_exc_ma_dc4 & lsu_exc_st_dc4}} & 5'h06) | ({5{lsu_exc_acc_dc4 & lsu_exc_st_dc4}} & 5'h07) ) & ~{5{take_nmi}}; // // Interrupts // // Priv spec 1.10, 3.1.14 // "Multiple simultaneous interrupts and traps at the same privilege level are handled in the following // decreasing priority order: external interrupts, software interrupts, timer interrupts, then finally any // synchronous traps." // // For above purposes, exceptions that are committed have already happened and will cause an int at E4 to wait a cycle // or more if MSTATUS[MIE] is cleared. // // -in priority order, highest to lowest // -single cycle window where a csr write to MIE/MSTATUS is at E4 when the other conditions for externals are met. // Hold off externals for a cycle to make sure we are consistent with what was just written assign mhwakeup_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MEIP] & mie_ns[`MIE_MEIE]; assign ext_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MEIP] & mie_ns[`MIE_MEIE]; assign ce_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MCEIP] & mie_ns[`MIE_MCEIE]; assign timer_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MTIP] & mie_ns[`MIE_MTIE]; // MIP for internal timers pulses for 1 clock, resets the timer counter. Mip won't hold past the various stall conditions. assign int_timer0_int_possible = mstatus_mie_ns & mie_ns[`MIE_MITIE0]; assign int_timer0_int_ready = mip[`MIP_MITIP0] & int_timer0_int_possible; assign int_timer1_int_possible = mstatus_mie_ns & mie_ns[`MIE_MITIE1]; assign int_timer1_int_ready = mip[`MIP_MITIP1] & int_timer1_int_possible; // Internal timers pulse and reset. If core is PMU/FW halted, the pulse will cause an exit from halt, but won't stick around // Make it sticky, also for 1 cycle stall conditions. assign int_timer_stalled = dec_csr_stall_int_ff | synchronous_flush_e4 | exc_or_int_valid_wb | mret_wb | mret_e4; assign int_timer0_int_hold = (int_timer0_int_ready & (pmu_fw_tlu_halted_f | int_timer_stalled)) | (int_timer0_int_possible & int_timer0_int_hold_f & ~interrupt_valid & ~internal_dbg_halt_mode_f); assign int_timer1_int_hold = (int_timer1_int_ready & (pmu_fw_tlu_halted_f | int_timer_stalled)) | (int_timer1_int_possible & int_timer1_int_hold_f & ~interrupt_valid & ~internal_dbg_halt_mode_f); // mispredicts assign i0_mp_e4 = exu_i0_flush_lower_e4 & ~i0_trigger_hit_e4; assign i1_mp_e4 = exu_i1_flush_lower_e4 & ~trigger_hit_e4 & ~lsu_i0_rfnpc_dc4; assign internal_dbg_halt_timers = internal_dbg_halt_mode_f & ~dcsr_single_step_running; // Prioritize externals assign block_interrupts = ( (lsu_block_interrupts_e4 & ~dec_tlu_flush_lower_wb) | // I/O transaction on the bus pending (internal_dbg_halt_mode & (~dcsr_single_step_running | dec_tlu_i0_valid_e4)) | // No ints in db-halt unless we are single stepping internal_pmu_fw_halt_mode | i_cpu_halt_req_d1 |// No ints in PMU/FW halt. First we exit halt take_nmi | // NMI is top priority ebreak_to_debug_mode_e4 | // Heading to debug mode, hold off ints synchronous_flush_e4 | // exception flush this cycle exc_or_int_valid_wb | // ext/int past cycle (need time for MIE to update) mret_wb | // mret (need time for MIE to update) mret_e4 // mret in progress, for cases were ISR enables ints before mret ); assign take_ext_int = ext_int_ready & ~block_interrupts; assign take_ce_int = ce_int_ready & ~ext_int_ready & ~block_interrupts; assign take_timer_int = timer_int_ready & ~ext_int_ready & ~ce_int_ready & ~block_interrupts; assign take_int_timer0_int = (int_timer0_int_ready | int_timer0_int_hold_f) & int_timer0_int_possible & ~dec_csr_stall_int_ff & ~timer_int_ready & ~ext_int_ready & ~ce_int_ready & ~block_interrupts; assign take_int_timer1_int = (int_timer1_int_ready | int_timer1_int_hold_f) & int_timer1_int_possible & ~dec_csr_stall_int_ff & ~(int_timer0_int_ready | int_timer0_int_hold_f) & ~timer_int_ready & ~ext_int_ready & ~ce_int_ready & ~block_interrupts; assign take_reset = reset_delayed & mpc_reset_run_req; assign take_nmi = nmi_int_detected & ~internal_pmu_fw_halt_mode & (~internal_dbg_halt_mode | (dcsr_single_step_running_f & dcsr[`DCSR_STEPIE] & ~dec_tlu_i0_valid_e4 & ~dcsr_single_step_done_f)) & ~synchronous_flush_e4 & ~mret_e4 & ~take_reset & ~ebreak_to_debug_mode_e4; assign interrupt_valid = take_ext_int | take_timer_int | take_nmi | take_ce_int | take_int_timer0_int | take_int_timer1_int; // Compute interrupt path: // If vectored async is set in mtvec, flush path for interrupts is MTVEC + (4 * CAUSE); assign vectored_cause[5:0] = ({1'b0, exc_cause_e4[4:0]} << 1); assign {vpath_overflow_nc, vectored_path[31:1]} = {mtvec[30:1], 1'b0} + {25'b0, vectored_cause[5:0]}; assign interrupt_path[31:1] = take_nmi ? nmi_vec[31:1] : ((mtvec[0] == 1'b1) ? vectored_path[31:1] : {mtvec[30:1], 1'b0}); assign sel_npc_e4 = lsu_i0_rfnpc_dc4 | (lsu_i1_rfnpc_dc4 & tlu_i1_commit_cmt) | fence_i_e4 | (i_cpu_run_req_d1 & ~interrupt_valid); assign sel_npc_wb = (i_cpu_run_req_d1 & pmu_fw_tlu_halted_f) | pause_expired_e4; assign synchronous_flush_e4 = i0_exception_valid_e4 | // exception i0_mp_e4 | i1_mp_e4 | // mispredict rfpc_i0_e4 | rfpc_i1_e4 | // rfpc lsu_exc_valid_e4 | // lsu exception in either pipe 0 or pipe 1 fence_i_e4 | // fence, a rfnpc lsu_i0_rfnpc_dc4 | lsu_i1_rfnpc_dc4 | debug_resume_req_f | // resume from debug halt, fetch the dpc sel_npc_wb | // resume from pmu/fw halt, or from pause and fetch the NPC dec_tlu_wr_pause_wb | // flush at start of pause trigger_hit_e4; // trigger hit, ebreak or goto debug mode assign tlu_flush_lower_e4 = interrupt_valid | mret_e4 | synchronous_flush_e4 | take_halt | take_reset; assign tlu_flush_path_e4[31:1] = take_reset ? rst_vec[31:1] : ( ({31{~take_nmi & i0_mp_e4}} & exu_i0_flush_path_e4[31:1]) | ({31{~take_nmi & ~i0_mp_e4 & i1_mp_e4 & ~rfpc_i0_e4 & ~lsu_i0_exc_dc4}} & exu_i1_flush_path_e4[31:1]) | ({31{~take_nmi & sel_npc_e4}} & npc_e4[31:1]) | ({31{~take_nmi & rfpc_i0_e4}} & dec_tlu_i0_pc_e4[31:1]) | ({31{~take_nmi & rfpc_i1_e4}} & dec_tlu_i1_pc_e4[31:1]) | ({31{interrupt_valid}} & interrupt_path[31:1]) | ({31{(i0_exception_valid_e4 | lsu_exc_valid_e4 | (trigger_hit_e4 & ~trigger_hit_dmode_e4)) & ~interrupt_valid}} & {mtvec[30:1],1'b0}) | ({31{~take_nmi & mret_e4 & ~wr_mepc_wb}} & mepc[31:1]) | ({31{~take_nmi & debug_resume_req_f}} & dpc[31:1]) | ({31{~take_nmi & sel_npc_wb}} & npc_wb[31:1]) | ({31{~take_nmi & mret_e4 & wr_mepc_wb}} & dec_csr_wrdata_wb[31:1]) ); rvdff #(31) flush_lower_ff (.*, .clk(e4e5_int_clk), .din({tlu_flush_path_e4[31:1]}), .dout({tlu_flush_path_wb[31:1]})); assign dec_tlu_flush_lower_wb = tlu_flush_lower_wb; assign dec_tlu_flush_path_wb[31:1] = tlu_flush_path_wb[31:1]; // this is used to capture mepc, etc. assign exc_or_int_valid = lsu_exc_valid_e4 | i0_exception_valid_e4 | interrupt_valid | (trigger_hit_e4 & ~trigger_hit_dmode_e4); assign lsu_block_interrupts_dc3 = lsu_freeze_external_ints_dc3 & ~dec_tlu_flush_lower_wb; rvdff #(15) excinfo_wb_ff (.*, .clk(e4e5_int_clk), .din({interrupt_valid, i0_exception_valid_e4, exc_or_int_valid, exc_cause_e4[4:0], tlu_i0_commit_cmt & ~illegal_e4, tlu_i1_commit_cmt, mepc_trigger_hit_sel_pc_e4, trigger_hit_e4, i0_trigger_hit_e4, take_nmi, pause_expired_e4 }), .dout({interrupt_valid_wb, i0_exception_valid_wb, exc_or_int_valid_wb, exc_cause_wb[4:0], i0_valid_wb, i1_valid_wb, mepc_trigger_hit_sel_pc_wb, trigger_hit_wb, i0_trigger_hit_wb, take_nmi_wb, pause_expired_wb})); //---------------------------------------------------------------------- // // CSRs // //---------------------------------------------------------------------- // ---------------------------------------------------------------------- // MISA (RO) // [31:30] XLEN - implementation width, 2'b01 - 32 bits // [12] M - integer mul/div // [8] I - RV32I // [2] C - Compressed extension `define MISA 12'h301 // MVENDORID, MARCHID, MIMPID, MHARTID `define MVENDORID 12'hf11 `define MARCHID 12'hf12 `define MIMPID 12'hf13 `define MHARTID 12'hf14 // ---------------------------------------------------------------------- // MSTATUS (RW) // [12:11] MPP : Prior priv level, always 2'b11, not flopped // [7] MPIE : Int enable previous [1] // [3] MIE : Int enable [0] `define MSTATUS 12'h300 //When executing a MRET instruction, supposing MPP holds the value 3, MIE //is set to MPIE; the privilege mode is changed to 3; MPIE is set to 1; and MPP is set to 3 assign dec_csr_wen_wb_mod = dec_csr_wen_wb & ~trigger_hit_wb; assign wr_mstatus_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MSTATUS); // set this even if we don't go to fwhalt due to debug halt. We committed the inst, so ... assign set_mie_pmu_fw_halt = ~mpmc_b_ns[1] & wr_mpmc_wb & dec_csr_wrdata_wb[0] & ~internal_dbg_halt_mode_f3; assign mstatus_ns[1:0] = ( ({2{~wr_mstatus_wb & exc_or_int_valid_wb}} & {(mstatus[`MSTATUS_MIE] | set_mie_pmu_fw_halt), 1'b0}) | ({2{ wr_mstatus_wb & exc_or_int_valid_wb}} & {dec_csr_wrdata_wb[3], 1'b0}) | ({2{mret_wb & ~exc_or_int_valid_wb}} & {1'b1, mstatus[1]}) | ({2{set_mie_pmu_fw_halt & ~exc_or_int_valid_wb}} & {mstatus[1], 1'b1}) | ({2{wr_mstatus_wb & ~exc_or_int_valid_wb}} & {dec_csr_wrdata_wb[7], dec_csr_wrdata_wb[3]}) | ({2{~wr_mstatus_wb & ~exc_or_int_valid_wb & ~mret_wb & ~set_mie_pmu_fw_halt}} & mstatus[1:0]) ); // gate MIE if we are single stepping and DCSR[STEPIE] is off assign mstatus_mie_ns = mstatus_ns[`MSTATUS_MIE] & (~dcsr_single_step_running_f | dcsr[`DCSR_STEPIE]); rvdff #(2) mstatus_ff (.*, .clk(free_clk), .din(mstatus_ns[1:0]), .dout(mstatus[1:0])); // ---------------------------------------------------------------------- // MTVEC (RW) // [31:2] BASE : Trap vector base address // [1] - Reserved, not implemented, reads zero // [0] MODE : 0 = Direct, 1 = Asyncs are vectored to BASE + (4 * CAUSE) `define MTVEC 12'h305 assign wr_mtvec_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTVEC); assign mtvec_ns[30:0] = {dec_csr_wrdata_wb[31:2], dec_csr_wrdata_wb[0]} ; rvdffe #(31) mtvec_ff (.*, .en(wr_mtvec_wb), .din(mtvec_ns[30:0]), .dout(mtvec[30:0])); // ---------------------------------------------------------------------- // MIP (RW) // // [30] MCEIP : (RO) M-Mode Correctable Error interrupt pending // [29] MITIP0 : (RO) M-Mode Internal Timer0 interrupt pending // [28] MITIP1 : (RO) M-Mode Internal Timer1 interrupt pending // [11] MEIP : (RO) M-Mode external interrupt pending // [7] MTIP : (RO) M-Mode timer interrupt pending // [3] MSIP : (RO) M-Mode software interrupt pending `define MIP 12'h344 assign ce_int = (mdccme_ce_req | miccme_ce_req | mice_ce_req); assign mip_ns[5:0] = {ce_int, dec_timer_t0_pulse, dec_timer_t1_pulse, mexintpend, timer_int_sync, mip[0]}; rvdff #(6) mip_ff (.*, .clk(free_clk), .din(mip_ns[5:0]), .dout(mip[5:0])); // ---------------------------------------------------------------------- // MIE (RW) // [30] MCEIE : (RO) M-Mode Correctable Error interrupt enable // [29] MITIE0 : (RO) M-Mode Internal Timer0 interrupt enable // [28] MITIE1 : (RO) M-Mode Internal Timer1 interrupt enable // [11] MEIE : (RW) M-Mode external interrupt enable // [7] MTIE : (RW) M-Mode timer interrupt enable // [3] MSIE : (RW) M-Mode software interrupt enable `define MIE 12'h304 assign wr_mie_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MIE); assign mie_ns[5:0] = wr_mie_wb ? {dec_csr_wrdata_wb[30:28], dec_csr_wrdata_wb[11], dec_csr_wrdata_wb[7], dec_csr_wrdata_wb[3]} : mie[5:0]; rvdff #(6) mie_ff (.*, .clk(csr_wr_clk), .din(mie_ns[5:0]), .dout(mie[5:0])); // ---------------------------------------------------------------------- // MCYCLEL (RW) // [31:0] : Lower Cycle count `define MCYCLEL 12'hb00 assign wr_mcyclel_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MCYCLEL); logic mcyclel_cout_in; assign kill_ebreak_count_wb = ebreak_to_debug_mode_wb & dcsr[`DCSR_STOPC]; assign mcyclel_cout_in = ~(kill_ebreak_count_wb | (dec_tlu_dbg_halted & dcsr[`DCSR_STOPC]) | dec_tlu_pmu_fw_halted); assign {mcyclel_cout, mcyclel_inc[31:0]} = mcyclel[31:0] + {31'b0, mcyclel_cout_in}; assign mcyclel_ns[31:0] = wr_mcyclel_wb ? dec_csr_wrdata_wb[31:0] : mcyclel_inc[31:0]; rvdffe #(32) mcyclel_ff (.*, .en(wr_mcyclel_wb | mcyclel_cout_in), .din(mcyclel_ns[31:0]), .dout(mcyclel[31:0])); rvdff #(1) mcyclef_cout_ff (.*, .clk(free_clk), .din(mcyclel_cout & ~wr_mcycleh_wb), .dout(mcyclel_cout_f)); // ---------------------------------------------------------------------- // MCYCLEH (RW) // [63:32] : Higher Cycle count // Chained with mcyclel. Note: mcyclel overflow due to a mcycleh write gets ignored. `define MCYCLEH 12'hb80 assign wr_mcycleh_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MCYCLEH); assign {mcycleh_cout_nc, mcycleh_inc[31:0]} = mcycleh[31:0] + {31'b0, mcyclel_cout_f}; assign mcycleh_ns[31:0] = wr_mcycleh_wb ? dec_csr_wrdata_wb[31:0] : mcycleh_inc[31:0]; rvdffe #(32) mcycleh_ff (.*, .en(wr_mcycleh_wb | mcyclel_cout_f), .din(mcycleh_ns[31:0]), .dout(mcycleh[31:0])); // ---------------------------------------------------------------------- // MINSTRETL (RW) // [31:0] : Lower Instruction retired count // From the spec "Some CSRs, such as the instructions retired counter, instret, may be modified as side effects // of instruction execution. In these cases, if a CSR access instruction reads a CSR, it reads the // value prior to the execution of the instruction. If a CSR access instruction writes a CSR, the // update occurs after the execution of the instruction. In particular, a value written to instret by // one instruction will be the value read by the following instruction (i.e., the increment of instret // caused by the first instruction retiring happens before the write of the new value)." `define MINSTRETL 12'hb02 logic i0_valid_no_ebreak_ecall_wb; assign i0_valid_no_ebreak_ecall_wb = i0_valid_wb & ~(ebreak_wb | ecall_wb | ebreak_to_debug_mode_wb); assign wr_minstretl_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MINSTRETL); assign {minstretl_cout, minstretl_inc[31:0]} = minstretl[31:0] + {31'b0,i0_valid_no_ebreak_ecall_wb} + {31'b0,i1_valid_wb}; assign minstret_enable = i0_valid_no_ebreak_ecall_wb | i1_valid_wb; assign minstretl_ns[31:0] = wr_minstretl_wb ? dec_csr_wrdata_wb[31:0] : minstretl_inc[31:0]; rvdffe #(32) minstretl_ff (.*, .en(minstret_enable | wr_minstretl_wb), .din(minstretl_ns[31:0]), .dout(minstretl[31:0])); logic minstret_enable_f; rvdff #(2) minstretf_cout_ff (.*, .clk(free_clk), .din({minstret_enable, minstretl_cout & ~wr_minstreth_wb}), .dout({minstret_enable_f, minstretl_cout_f})); assign minstretl_read[31:0] = minstretl[31:0]; // ---------------------------------------------------------------------- // MINSTRETH (RW) // [63:32] : Higher Instret count // Chained with minstretl. Note: minstretl overflow due to a minstreth write gets ignored. `define MINSTRETH 12'hb82 assign wr_minstreth_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MINSTRETH); assign {minstreth_cout_nc, minstreth_inc[31:0]} = minstreth[31:0] + {31'b0, minstretl_cout_f}; assign minstreth_ns[31:0] = wr_minstreth_wb ? dec_csr_wrdata_wb[31:0] : minstreth_inc[31:0]; rvdffe #(32) minstreth_ff (.*, .en(minstret_enable_f | wr_minstreth_wb), .din(minstreth_ns[31:0]), .dout(minstreth[31:0])); assign minstreth_read[31:0] = minstreth_inc[31:0]; // ---------------------------------------------------------------------- // MSCRATCH (RW) // [31:0] : Scratch register `define MSCRATCH 12'h340 assign wr_mscratch_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MSCRATCH); rvdffe #(32) mscratch_ff (.*, .en(wr_mscratch_wb), .din(dec_csr_wrdata_wb[31:0]), .dout(mscratch[31:0])); // ---------------------------------------------------------------------- // MEPC (RW) // [31:1] : Exception PC `define MEPC 12'h341 // NPC logic sel_exu_npc_e4, sel_flush_npc_e4, sel_i0_npc_e4, sel_hold_npc_e4; // commit all ops assign sel_exu_npc_e4 = ~dec_tlu_dbg_halted & ~tlu_flush_lower_wb & (dec_tlu_i0_valid_e4 | dec_tlu_i1_valid_e4) & ~(dec_tlu_i1_valid_e4 & lsu_i0_rfnpc_dc4); // commit just i0 when there's a valid i1 that should be flushed assign sel_i0_npc_e4 = ~dec_tlu_dbg_halted & ~tlu_flush_lower_wb & dec_tlu_i0_valid_e4 & lsu_i0_rfnpc_dc4 & dec_tlu_i1_valid_e4; // flush, update npc assign sel_flush_npc_e4 = ~dec_tlu_dbg_halted & tlu_flush_lower_wb & ~dec_tlu_flush_noredir_wb; // hold prior npc assign sel_hold_npc_e4 = ~sel_exu_npc_e4 & ~sel_flush_npc_e4 & ~sel_i0_npc_e4; assign npc_e4[31:1] = ( ({31{sel_exu_npc_e4}} & exu_npc_e4[31:1]) | ({31{sel_i0_npc_e4}} & dec_tlu_i1_pc_e4[31:1]) | ({31{~mpc_reset_run_req & reset_delayed}} & rst_vec[31:1]) | // init to reset vector for mpc halt on reset case ({31{(sel_flush_npc_e4)}} & tlu_flush_path_wb[31:1]) | ({31{(sel_hold_npc_e4)}} & npc_wb[31:1]) ); rvdffe #(31) npwbc_ff (.*, .en(sel_i0_npc_e4 | sel_exu_npc_e4 | sel_flush_npc_e4 | reset_delayed), .din(npc_e4[31:1]), .dout(npc_wb[31:1])); // PC has to be captured for exceptions and interrupts. For MRET, we could execute it and then take an // interrupt before the next instruction. logic pc0_valid_e4, pc1_valid_e4; assign pc0_valid_e4 = ~dec_tlu_dbg_halted & dec_tlu_i0_valid_e4; assign pc1_valid_e4 = ~dec_tlu_dbg_halted & dec_tlu_i0_valid_e4 & dec_tlu_i1_valid_e4 & ~lsu_i0_exc_dc4 & ~rfpc_i0_e4 & ~inst_acc_e4 & ~i0_trigger_hit_e4; assign pc_e4[31:1] = ( ({31{ pc0_valid_e4 & ~pc1_valid_e4}} & dec_tlu_i0_pc_e4[31:1]) | ({31{ pc1_valid_e4}} & dec_tlu_i1_pc_e4[31:1]) | ({31{~pc0_valid_e4 & ~pc1_valid_e4}} & pc_wb[31:1]) ); rvdffe #(31) pwbc_ff (.*, .en(pc0_valid_e4 | pc1_valid_e4), .din(pc_e4[31:1]), .dout(pc_wb[31:1])); assign wr_mepc_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MEPC); assign mepc_ns[31:1] = ( ({31{i0_exception_valid_wb | lsu_exc_valid_wb | mepc_trigger_hit_sel_pc_wb}} & pc_wb[31:1]) | ({31{interrupt_valid_wb}} & npc_wb[31:1]) | ({31{wr_mepc_wb & ~exc_or_int_valid_wb}} & dec_csr_wrdata_wb[31:1]) | ({31{~wr_mepc_wb & ~exc_or_int_valid_wb}} & mepc[31:1]) ); rvdff #(31) mepc_ff (.*, .clk(e4e5_int_clk), .din(mepc_ns[31:1]), .dout(mepc[31:1])); // ---------------------------------------------------------------------- // MCAUSE (RW) // [31:0] : Exception Cause `define MCAUSE 12'h342 assign wr_mcause_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MCAUSE); assign mcause_ns[31:0] = ( ({32{exc_or_int_valid_wb & take_nmi_wb & nmi_lsu_store_type_f}} & {32'hf000_0000}) | ({32{exc_or_int_valid_wb & take_nmi_wb & nmi_lsu_load_type_f}} & {32'hf000_0001}) | ({32{exc_or_int_valid_wb & ~take_nmi_wb}} & {interrupt_valid_wb, 26'b0, exc_cause_wb[4:0]}) | ({32{wr_mcause_wb & ~exc_or_int_valid_wb}} & dec_csr_wrdata_wb[31:0]) | ({32{~wr_mcause_wb & ~exc_or_int_valid_wb}} & mcause[31:0]) ); rvdff #(32) mcause_ff (.*, .clk(e4e5_int_clk), .din(mcause_ns[31:0]), .dout(mcause[31:0])); // ---------------------------------------------------------------------- // MTVAL (RW) // [31:0] : Exception address if relevant `define MTVAL 12'h343 assign wr_mtval_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTVAL); assign mtval_capture_pc_wb = exc_or_int_valid_wb & (ebreak_wb | (inst_acc_wb & ~inst_acc_second_wb) | mepc_trigger_hit_sel_pc_wb) & ~take_nmi_wb; assign mtval_capture_pc_plus2_wb = exc_or_int_valid_wb & (inst_acc_wb & inst_acc_second_wb) & ~take_nmi_wb; assign mtval_capture_inst_wb = exc_or_int_valid_wb & illegal_wb & ~take_nmi_wb; assign mtval_capture_lsu_wb = exc_or_int_valid_wb & lsu_exc_valid_wb & ~take_nmi_wb; assign mtval_clear_wb = exc_or_int_valid_wb & ~mtval_capture_pc_wb & ~mtval_capture_inst_wb & ~mtval_capture_lsu_wb & ~mepc_trigger_hit_sel_pc_wb; assign mtval_ns[31:0] = (({32{mtval_capture_pc_wb}} & {pc_wb[31:1], 1'b0}) | ({32{mtval_capture_pc_plus2_wb}} & {pc_wb[31:1] + 31'b1, 1'b0}) | ({32{mtval_capture_inst_wb}} & dec_illegal_inst[31:0]) | ({32{mtval_capture_lsu_wb}} & lsu_error_pkt_addr_wb[31:0]) | ({32{wr_mtval_wb & ~interrupt_valid_wb}} & dec_csr_wrdata_wb[31:0]) | ({32{~take_nmi_wb & ~wr_mtval_wb & ~mtval_capture_pc_wb & ~mtval_capture_inst_wb & ~mtval_clear_wb & ~mtval_capture_lsu_wb}} & mtval[31:0]) ); rvdff #(32) mtval_ff (.*, .clk(e4e5_int_clk), .din(mtval_ns[31:0]), .dout(mtval[31:0])); // ---------------------------------------------------------------------- // MCGC (RW) Clock gating control // [31:9] : Reserved, reads 0x0 // [8] : misc_clk_override // [7] : dec_clk_override // [6] : exu_clk_override // [5] : ifu_clk_override // [4] : lsu_clk_override // [3] : bus_clk_override // [2] : pic_clk_override // [1] : dccm_clk_override // [0] : icm_clk_override // `define MCGC 12'h7f8 assign wr_mcgc_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MCGC); rvdffe #(9) mcgc_ff (.*, .en(wr_mcgc_wb), .din(dec_csr_wrdata_wb[8:0]), .dout(mcgc[8:0])); assign dec_tlu_misc_clk_override = mcgc[8]; assign dec_tlu_dec_clk_override = mcgc[7]; assign dec_tlu_exu_clk_override = mcgc[6]; assign dec_tlu_ifu_clk_override = mcgc[5]; assign dec_tlu_lsu_clk_override = mcgc[4]; assign dec_tlu_bus_clk_override = mcgc[3]; assign dec_tlu_pic_clk_override = mcgc[2]; assign dec_tlu_dccm_clk_override = mcgc[1]; assign dec_tlu_icm_clk_override = mcgc[0]; // ---------------------------------------------------------------------- // MFDC (RW) Feature Disable Control // [31:19] : Reserved, reads 0x0 // [18:16] : DMA QoS Prty // [15:14] : Reserved, reads 0x0 // [13] : Disable blocking DMA // [12:11] : Reserved, reads 0x0 // [10] : Disable dual issue // [9] : Disable pic multiple ints // [8] : Disable core ecc // [7] : Disable secondary alu?s // [6] : Disable multiple outstanding sideeffect accesses to bus // [5] : Disable non-blocking divides // [4] : Disable fast divide // [3] : Disable branch prediction and return stack // [2] : Disable write buffer coalescing // [1] : Disable load misses that bypass the write buffer // [0] : Disable pipelining - Enable single instruction execution // `define MFDC 12'h7f9 assign wr_mfdc_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MFDC); rvdffe #(15) mfdc_ff (.*, .en(wr_mfdc_wb), .din(mfdc_ns[14:0]), .dout(mfdc_int[14:0])); `ifdef RV_BUILD_AXI4 // flip poweron value of bit 6 for AXI build assign mfdc_ns[14:0] = {~dec_csr_wrdata_wb[18:16],dec_csr_wrdata_wb[13], dec_csr_wrdata_wb[10:7], ~dec_csr_wrdata_wb[6], dec_csr_wrdata_wb[5:0]}; assign mfdc[18:0] = {~mfdc_int[14:12], 2'b0, mfdc_int[11], 2'b0, mfdc_int[10:7], ~mfdc_int[6], mfdc_int[5:0]}; `else assign mfdc_ns[14:0] = {~dec_csr_wrdata_wb[18:16],dec_csr_wrdata_wb[13],dec_csr_wrdata_wb[10:0]}; assign mfdc[18:0] = {~mfdc_int[14:12], 2'b0, mfdc_int[11], 2'b0, mfdc_int[10:0]}; `endif assign dec_tlu_dma_qos_prty[2:0] = mfdc[18:16]; assign dec_tlu_dual_issue_disable = mfdc[10]; assign dec_tlu_core_ecc_disable = mfdc[8]; assign dec_tlu_sec_alu_disable = mfdc[7]; assign dec_tlu_sideeffect_posted_disable = mfdc[6]; assign dec_tlu_non_blocking_disable = mfdc[5]; assign dec_tlu_fast_div_disable = mfdc[4]; assign dec_tlu_bpred_disable = mfdc[3]; assign dec_tlu_wb_coalescing_disable = mfdc[2]; assign dec_tlu_ld_miss_byp_wb_disable = mfdc[1]; assign dec_tlu_pipelining_disable = mfdc[0]; // ---------------------------------------------------------------------- // MCPC (RW) Pause counter // [31:0] : Reads 0x0, decs in the wb register in decode_ctl `define MCPC 12'h7c2 assign dec_tlu_wr_pause_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MCPC) & ~interrupt_valid_wb; // ---------------------------------------------------------------------- // MRAC (RW) // [31:0] : Region Access Control Register, 16 regions, {side_effect, cachable} pairs `define MRAC 12'h7c0 assign wr_mrac_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MRAC); // prevent pairs of 0x11, side_effect and cacheable logic [31:0] mrac_in; assign mrac_in[31:0] = {dec_csr_wrdata_wb[31], dec_csr_wrdata_wb[30] & ~dec_csr_wrdata_wb[31], dec_csr_wrdata_wb[29], dec_csr_wrdata_wb[28] & ~dec_csr_wrdata_wb[29], dec_csr_wrdata_wb[27], dec_csr_wrdata_wb[26] & ~dec_csr_wrdata_wb[27], dec_csr_wrdata_wb[25], dec_csr_wrdata_wb[24] & ~dec_csr_wrdata_wb[25], dec_csr_wrdata_wb[23], dec_csr_wrdata_wb[22] & ~dec_csr_wrdata_wb[23], dec_csr_wrdata_wb[21], dec_csr_wrdata_wb[20] & ~dec_csr_wrdata_wb[21], dec_csr_wrdata_wb[19], dec_csr_wrdata_wb[18] & ~dec_csr_wrdata_wb[19], dec_csr_wrdata_wb[17], dec_csr_wrdata_wb[16] & ~dec_csr_wrdata_wb[17], dec_csr_wrdata_wb[15], dec_csr_wrdata_wb[14] & ~dec_csr_wrdata_wb[15], dec_csr_wrdata_wb[13], dec_csr_wrdata_wb[12] & ~dec_csr_wrdata_wb[13], dec_csr_wrdata_wb[11], dec_csr_wrdata_wb[10] & ~dec_csr_wrdata_wb[11], dec_csr_wrdata_wb[9], dec_csr_wrdata_wb[8] & ~dec_csr_wrdata_wb[9], dec_csr_wrdata_wb[7], dec_csr_wrdata_wb[6] & ~dec_csr_wrdata_wb[7], dec_csr_wrdata_wb[5], dec_csr_wrdata_wb[4] & ~dec_csr_wrdata_wb[5], dec_csr_wrdata_wb[3], dec_csr_wrdata_wb[2] & ~dec_csr_wrdata_wb[3], dec_csr_wrdata_wb[1], dec_csr_wrdata_wb[0] & ~dec_csr_wrdata_wb[1]}; rvdffe #(32) mrac_ff (.*, .en(wr_mrac_wb), .din(mrac_in[31:0]), .dout(mrac[31:0])); // drive to LSU/IFU assign dec_tlu_mrac_ff[31:0] = mrac[31:0]; // ---------------------------------------------------------------------- // MDEAU (WAR0) // [31:0] : Dbus Error Address Unlock register // `define MDEAU 12'hbc0 assign wr_mdeau_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MDEAU); // ---------------------------------------------------------------------- // MDSEAC (R) // [31:0] : Dbus Store Error Address Capture register // `define MDSEAC 12'hfc0 // only capture error bus if the MDSEAC reg is not locked assign mdseac_locked_ns = mdseac_en | (mdseac_locked_f & ~wr_mdeau_wb); assign mdseac_en = (lsu_imprecise_error_store_any | lsu_imprecise_error_load_any) & ~nmi_int_detected_f & ~mdseac_locked_f; rvdffe #(32) mdseac_ff (.*, .en(mdseac_en), .din(lsu_imprecise_error_addr_any[31:0]), .dout(mdseac[31:0])); // ---------------------------------------------------------------------- // MPMC (R0W1) // [0] : FW halt // [1] : HALTIE // `define MPMC 12'h7c6 assign wr_mpmc_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MPMC); // allow the cycle of the dbg halt flush that contains the wr_mpmc_wb to // set the mstatus bit potentially, use delayed version of internal dbg halt. // Kill the req when we commit the fwhalt csr write and take an int assign fw_halt_req = wr_mpmc_wb & dec_csr_wrdata_wb[0] & ~internal_dbg_halt_mode_f3 & ~interrupt_valid_wb; assign mpmc_b_ns[1] = wr_mpmc_wb ? ~dec_csr_wrdata_wb[1] : ~mpmc[1]; rvdff #(1) mpmc_ff (.*, .clk(csr_wr_clk), .din(mpmc_b_ns[1]), .dout(mpmc_b[1])); assign mpmc[1] = ~mpmc_b[1]; // ---------------------------------------------------------------------- // MICECT (I-Cache error counter/threshold) // [31:27] : Icache parity error threshold // [26:0] : Icache parity error count `define MICECT 12'h7f0 logic [31:27] csr_sat; assign csr_sat[31:27] = (dec_csr_wrdata_wb[31:27] > 5'd26) ? 5'd26 : dec_csr_wrdata_wb[31:27]; assign wr_micect_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MICECT); assign {micect_cout_nc, micect_inc[26:0]} = micect[26:0] + {26'b0, ic_perr_wb}; assign micect_ns = wr_micect_wb ? {csr_sat[31:27], dec_csr_wrdata_wb[26:0]} : {micect[31:27], micect_inc[26:0]}; rvdffe #(32) micect_ff (.*, .en(wr_micect_wb | ic_perr_wb), .din(micect_ns[31:0]), .dout(micect[31:0])); assign mice_ce_req = |({32'b1 << micect[31:27]} & {5'b0, micect[26:0]}); // ---------------------------------------------------------------------- // MICCMECT (ICCM error counter/threshold) // [31:27] : ICCM parity error threshold // [26:0] : ICCM parity error count `define MICCMECT 12'h7f1 assign wr_miccmect_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MICCMECT); assign {miccmect_cout_nc, miccmect_inc[26:0]} = miccmect[26:0] + {26'b0, iccm_sbecc_wb | iccm_dma_sb_error}; assign miccmect_ns = wr_miccmect_wb ? {csr_sat[31:27], dec_csr_wrdata_wb[26:0]} : {miccmect[31:27], miccmect_inc[26:0]}; rvdffe #(32) miccmect_ff (.*, .en(wr_miccmect_wb | iccm_sbecc_wb | iccm_dma_sb_error), .din(miccmect_ns[31:0]), .dout(miccmect[31:0])); assign miccme_ce_req = |({32'b1 << miccmect[31:27]} & {5'b0, miccmect[26:0]}); // ---------------------------------------------------------------------- // MDCCMECT (DCCM error counter/threshold) // [31:27] : DCCM parity error threshold // [26:0] : DCCM parity error count `define MDCCMECT 12'h7f2 assign wr_mdccmect_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MDCCMECT); assign {mdccmect_cout_nc, mdccmect_inc[26:0]} = mdccmect[26:0] + {26'b0, lsu_single_ecc_error_wb}; assign mdccmect_ns = wr_mdccmect_wb ? {csr_sat[31:27], dec_csr_wrdata_wb[26:0]} : {mdccmect[31:27], mdccmect_inc[26:0]}; rvdffe #(32) mdccmect_ff (.*, .en(wr_mdccmect_wb | lsu_single_ecc_error_wb), .din(mdccmect_ns[31:0]), .dout(mdccmect[31:0])); assign mdccme_ce_req = |({32'b1 << mdccmect[31:27]} & {5'b0, mdccmect[26:0]}); // ---------------------------------------------------------------------- // MEIVT (External Interrupt Vector Table (R/W)) // [31:10]: Base address (R/W) // [9:0] : Reserved, reads 0x0 `define MEIVT 12'hbc8 assign wr_meivt_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MEIVT); rvdffe #(22) meivt_ff (.*, .en(wr_meivt_wb), .din(dec_csr_wrdata_wb[31:10]), .dout(meivt[31:10])); // ---------------------------------------------------------------------- // MEIHAP (External Interrupt Handler Access Pointer (R)) // [31:10]: Base address (R/W) // [9:2] : ClaimID (R) // [1:0] : Reserved, 0x0 `define MEIHAP 12'hfc8 assign wr_meihap_wb = wr_meicpct_wb; rvdffe #(8) meihap_ff (.*, .en(wr_meihap_wb), .din(pic_claimid[7:0]), .dout(meihap[9:2])); // ---------------------------------------------------------------------- // MEICURPL (R/W) // [31:4] : Reserved (read 0x0) // [3:0] : CURRPRI - Priority level of current interrupt service routine (R/W) `define MEICURPL 12'hbcc assign wr_meicurpl_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MEICURPL); assign meicurpl_ns[3:0] = wr_meicurpl_wb ? dec_csr_wrdata_wb[3:0] : meicurpl[3:0]; rvdff #(4) meicurpl_ff (.*, .clk(csr_wr_clk), .din(meicurpl_ns[3:0]), .dout(meicurpl[3:0])); // PIC needs this reg assign dec_tlu_meicurpl[3:0] = meicurpl[3:0]; // ---------------------------------------------------------------------- // MEICIDPL (R/W) // [31:4] : Reserved (read 0x0) // [3:0] : External Interrupt Claim ID's Priority Level Register `define MEICIDPL 12'hbcb assign wr_meicidpl_wb = (dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MEICIDPL)); assign meicidpl_ns[3:0] = wr_meicpct_wb ? pic_pl[3:0] : (wr_meicidpl_wb ? dec_csr_wrdata_wb[3:0] : meicidpl[3:0]); rvdff #(4) meicidpl_ff (.*, .clk(csr_wr_clk), .din(meicidpl_ns[3:0]), .dout(meicidpl[3:0])); // ---------------------------------------------------------------------- // MEICPCT (Capture CLAIMID in MEIHAP and PL in MEICIDPL // [31:1] : Reserved (read 0x0) // [0] : Capture (W1, Read 0) `define MEICPCT 12'hbca assign wr_meicpct_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MEICPCT); // ---------------------------------------------------------------------- // MEIPT (External Interrupt Priority Threshold) // [31:4] : Reserved (read 0x0) // [3:0] : PRITHRESH `define MEIPT 12'hbc9 assign wr_meipt_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MEIPT); assign meipt_ns[3:0] = wr_meipt_wb ? dec_csr_wrdata_wb[3:0] : meipt[3:0]; rvdff #(4) meipt_ff (.*, .clk(active_clk), .din(meipt_ns[3:0]), .dout(meipt[3:0])); // to PIC assign dec_tlu_meipt[3:0] = meipt[3:0]; // ---------------------------------------------------------------------- // DCSR (R/W) (Only accessible in debug mode) // [31:28] : xdebugver (hard coded to 0x4) RO // [27:16] : 0x0, reserved // [15] : ebreakm // [14] : 0x0, reserved // [13] : ebreaks (0x0 for this core) // [12] : ebreaku (0x0 for this core) // [11] : stepie // [10] : stopcount // [9] : 0x0 //stoptime // [8:6] : cause (RO) // [5:4] : 0x0, reserved // [3] : nmip // [2] : step // [1:0] : prv (0x3 for this core) // `define DCSR 12'h7b0 logic [8:6] dcsr_cause; // RV has clarified that 'priority 4' in the spec means top priority. // 4. single step. 3. Debugger request. 2. Ebreak. 1. Trigger. // RV debug spec indicates a cause priority change for trigger hits during single step. assign trigger_hit_for_dscr_cause_wb = trigger_hit_dmode_wb | (trigger_hit_wb & dcsr_single_step_done_f); assign dcsr_cause[8:6] = ( ({3{dcsr_single_step_done_f & ~ebreak_to_debug_mode_wb & ~trigger_hit_for_dscr_cause_wb & ~debug_halt_req}} & 3'b100) | ({3{debug_halt_req & ~ebreak_to_debug_mode_wb & ~trigger_hit_for_dscr_cause_wb}} & 3'b011) | ({3{ebreak_to_debug_mode_wb & ~trigger_hit_for_dscr_cause_wb}} & 3'b001) | ({3{trigger_hit_for_dscr_cause_wb}} & 3'b010)); assign wr_dcsr_wb = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DCSR); // Multiple halt enter requests can happen before we are halted. // We have to continue to upgrade based on dcsr_cause priority but we can't downgrade. logic enter_debug_halt_req_le, dcsr_cause_upgradeable; assign dcsr_cause_upgradeable = internal_dbg_halt_mode_f & (dcsr[8:6] == 3'b011); assign enter_debug_halt_req_le = enter_debug_halt_req & (~dbg_tlu_halted | dcsr_cause_upgradeable); assign nmi_in_debug_mode = nmi_int_detected_f & internal_dbg_halt_mode_f; assign dcsr_ns[15:2] = enter_debug_halt_req_le ? {dcsr[15:9], dcsr_cause[8:6], dcsr[5:2]} : (wr_dcsr_wb ? {dec_csr_wrdata_wb[15], 3'b0, dec_csr_wrdata_wb[11:10], 1'b0, dcsr[8:6], 2'b00, nmi_in_debug_mode | dcsr[3], dec_csr_wrdata_wb[2]} : {dcsr[15:4], nmi_in_debug_mode, dcsr[2]}); rvdffe #(14) dcsr_ff (.*, .en(enter_debug_halt_req_le | wr_dcsr_wb | internal_dbg_halt_mode | take_nmi_wb), .din(dcsr_ns[15:2]), .dout(dcsr[15:2])); // ---------------------------------------------------------------------- // DPC (R/W) (Only accessible in debug mode) // [31:0] : Debug PC `define DPC 12'h7b1 assign wr_dpc_wb = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DPC); assign dpc_capture_npc = dbg_tlu_halted & ~dbg_tlu_halted_f & ~request_debug_mode_done_f; assign dpc_capture_pc = request_debug_mode_wb; assign dpc_ns[31:1] = ( ({31{~dpc_capture_pc & ~dpc_capture_npc & wr_dpc_wb}} & dec_csr_wrdata_wb[31:1]) | ({31{dpc_capture_pc}} & pc_wb[31:1]) | ({31{~dpc_capture_pc & dpc_capture_npc}} & npc_wb[31:1]) ); rvdffe #(31) dpc_ff (.*, .en(wr_dpc_wb | dpc_capture_pc | dpc_capture_npc), .din(dpc_ns[31:1]), .dout(dpc[31:1])); // ---------------------------------------------------------------------- // DICAWICS (R/W) (Only accessible in debug mode) // [31:25] : Reserved // [24] : Array select, 0 is data, 1 is tag // [23:22] : Reserved // [21:20] : Way select // [19:16] : Reserved // [15:2] : Index // [1:0] : Reserved `define DICAWICS 12'h7c8 assign dicawics_ns[18:2] = {dec_csr_wrdata_wb[24], dec_csr_wrdata_wb[21:20], dec_csr_wrdata_wb[15:2]}; assign wr_dicawics_wb = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DICAWICS); rvdffe #(17) dicawics_ff (.*, .en(wr_dicawics_wb), .din(dicawics_ns[18:2]), .dout(dicawics[18:2])); // ---------------------------------------------------------------------- // DICAD0 (R/W) (Only accessible in debug mode) // // If dicawics[array] is 0 // [31:0] : inst data // // If dicawics[array] is 1 // [31:16] : Tag // [15:7] : Reserved // [6:4] : LRU // [3:1] : Reserved // [0] : Valid `define DICAD0 12'h7c9 assign dicad0_ns[31:0] = wr_dicad0_wb ? dec_csr_wrdata_wb[31:0] : ifu_ic_debug_rd_data[31:0]; assign wr_dicad0_wb = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DICAD0); rvdffe #(32) dicad0_ff (.*, .en(wr_dicad0_wb | ifu_ic_debug_rd_data_valid), .din(dicad0_ns[31:0]), .dout(dicad0[31:0])); `ifdef RV_ICACHE_ECC // ---------------------------------------------------------------------- // DICAD1 (R/W) (Only accessible in debug mode) // [9:0] : ECC `define DICAD1 12'h7ca assign dicad1_ns[9:0] = wr_dicad1_wb ? dec_csr_wrdata_wb[9:0] : ifu_ic_debug_rd_data[41:32]; assign wr_dicad1_wb = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DICAD1); rvdffs #(10) dicad1_ff (.*, .clk(active_clk), .en(wr_dicad1_wb | ifu_ic_debug_rd_data_valid), .din(dicad1_ns[9:0]), .dout(dicad1[9:0])); `else // ---------------------------------------------------------------------- // DICAD1 (R/W) (Only accessible in debug mode) // [1:0] : Parity `define DICAD1 12'h7ca assign dicad1_ns[1:0] = wr_dicad1_wb ? dec_csr_wrdata_wb[1:0] : ifu_ic_debug_rd_data[33:32]; assign wr_dicad1_wb = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DICAD1); rvdffs #(2) dicad1_ff (.*, .clk(active_clk), .en(wr_dicad1_wb | ifu_ic_debug_rd_data_valid), .din(dicad1_ns[1:0]), .dout(dicad1[1:0])); `endif // ---------------------------------------------------------------------- // DICAGO (R/W) (Only accessible in debug mode) // [0] : Go `define DICAGO 12'h7cb `ifdef RV_ICACHE_ECC assign dec_tlu_ic_diag_pkt.icache_wrdata[41:0] = {dicad1[9:0], dicad0[31:0]}; `else assign dec_tlu_ic_diag_pkt.icache_wrdata[33:0] = {dicad1[1:0], dicad0[31:0]}; `endif assign dec_tlu_ic_diag_pkt.icache_dicawics[18:2] = dicawics[18:2]; logic icache_rd_valid, icache_wr_valid, icache_rd_valid_f, icache_wr_valid_f; assign icache_rd_valid = allow_dbg_halt_csr_write & dec_csr_any_unq_d & dec_i0_decode_d & ~dec_csr_wen_unq_d & (dec_csr_rdaddr_d[11:0] == `DICAGO); assign icache_wr_valid = allow_dbg_halt_csr_write & dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `DICAGO); rvdff #(2) dicgo_ff (.*, .clk(active_clk), .din({icache_rd_valid, icache_wr_valid}), .dout({icache_rd_valid_f, icache_wr_valid_f})); assign dec_tlu_ic_diag_pkt.icache_rd_valid = icache_rd_valid_f; assign dec_tlu_ic_diag_pkt.icache_wr_valid = icache_wr_valid_f; // ---------------------------------------------------------------------- // MTSEL (R/W) // [1:0] : Trigger select : 00, 01, 10 are data/address triggers. 11 is inst count `define MTSEL 12'h7a0 assign wr_mtsel_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTSEL); assign mtsel_ns[1:0] = wr_mtsel_wb ? {dec_csr_wrdata_wb[1:0]} : mtsel[1:0]; rvdff #(2) mtsel_ff (.*, .clk(csr_wr_clk), .din(mtsel_ns[1:0]), .dout(mtsel[1:0])); // ---------------------------------------------------------------------- // MTDATA1 (R/W) // [31:0] : Trigger Data 1 `define MTDATA1 12'h7a1 // for triggers 0, 1, 2 and 3 aka Match Control // [31:28] : type, hard coded to 0x2 // [27] : dmode // [26:21] : hard coded to 0x1f // [20] : hit // [19] : select (0 - address, 1 - data) // [18] : timing, always 'before', reads 0x0 // [17:12] : action, bits [17:13] not implemented and reads 0x0 // [11] : chain // [10:7] : match, bits [10:8] not implemented and reads 0x0 // [6] : M // [5:3] : not implemented, reads 0x0 // [2] : execute // [1] : store // [0] : load // // decoder ring // [27] : => 9 // [20] : => 8 // [19] : => 7 // [12] : => 6 // [11] : => 5 // [7] : => 4 // [6] : => 3 // [2] : => 2 // [1] : => 1 // [0] : => 0 // don't allow setting load-data. assign tdata_load = dec_csr_wrdata_wb[0] & ~dec_csr_wrdata_wb[19]; // don't allow setting execute-data. assign tdata_opcode = dec_csr_wrdata_wb[2] & ~dec_csr_wrdata_wb[19]; // don't allow clearing DMODE and action=1 assign tdata_action = (dec_csr_wrdata_wb[27] & dbg_tlu_halted_f) & dec_csr_wrdata_wb[12]; // Chain bit has conditions: WARL for triggers without chains. Force to zero if dmode is 0 but next trigger dmode is 1. assign tdata_chain = mtsel[0] ? 1'b0 : // triggers 1 and 3 chain bit is always zero mtsel[1] ? dec_csr_wrdata_wb[11] & ~(mtdata1_t3[`MTDATA1_DMODE] & ~dec_csr_wrdata_wb[27]) : // trigger 2 dec_csr_wrdata_wb[11] & ~(mtdata1_t1[`MTDATA1_DMODE] & ~dec_csr_wrdata_wb[27]); // trigger 0 // Kill mtdata1 write if dmode=1 but prior trigger has dmode=0/chain=1. Only applies to T1 and T3 assign tdata_kill_write = mtsel[1] ? dec_csr_wrdata_wb[27] & (~mtdata1_t2[`MTDATA1_DMODE] & mtdata1_t2[`MTDATA1_CHAIN]) : // trigger 3 dec_csr_wrdata_wb[27] & (~mtdata1_t0[`MTDATA1_DMODE] & mtdata1_t0[`MTDATA1_CHAIN]) ; // trigger 1 assign tdata_wrdata_wb[9:0] = {dec_csr_wrdata_wb[27] & dbg_tlu_halted_f, dec_csr_wrdata_wb[20:19], tdata_action, tdata_chain, dec_csr_wrdata_wb[7:6], tdata_opcode, dec_csr_wrdata_wb[1], tdata_load}; // If the DMODE bit is set, tdata1 can only be updated in debug_mode assign wr_mtdata1_t0_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b0) & (~mtdata1_t0[`MTDATA1_DMODE] | dbg_tlu_halted_f); assign mtdata1_t0_ns[9:0] = wr_mtdata1_t0_wb ? tdata_wrdata_wb[9:0] : {mtdata1_t0[9], update_hit_bit_wb[0] | mtdata1_t0[8], mtdata1_t0[7:0]}; assign wr_mtdata1_t1_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b01) & (~mtdata1_t1[`MTDATA1_DMODE] | dbg_tlu_halted_f) & ~tdata_kill_write; assign mtdata1_t1_ns[9:0] = wr_mtdata1_t1_wb ? tdata_wrdata_wb[9:0] : {mtdata1_t1[9], update_hit_bit_wb[1] | mtdata1_t1[8], mtdata1_t1[7:0]}; assign wr_mtdata1_t2_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b10) & (~mtdata1_t2[`MTDATA1_DMODE] | dbg_tlu_halted_f); assign mtdata1_t2_ns[9:0] = wr_mtdata1_t2_wb ? tdata_wrdata_wb[9:0] : {mtdata1_t2[9], update_hit_bit_wb[2] | mtdata1_t2[8], mtdata1_t2[7:0]}; assign wr_mtdata1_t3_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b11) & (~mtdata1_t3[`MTDATA1_DMODE] | dbg_tlu_halted_f) & ~tdata_kill_write; assign mtdata1_t3_ns[9:0] = wr_mtdata1_t3_wb ? tdata_wrdata_wb[9:0] : {mtdata1_t3[9], update_hit_bit_wb[3] | mtdata1_t3[8], mtdata1_t3[7:0]}; rvdff #(10) mtdata1_t0_ff (.*, .clk(active_clk), .din(mtdata1_t0_ns[9:0]), .dout(mtdata1_t0[9:0])); rvdff #(10) mtdata1_t1_ff (.*, .clk(active_clk), .din(mtdata1_t1_ns[9:0]), .dout(mtdata1_t1[9:0])); rvdff #(10) mtdata1_t2_ff (.*, .clk(active_clk), .din(mtdata1_t2_ns[9:0]), .dout(mtdata1_t2[9:0])); rvdff #(10) mtdata1_t3_ff (.*, .clk(active_clk), .din(mtdata1_t3_ns[9:0]), .dout(mtdata1_t3[9:0])); assign mtdata1_tsel_out[31:0] = ( ({32{(mtsel[1:0] == 2'b00)}} & {4'h2, mtdata1_t0[9], 6'b011111, mtdata1_t0[8:7], 6'b0, mtdata1_t0[6:5], 3'b0, mtdata1_t0[4:3], 3'b0, mtdata1_t0[2:0]}) | ({32{(mtsel[1:0] == 2'b01)}} & {4'h2, mtdata1_t1[9], 6'b011111, mtdata1_t1[8:7], 6'b0, mtdata1_t1[6:5], 3'b0, mtdata1_t1[4:3], 3'b0, mtdata1_t1[2:0]}) | ({32{(mtsel[1:0] == 2'b10)}} & {4'h2, mtdata1_t2[9], 6'b011111, mtdata1_t2[8:7], 6'b0, mtdata1_t2[6:5], 3'b0, mtdata1_t2[4:3], 3'b0, mtdata1_t2[2:0]}) | ({32{(mtsel[1:0] == 2'b11)}} & {4'h2, mtdata1_t3[9], 6'b011111, mtdata1_t3[8:7], 6'b0, mtdata1_t3[6:5], 3'b0, mtdata1_t3[4:3], 3'b0, mtdata1_t3[2:0]})); assign trigger_pkt_any[0].select = mtdata1_t0[`MTDATA1_SEL]; assign trigger_pkt_any[0].match = mtdata1_t0[`MTDATA1_MATCH]; assign trigger_pkt_any[0].store = mtdata1_t0[`MTDATA1_ST]; assign trigger_pkt_any[0].load = mtdata1_t0[`MTDATA1_LD]; assign trigger_pkt_any[0].execute = mtdata1_t0[`MTDATA1_EXE]; assign trigger_pkt_any[0].m = mtdata1_t0[`MTDATA1_M_ENABLED]; assign trigger_pkt_any[1].select = mtdata1_t1[`MTDATA1_SEL]; assign trigger_pkt_any[1].match = mtdata1_t1[`MTDATA1_MATCH]; assign trigger_pkt_any[1].store = mtdata1_t1[`MTDATA1_ST]; assign trigger_pkt_any[1].load = mtdata1_t1[`MTDATA1_LD]; assign trigger_pkt_any[1].execute = mtdata1_t1[`MTDATA1_EXE]; assign trigger_pkt_any[1].m = mtdata1_t1[`MTDATA1_M_ENABLED]; assign trigger_pkt_any[2].select = mtdata1_t2[`MTDATA1_SEL]; assign trigger_pkt_any[2].match = mtdata1_t2[`MTDATA1_MATCH]; assign trigger_pkt_any[2].store = mtdata1_t2[`MTDATA1_ST]; assign trigger_pkt_any[2].load = mtdata1_t2[`MTDATA1_LD]; assign trigger_pkt_any[2].execute = mtdata1_t2[`MTDATA1_EXE]; assign trigger_pkt_any[2].m = mtdata1_t2[`MTDATA1_M_ENABLED]; assign trigger_pkt_any[3].select = mtdata1_t3[`MTDATA1_SEL]; assign trigger_pkt_any[3].match = mtdata1_t3[`MTDATA1_MATCH]; assign trigger_pkt_any[3].store = mtdata1_t3[`MTDATA1_ST]; assign trigger_pkt_any[3].load = mtdata1_t3[`MTDATA1_LD]; assign trigger_pkt_any[3].execute = mtdata1_t3[`MTDATA1_EXE]; assign trigger_pkt_any[3].m = mtdata1_t3[`MTDATA1_M_ENABLED]; // ---------------------------------------------------------------------- // MTDATA2 (R/W) // [31:0] : Trigger Data 2 `define MTDATA2 12'h7a2 // If the DMODE bit is set, tdata2 can only be updated in debug_mode assign wr_mtdata2_t0_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b0) & (~mtdata1_t0[`MTDATA1_DMODE] | dbg_tlu_halted_f); assign wr_mtdata2_t1_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b01) & (~mtdata1_t1[`MTDATA1_DMODE] | dbg_tlu_halted_f); assign wr_mtdata2_t2_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b10) & (~mtdata1_t2[`MTDATA1_DMODE] | dbg_tlu_halted_f); assign wr_mtdata2_t3_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b11) & (~mtdata1_t3[`MTDATA1_DMODE] | dbg_tlu_halted_f); rvdffe #(32) mtdata2_t0_ff (.*, .en(wr_mtdata2_t0_wb), .din(dec_csr_wrdata_wb[31:0]), .dout(mtdata2_t0[31:0])); rvdffe #(32) mtdata2_t1_ff (.*, .en(wr_mtdata2_t1_wb), .din(dec_csr_wrdata_wb[31:0]), .dout(mtdata2_t1[31:0])); rvdffe #(32) mtdata2_t2_ff (.*, .en(wr_mtdata2_t2_wb), .din(dec_csr_wrdata_wb[31:0]), .dout(mtdata2_t2[31:0])); rvdffe #(32) mtdata2_t3_ff (.*, .en(wr_mtdata2_t3_wb), .din(dec_csr_wrdata_wb[31:0]), .dout(mtdata2_t3[31:0])); assign mtdata2_tsel_out[31:0] = ( ({32{(mtsel[1:0] == 2'b00)}} & mtdata2_t0[31:0]) | ({32{(mtsel[1:0] == 2'b01)}} & mtdata2_t1[31:0]) | ({32{(mtsel[1:0] == 2'b10)}} & mtdata2_t2[31:0]) | ({32{(mtsel[1:0] == 2'b11)}} & mtdata2_t3[31:0])); assign trigger_pkt_any[0].tdata2[31:0] = mtdata2_t0[31:0]; assign trigger_pkt_any[1].tdata2[31:0] = mtdata2_t1[31:0]; assign trigger_pkt_any[2].tdata2[31:0] = mtdata2_t2[31:0]; assign trigger_pkt_any[3].tdata2[31:0] = mtdata2_t3[31:0]; //---------------------------------------------------------------------- // Performance Monitor Counters section starts //---------------------------------------------------------------------- `define MHPME_NOEVENT 6'd0 `define MHPME_CLK_ACTIVE 6'd1 // OOP - out of pipe `define MHPME_ICACHE_HIT 6'd2 // OOP `define MHPME_ICACHE_MISS 6'd3 // OOP `define MHPME_INST_COMMIT 6'd4 `define MHPME_INST_COMMIT_16B 6'd5 `define MHPME_INST_COMMIT_32B 6'd6 `define MHPME_INST_ALIGNED 6'd7 // OOP `define MHPME_INST_DECODED 6'd8 // OOP `define MHPME_INST_MUL 6'd9 `define MHPME_INST_DIV 6'd10 `define MHPME_INST_LOAD 6'd11 `define MHPME_INST_STORE 6'd12 `define MHPME_INST_MALOAD 6'd13 `define MHPME_INST_MASTORE 6'd14 `define MHPME_INST_ALU 6'd15 `define MHPME_INST_CSRREAD 6'd16 `define MHPME_INST_CSRRW 6'd17 `define MHPME_INST_CSRWRITE 6'd18 `define MHPME_INST_EBREAK 6'd19 `define MHPME_INST_ECALL 6'd20 `define MHPME_INST_FENCE 6'd21 `define MHPME_INST_FENCEI 6'd22 `define MHPME_INST_MRET 6'd23 `define MHPME_INST_BRANCH 6'd24 `define MHPME_BRANCH_MP 6'd25 `define MHPME_BRANCH_TAKEN 6'd26 `define MHPME_BRANCH_NOTP 6'd27 `define MHPME_FETCH_STALL 6'd28 // OOP `define MHPME_ALGNR_STALL 6'd29 // OOP `define MHPME_DECODE_STALL 6'd30 // OOP `define MHPME_POSTSYNC_STALL 6'd31 // OOP `define MHPME_PRESYNC_STALL 6'd32 // OOP `define MHPME_LSU_FREEZE 6'd33 // OOP `define MHPME_LSU_SB_WB_STALL 6'd34 // OOP `define MHPME_DMA_DCCM_STALL 6'd35 // OOP `define MHPME_DMA_ICCM_STALL 6'd36 // OOP `define MHPME_EXC_TAKEN 6'd37 `define MHPME_TIMER_INT_TAKEN 6'd38 `define MHPME_EXT_INT_TAKEN 6'd39 `define MHPME_FLUSH_LOWER 6'd40 `define MHPME_BR_ERROR 6'd41 `define MHPME_IBUS_TRANS 6'd42 // OOP `define MHPME_DBUS_TRANS 6'd43 // OOP `define MHPME_DBUS_MA_TRANS 6'd44 // OOP `define MHPME_IBUS_ERROR 6'd45 // OOP `define MHPME_DBUS_ERROR 6'd46 // OOP `define MHPME_IBUS_STALL 6'd47 // OOP `define MHPME_DBUS_STALL 6'd48 // OOP `define MHPME_INT_DISABLED 6'd49 // OOP `define MHPME_INT_STALLED 6'd50 // OOP logic [3:0][1:0] mhpmc_inc_e4, mhpmc_inc_wb; logic [3:0][5:0] mhpme_vec; logic mhpmc3_wr_en0, mhpmc3_wr_en1, mhpmc3_wr_en; logic mhpmc4_wr_en0, mhpmc4_wr_en1, mhpmc4_wr_en; logic mhpmc5_wr_en0, mhpmc5_wr_en1, mhpmc5_wr_en; logic mhpmc6_wr_en0, mhpmc6_wr_en1, mhpmc6_wr_en; logic mhpmc3h_wr_en0, mhpmc3h_wr_en; logic mhpmc4h_wr_en0, mhpmc4h_wr_en; logic mhpmc5h_wr_en0, mhpmc5h_wr_en; logic mhpmc6h_wr_en0, mhpmc6h_wr_en; logic [63:0] mhpmc3_incr, mhpmc4_incr, mhpmc5_incr, mhpmc6_incr; // Pack the event selects into a vector for genvar assign mhpme_vec[0][5:0] = mhpme3[5:0]; assign mhpme_vec[1][5:0] = mhpme4[5:0]; assign mhpme_vec[2][5:0] = mhpme5[5:0]; assign mhpme_vec[3][5:0] = mhpme6[5:0]; // only consider committed itypes logic [3:0] pmu_i0_itype_qual, pmu_i1_itype_qual; assign pmu_i0_itype_qual[3:0] = dec_tlu_packet_e4.pmu_i0_itype[3:0] & {4{tlu_i0_commit_cmt}}; assign pmu_i1_itype_qual[3:0] = dec_tlu_packet_e4.pmu_i1_itype[3:0] & {4{tlu_i1_commit_cmt}}; // Generate the muxed incs for all counters based on event type for (genvar i=0 ; i < 4; i++) begin assign mhpmc_inc_e4[i][1:0] = {2{mgpmc}} & ( ({2{(mhpme_vec[i][5:0] == `MHPME_CLK_ACTIVE )}} & 2'b01) | ({2{(mhpme_vec[i][5:0] == `MHPME_ICACHE_HIT )}} & {1'b0, ifu_pmu_ic_hit}) | ({2{(mhpme_vec[i][5:0] == `MHPME_ICACHE_MISS )}} & {1'b0, ifu_pmu_ic_miss}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_COMMIT )}} & {tlu_i1_commit_cmt, tlu_i0_commit_cmt & ~illegal_e4}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_COMMIT_16B )}} & {tlu_i1_commit_cmt & ~exu_pmu_i1_pc4, tlu_i0_commit_cmt & ~exu_pmu_i0_pc4 & ~illegal_e4}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_COMMIT_32B )}} & {tlu_i1_commit_cmt & exu_pmu_i1_pc4, tlu_i0_commit_cmt & exu_pmu_i0_pc4 & ~illegal_e4}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_ALIGNED )}} & ifu_pmu_instr_aligned[1:0]) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_DECODED )}} & dec_pmu_instr_decoded[1:0]) | ({2{(mhpme_vec[i][5:0] == `MHPME_ALGNR_STALL )}} & {1'b0,ifu_pmu_align_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DECODE_STALL )}} & {1'b0,dec_pmu_decode_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_MUL )}} & {(pmu_i1_itype_qual[3:0] == MUL), (pmu_i0_itype_qual[3:0] == MUL)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_DIV )}} & {1'b0, dec_tlu_packet_e4.pmu_divide & tlu_i0_commit_cmt}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_LOAD )}} & {(pmu_i1_itype_qual[3:0] == LOAD), (pmu_i0_itype_qual[3:0] == LOAD)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_STORE )}} & {(pmu_i1_itype_qual[3:0] == STORE), (pmu_i0_itype_qual[3:0] == STORE)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_MALOAD )}} & {(pmu_i1_itype_qual[3:0] == LOAD), (pmu_i0_itype_qual[3:0] == LOAD)} & {2{dec_tlu_packet_e4.pmu_lsu_misaligned}}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_MASTORE )}} & {(pmu_i1_itype_qual[3:0] == STORE), (pmu_i0_itype_qual[3:0] == STORE)} & {2{dec_tlu_packet_e4.pmu_lsu_misaligned}}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_ALU )}} & {(pmu_i1_itype_qual[3:0] == ALU), (pmu_i0_itype_qual[3:0] == ALU)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_CSRREAD )}} & {1'b0, (pmu_i0_itype_qual[3:0] == CSRREAD)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_CSRWRITE )}} & {1'b0, (pmu_i0_itype_qual[3:0] == CSRWRITE)})| ({2{(mhpme_vec[i][5:0] == `MHPME_INST_CSRRW )}} & {1'b0, (pmu_i0_itype_qual[3:0] == CSRRW)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_EBREAK )}} & {1'b0, (pmu_i0_itype_qual[3:0] == EBREAK)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_ECALL )}} & {1'b0, (pmu_i0_itype_qual[3:0] == ECALL)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_FENCE )}} & {1'b0, (pmu_i0_itype_qual[3:0] == FENCE)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_FENCEI )}} & {1'b0, (pmu_i0_itype_qual[3:0] == FENCEI)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_MRET )}} & {1'b0, (pmu_i0_itype_qual[3:0] == MRET)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INST_BRANCH )}} & {((pmu_i1_itype_qual[3:0] == CONDBR) | (pmu_i1_itype_qual[3:0] == JAL)), ((pmu_i0_itype_qual[3:0] == CONDBR) | (pmu_i0_itype_qual[3:0] == JAL))}) | ({2{(mhpme_vec[i][5:0] == `MHPME_BRANCH_MP )}} & {exu_pmu_i1_br_misp & tlu_i1_commit_cmt, exu_pmu_i0_br_misp & tlu_i0_commit_cmt}) | ({2{(mhpme_vec[i][5:0] == `MHPME_BRANCH_TAKEN )}} & {exu_pmu_i1_br_ataken & tlu_i1_commit_cmt, exu_pmu_i0_br_ataken & tlu_i0_commit_cmt}) | ({2{(mhpme_vec[i][5:0] == `MHPME_BRANCH_NOTP )}} & {dec_tlu_packet_e4.pmu_i1_br_unpred & tlu_i1_commit_cmt, dec_tlu_packet_e4.pmu_i0_br_unpred & tlu_i0_commit_cmt}) | ({2{(mhpme_vec[i][5:0] == `MHPME_FETCH_STALL )}} & {1'b0, ifu_pmu_fetch_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_ALGNR_STALL )}} & {1'b0, ifu_pmu_align_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DECODE_STALL )}} & {1'b0, dec_pmu_decode_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_POSTSYNC_STALL )}} & {1'b0,dec_pmu_postsync_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_PRESYNC_STALL )}} & {1'b0,dec_pmu_presync_stall}) | ({2{(mhpme_vec[i][5:0] == `MHPME_LSU_FREEZE )}} & {1'b0, lsu_freeze_dc3}) | ({2{(mhpme_vec[i][5:0] == `MHPME_LSU_SB_WB_STALL )}} & {1'b0, lsu_store_stall_any}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DMA_DCCM_STALL )}} & {1'b0, dma_dccm_stall_any}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DMA_ICCM_STALL )}} & {1'b0, dma_iccm_stall_any}) | ({2{(mhpme_vec[i][5:0] == `MHPME_EXC_TAKEN )}} & {1'b0, (i0_exception_valid_e4 | trigger_hit_e4 | lsu_exc_valid_e4)}) | ({2{(mhpme_vec[i][5:0] == `MHPME_TIMER_INT_TAKEN )}} & {1'b0, take_timer_int | take_int_timer0_int | take_int_timer1_int}) | ({2{(mhpme_vec[i][5:0] == `MHPME_EXT_INT_TAKEN )}} & {1'b0, take_ext_int}) | ({2{(mhpme_vec[i][5:0] == `MHPME_FLUSH_LOWER )}} & {1'b0, tlu_flush_lower_e4}) | ({2{(mhpme_vec[i][5:0] == `MHPME_BR_ERROR )}} & {(dec_tlu_br1_error_e4 | dec_tlu_br1_start_error_e4) & rfpc_i1_e4, (dec_tlu_br0_error_e4 | dec_tlu_br0_start_error_e4) & rfpc_i0_e4}) | ({2{(mhpme_vec[i][5:0] == `MHPME_IBUS_TRANS )}} & {1'b0, ifu_pmu_bus_trxn}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DBUS_TRANS )}} & {1'b0, lsu_pmu_bus_trxn}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DBUS_MA_TRANS )}} & {1'b0, lsu_pmu_bus_misaligned}) | ({2{(mhpme_vec[i][5:0] == `MHPME_IBUS_ERROR )}} & {1'b0, ifu_pmu_bus_error}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DBUS_ERROR )}} & {1'b0, lsu_pmu_bus_error}) | ({2{(mhpme_vec[i][5:0] == `MHPME_IBUS_STALL )}} & {1'b0, ifu_pmu_bus_busy}) | ({2{(mhpme_vec[i][5:0] == `MHPME_DBUS_STALL )}} & {1'b0, lsu_pmu_bus_busy}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INT_DISABLED )}} & {1'b0, ~mstatus[`MSTATUS_MIE]}) | ({2{(mhpme_vec[i][5:0] == `MHPME_INT_STALLED )}} & {1'b0, ~mstatus[`MSTATUS_MIE] & |(mip[5:0] & mie[5:0])}) ); end rvdff #(2) pmu0inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_e4[0][1:0]), .dout(mhpmc_inc_wb[0][1:0])); rvdff #(2) pmu1inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_e4[1][1:0]), .dout(mhpmc_inc_wb[1][1:0])); rvdff #(2) pmu2inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_e4[2][1:0]), .dout(mhpmc_inc_wb[2][1:0])); rvdff #(2) pmu3inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_e4[3][1:0]), .dout(mhpmc_inc_wb[3][1:0])); assign perfcnt_halted = ((dec_tlu_dbg_halted & dcsr[`DCSR_STOPC]) | dec_tlu_pmu_fw_halted); assign dec_tlu_perfcnt0[1:0] = mhpmc_inc_wb[0][1:0] & ~{2{perfcnt_halted}}; assign dec_tlu_perfcnt1[1:0] = mhpmc_inc_wb[1][1:0] & ~{2{perfcnt_halted}}; assign dec_tlu_perfcnt2[1:0] = mhpmc_inc_wb[2][1:0] & ~{2{perfcnt_halted}}; assign dec_tlu_perfcnt3[1:0] = mhpmc_inc_wb[3][1:0] & ~{2{perfcnt_halted}}; // ---------------------------------------------------------------------- // MHPMC3H(RW), MHPMC3(RW) // [63:32][31:0] : Hardware Performance Monitor Counter 3 `define MHPMC3 12'hB03 `define MHPMC3H 12'hB83 assign mhpmc3_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC3); assign mhpmc3_wr_en1 = ~perfcnt_halted & (|(mhpmc_inc_wb[0][1:0])); assign mhpmc3_wr_en = mhpmc3_wr_en0 | mhpmc3_wr_en1; assign mhpmc3_incr[63:0] = {mhpmc3h[31:0],mhpmc3[31:0]} + {63'b0,mhpmc_inc_wb[0][1]} + {63'b0,mhpmc_inc_wb[0][0]}; assign mhpmc3_ns[31:0] = mhpmc3_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc3_incr[31:0]; rvdffe #(32) mhpmc3_ff (.*, .en(mhpmc3_wr_en), .din(mhpmc3_ns[31:0]), .dout(mhpmc3[31:0])); assign mhpmc3h_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC3H); assign mhpmc3h_wr_en = mhpmc3h_wr_en0 | mhpmc3_wr_en1; assign mhpmc3h_ns[31:0] = mhpmc3h_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc3_incr[63:32]; rvdffe #(32) mhpmc3h_ff (.*, .en(mhpmc3h_wr_en), .din(mhpmc3h_ns[31:0]), .dout(mhpmc3h[31:0])); // ---------------------------------------------------------------------- // MHPMC4H(RW), MHPMC4(RW) // [63:32][31:0] : Hardware Performance Monitor Counter 4 `define MHPMC4 12'hB04 `define MHPMC4H 12'hB84 assign mhpmc4_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC4); assign mhpmc4_wr_en1 = ~perfcnt_halted & (|(mhpmc_inc_wb[1][1:0])); assign mhpmc4_wr_en = mhpmc4_wr_en0 | mhpmc4_wr_en1; assign mhpmc4_incr[63:0] = {mhpmc4h[31:0],mhpmc4[31:0]} + {63'b0,mhpmc_inc_wb[1][1]} + {63'b0,mhpmc_inc_wb[1][0]}; assign mhpmc4_ns[31:0] = mhpmc4_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc4_incr[31:0]; rvdffe #(32) mhpmc4_ff (.*, .en(mhpmc4_wr_en), .din(mhpmc4_ns[31:0]), .dout(mhpmc4[31:0])); assign mhpmc4h_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC4H); assign mhpmc4h_wr_en = mhpmc4h_wr_en0 | mhpmc4_wr_en1; assign mhpmc4h_ns[31:0] = mhpmc4h_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc4_incr[63:32]; rvdffe #(32) mhpmc4h_ff (.*, .en(mhpmc4h_wr_en), .din(mhpmc4h_ns[31:0]), .dout(mhpmc4h[31:0])); // ---------------------------------------------------------------------- // MHPMC5H(RW), MHPMC5(RW) // [63:32][31:0] : Hardware Performance Monitor Counter 5 `define MHPMC5 12'hB05 `define MHPMC5H 12'hB85 assign mhpmc5_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC5); assign mhpmc5_wr_en1 = ~perfcnt_halted & (|(mhpmc_inc_wb[2][1:0])); assign mhpmc5_wr_en = mhpmc5_wr_en0 | mhpmc5_wr_en1; assign mhpmc5_incr[63:0] = {mhpmc5h[31:0],mhpmc5[31:0]} + {63'b0,mhpmc_inc_wb[2][1]} + {63'b0,mhpmc_inc_wb[2][0]}; assign mhpmc5_ns[31:0] = mhpmc5_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc5_incr[31:0]; rvdffe #(32) mhpmc5_ff (.*, .en(mhpmc5_wr_en), .din(mhpmc5_ns[31:0]), .dout(mhpmc5[31:0])); assign mhpmc5h_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC5H); assign mhpmc5h_wr_en = mhpmc5h_wr_en0 | mhpmc5_wr_en1; assign mhpmc5h_ns[31:0] = mhpmc5h_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc5_incr[63:32]; rvdffe #(32) mhpmc5h_ff (.*, .en(mhpmc5h_wr_en), .din(mhpmc5h_ns[31:0]), .dout(mhpmc5h[31:0])); // ---------------------------------------------------------------------- // MHPMC6H(RW), MHPMC6(RW) // [63:32][31:0] : Hardware Performance Monitor Counter 6 `define MHPMC6 12'hB06 `define MHPMC6H 12'hB86 assign mhpmc6_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC6); assign mhpmc6_wr_en1 = ~perfcnt_halted & (|(mhpmc_inc_wb[3][1:0])); assign mhpmc6_wr_en = mhpmc6_wr_en0 | mhpmc6_wr_en1; assign mhpmc6_incr[63:0] = {mhpmc6h[31:0],mhpmc6[31:0]} + {63'b0,mhpmc_inc_wb[3][1]} + {63'b0,mhpmc_inc_wb[3][0]}; assign mhpmc6_ns[31:0] = mhpmc6_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc6_incr[31:0]; rvdffe #(32) mhpmc6_ff (.*, .en(mhpmc6_wr_en), .din(mhpmc6_ns[31:0]), .dout(mhpmc6[31:0])); assign mhpmc6h_wr_en0 = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPMC6H); assign mhpmc6h_wr_en = mhpmc6h_wr_en0 | mhpmc6_wr_en1; assign mhpmc6h_ns[31:0] = mhpmc6h_wr_en0 ? dec_csr_wrdata_wb[31:0] : mhpmc6_incr[63:32]; rvdffe #(32) mhpmc6h_ff (.*, .en(mhpmc6h_wr_en), .din(mhpmc6h_ns[31:0]), .dout(mhpmc6h[31:0])); // ---------------------------------------------------------------------- // MHPME3(RW) // [5:0] : Hardware Performance Monitor Event 3 `define MHPME3 12'h323 // we only have 50 events, HPME* are WARL so saturate at 50 logic [5:0] event_saturate_wb; assign event_saturate_wb[5:0] = ((dec_csr_wrdata_wb[5:0] > 6'd50) | (|dec_csr_wrdata_wb[31:6])) ? 6'd50 : dec_csr_wrdata_wb[5:0]; assign wr_mhpme3_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPME3); rvdffs #(6) mhpme3_ff (.*, .clk(active_clk), .en(wr_mhpme3_wb), .din(event_saturate_wb[5:0]), .dout(mhpme3[5:0])); // ---------------------------------------------------------------------- // MHPME4(RW) // [5:0] : Hardware Performance Monitor Event 4 `define MHPME4 12'h324 assign wr_mhpme4_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPME4); rvdffs #(6) mhpme4_ff (.*, .clk(active_clk), .en(wr_mhpme4_wb), .din(event_saturate_wb[5:0]), .dout(mhpme4[5:0])); // ---------------------------------------------------------------------- // MHPME5(RW) // [5:0] : Hardware Performance Monitor Event 5 `define MHPME5 12'h325 assign wr_mhpme5_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPME5); rvdffs #(6) mhpme5_ff (.*, .clk(active_clk), .en(wr_mhpme5_wb), .din(event_saturate_wb[5:0]), .dout(mhpme5[5:0])); // ---------------------------------------------------------------------- // MHPME6(RW) // [5:0] : Hardware Performance Monitor Event 6 `define MHPME6 12'h326 assign wr_mhpme6_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MHPME6); rvdffs #(6) mhpme6_ff (.*, .clk(active_clk), .en(wr_mhpme6_wb), .din(event_saturate_wb[5:0]), .dout(mhpme6[5:0])); //---------------------------------------------------------------------- // Performance Monitor Counters section ends //---------------------------------------------------------------------- // ---------------------------------------------------------------------- // MGPMC(RW) // [31:1] : Reserved, read 0x0 // [0] : Perfmon controls 0: disable perf counters 1: enable. // // Resets to 1'b1, counters enabled `define MGPMC 12'h7d0 assign wr_mgpmc_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MGPMC); rvdffs #(1) mgpmc_ff (.*, .clk(active_clk), .en(wr_mgpmc_wb), .din(~dec_csr_wrdata_wb[0]), .dout(mgpmc_b)); assign mgpmc = ~mgpmc_b; //-------------------------------------------------------------------------------- // trace //-------------------------------------------------------------------------------- logic usoc_tclk; rvoclkhdr usoctrace_cgc ( .en(i0_valid_wb | exc_or_int_valid_wb | interrupt_valid_wb | dec_tlu_i0_valid_wb1 | dec_tlu_i0_exc_valid_wb1 | dec_tlu_i1_exc_valid_wb1 | dec_tlu_int_valid_wb1 | clk_override), .l1clk(usoc_tclk), .* ); rvdff #(10) traceff (.*, .clk(usoc_tclk), .din ({i0_valid_wb, i1_valid_wb, i0_exception_valid_wb | lsu_i0_exc_wb | (i0_trigger_hit_wb & ~trigger_hit_dmode_wb), ~(i0_exception_valid_wb | lsu_i0_exc_wb | i0_trigger_hit_wb) & exc_or_int_valid_wb & ~interrupt_valid_wb, exc_cause_wb[4:0], interrupt_valid_wb}), .dout({dec_tlu_i0_valid_wb1, dec_tlu_i1_valid_wb1, dec_tlu_i0_exc_valid_wb1, dec_tlu_i1_exc_valid_wb1, dec_tlu_exc_cause_wb1[4:0], dec_tlu_int_valid_wb1})); assign dec_tlu_mtval_wb1 = mtval[31:0]; // end trace //-------------------------------------------------------------------------------- // ---------------------------------------------------------------------- // CSR read mux // ---------------------------------------------------------------------- // file "csrdecode" is human readable file that has all of the CSR decodes defined and is part of git repo // modify this file as needed // to generate all the equations below from "csrdecode" except legal equation: // 1) coredecode -in csrdecode > corecsrdecode.e // 2) espresso -Dso -oeqntott corecsrdecode.e | addassign -pre out. > csrequations // to generate the legal CSR equation below: // 1) coredecode -in csrdecode -legal > csrlegal.e // 2) espresso -Dso -oeqntott csrlegal.e | addassign -pre out. > csrlegal_equation logic csr_misa; logic csr_mvendorid; logic csr_marchid; logic csr_mimpid; logic csr_mhartid; logic csr_mstatus; logic csr_mtvec; logic csr_mip; logic csr_mie; logic csr_mcyclel; logic csr_mcycleh; logic csr_minstretl; logic csr_minstreth; logic csr_mscratch; logic csr_mepc; logic csr_mcause; logic csr_mtval; logic csr_mrac; logic csr_dmst; logic csr_mdseac; logic csr_meihap; logic csr_meivt; logic csr_meipt; logic csr_meicurpl; logic csr_meicidpl; logic csr_dcsr; logic csr_mpmc; logic csr_mcgc; logic csr_mcpc; logic csr_mfdc; logic csr_dpc; logic csr_mtsel; logic csr_mtdata1; logic csr_mtdata2; logic csr_mhpmc3; logic csr_mhpmc4; logic csr_mhpmc5; logic csr_mhpmc6; logic csr_mhpmc3h; logic csr_mhpmc4h; logic csr_mhpmc5h; logic csr_mhpmc6h; logic csr_mhpme3; logic csr_mhpme4; logic csr_mhpme5; logic csr_mhpme6; logic csr_mgpmc; logic csr_micect; logic csr_miccmect; logic csr_mdccmect; logic csr_dicawics; logic csr_dicad0; logic csr_dicad1; logic csr_dicago; logic presync; logic postsync; assign csr_misa = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]); assign csr_mvendorid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign csr_marchid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[7] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mimpid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[6] &dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign csr_mhartid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[7] &dec_csr_rdaddr_d[2]); assign csr_mstatus = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]); assign csr_mtvec = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]); assign csr_mip = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[2]); assign csr_mie = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]); assign csr_mcyclel = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]); assign csr_mcycleh = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]); assign csr_minstretl = (!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_minstreth = (!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mscratch = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mepc = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_mcause = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mtval = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_mrac = (!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]); assign csr_dmst = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]); assign csr_mdseac = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]); assign csr_meihap = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[3]); assign csr_meivt = (!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[6] &dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1] &!dec_csr_rdaddr_d[0]); assign csr_meipt = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_meicurpl = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[2]); assign csr_meicidpl = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[6] &dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign csr_dcsr = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[0]); assign csr_mpmc = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]); assign csr_mcgc = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[0]); assign csr_mcpc = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]); assign csr_mfdc = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[0]); assign csr_dpc = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[0]); assign csr_mtsel = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mtdata1 = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[0]); assign csr_mtdata2 = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[1]); assign csr_mhpmc3 = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[0]); assign csr_mhpmc4 = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mhpmc5 = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_mhpmc6 = (!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mhpmc3h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_mhpmc4h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mhpmc5h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_mhpmc6h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mhpme3 = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]); assign csr_mhpme4 = (dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1] &!dec_csr_rdaddr_d[0]); assign csr_mhpme5 = (dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]); assign csr_mhpme6 = (dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1] &!dec_csr_rdaddr_d[0]); assign csr_mgpmc = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]); assign csr_micect = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_miccmect = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[0]); assign csr_mdccmect = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[1]); assign csr_dicawics = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_dicad0 = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4] &dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign csr_dicad1 = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_dicago = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign presync = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]) | ( !dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]) | ( dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | ( dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]); assign postsync = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]) | ( !dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[7] &dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]) | ( dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4] &dec_csr_rdaddr_d[2]) | (!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[1]); logic legal_csr; assign legal_csr = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11] &!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8] &!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[0]) | ( !dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[2]) | ( !dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]) | ( !dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[2]) | (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | ( dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]) | ( !dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[2]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[1] &dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3] &!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]) | ( !dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3] &dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[2]) | (!dec_csr_rdaddr_d[11] &dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8] &dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6] &!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[1]) | (!dec_csr_rdaddr_d[11] &dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8] &dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11] &!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8] &!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]) | ( !dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5] &!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1] &!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[3]) | ( dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[3]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10] &dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7] &!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]) | ( dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9] &dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[4]); assign dec_tlu_presync_d = presync & dec_csr_any_unq_d & ~dec_csr_wen_unq_d; assign dec_tlu_postsync_d = (postsync & dec_csr_any_unq_d) | rfpc_postsync; assign valid_csr = ( legal_csr & (~(csr_dcsr | csr_dpc | csr_dmst | csr_dicawics | csr_dicad0 | csr_dicad1 | csr_dicago) | dbg_tlu_halted_f)); assign dec_csr_legal_d = ( dec_csr_any_unq_d & valid_csr & // of a valid CSR ~(dec_csr_wen_unq_d & (csr_mvendorid | csr_marchid | csr_mimpid | csr_mhartid | csr_mdseac | csr_meihap)) // that's not a write to a RO CSR ); // CSR read mux assign dec_csr_rddata_d[31:0] = ( ({32{csr_misa}} & 32'h40001104) | ({32{csr_mvendorid}} & 32'h00000045) | ({32{csr_marchid}} & 32'h0000000b) | ({32{csr_mimpid}} & 32'h6) | ({32{csr_mstatus}} & {19'b0, 2'b11, 3'b0, mstatus[1], 3'b0, mstatus[0], 3'b0}) | ({32{csr_mtvec}} & {mtvec[30:1], 1'b0, mtvec[0]}) | ({32{csr_mip}} & {1'b0, mip[5:3], 16'b0, mip[2], 3'b0, mip[1], 3'b0, mip[0], 3'b0}) | ({32{csr_mie}} & {1'b0, mie[5:3], 16'b0, mie[2], 3'b0, mie[1], 3'b0, mie[0], 3'b0}) | ({32{csr_mcyclel}} & mcyclel[31:0]) | ({32{csr_mcycleh}} & mcycleh_inc[31:0]) | ({32{csr_minstretl}} & minstretl_read[31:0]) | ({32{csr_minstreth}} & minstreth_read[31:0]) | ({32{csr_mscratch}} & mscratch[31:0]) | ({32{csr_mepc}} & {mepc[31:1], 1'b0}) | ({32{csr_mcause}} & mcause[31:0]) | ({32{csr_mtval}} & mtval[31:0]) | ({32{csr_mrac}} & mrac[31:0]) | ({32{csr_mdseac}} & mdseac[31:0]) | ({32{csr_meivt}} & {meivt[31:10], 10'b0}) | ({32{csr_meihap}} & {meivt[31:10], meihap[9:2], 2'b0}) | ({32{csr_meicurpl}} & {28'b0, meicurpl[3:0]}) | ({32{csr_meicidpl}} & {28'b0, meicidpl[3:0]}) | ({32{csr_meipt}} & {28'b0, meipt[3:0]}) | ({32{csr_mcgc}} & {23'b0, mcgc[8:0]}) | ({32{csr_mfdc}} & {13'b0, mfdc[18:0]}) | ({32{csr_dcsr}} & {16'h4000, dcsr[15:2], 2'b11}) | ({32{csr_dpc}} & {dpc[31:1], 1'b0}) | ({32{csr_dicad0}} & dicad0[31:0]) | `ifdef RV_ICACHE_ECC ({32{csr_dicad1}} & {22'b0, dicad1[9:0]}) | `else ({32{csr_dicad1}} & {30'b0, dicad1[1:0]}) | `endif ({32{csr_dicawics}} & {7'b0, dicawics[18], 2'b0, dicawics[17:16], 4'b0, dicawics[15:2], 2'b0}) | ({32{csr_mtsel}} & {30'b0, mtsel[1:0]}) | ({32{csr_mtdata1}} & {mtdata1_tsel_out[31:0]}) | ({32{csr_mtdata2}} & {mtdata2_tsel_out[31:0]}) | ({32{csr_micect}} & {micect[31:0]}) | ({32{csr_miccmect}} & {miccmect[31:0]}) | ({32{csr_mdccmect}} & {mdccmect[31:0]}) | ({32{csr_mhpmc3}} & mhpmc3[31:0]) | ({32{csr_mhpmc4}} & mhpmc4[31:0]) | ({32{csr_mhpmc5}} & mhpmc5[31:0]) | ({32{csr_mhpmc6}} & mhpmc6[31:0]) | ({32{csr_mhpmc3h}} & mhpmc3h[31:0]) | ({32{csr_mhpmc4h}} & mhpmc4h[31:0]) | ({32{csr_mhpmc5h}} & mhpmc5h[31:0]) | ({32{csr_mhpmc6h}} & mhpmc6h[31:0]) | ({32{csr_mhpme3}} & {26'b0,mhpme3[5:0]}) | ({32{csr_mhpme4}} & {26'b0,mhpme4[5:0]}) | ({32{csr_mhpme5}} & {26'b0,mhpme5[5:0]}) | ({32{csr_mhpme6}} & {26'b0,mhpme6[5:0]}) | ({32{csr_mpmc}} & {30'b0, mpmc[1], 1'b0}) | ({32{csr_mgpmc}} & {31'b0, mgpmc}) | ({32{dec_timer_read_d}} & dec_timer_rddata_d[31:0]) ); `undef MSTATUS_MIE `undef MISA `undef MVENDORID `undef MARCHID `undef MIMPID `undef MHARTID `undef MSTATUS `undef MTVEC `undef MIP `undef MIP_MEIP `undef MIP_MTIP `undef MIP_MSIP `undef MIE `undef MIE_MEIE `undef MIE_MTIE `undef MCYCLEL `undef MCYCLEH `undef MINSTRETL `undef MINSTRETH `undef MSCRATCH `undef MEPC `undef MCAUSE `undef MTVAL `undef MRAC `undef MDSEAC `undef MEIHAP `undef MEIPT `undef MEICURPL endmodule // dec_tlu_ctl module dec_timer_ctl ( input logic clk, input logic free_clk, input logic rst_l, input logic dec_csr_wen_wb_mod, // csr write enable at wb input logic [11:0] dec_csr_rdaddr_d, // read address for csr input logic [11:0] dec_csr_wraddr_wb, // write address for csr input logic [31:0] dec_csr_wrdata_wb, // csr write data at wb input logic dec_pause_state, // Paused input logic dec_tlu_pmu_fw_halted, // pmu/fw halted input logic internal_dbg_halt_timers, // debug halted output logic [31:0] dec_timer_rddata_d, // timer CSR read data output logic dec_timer_read_d, // timer CSR address match output logic dec_timer_t0_pulse, // timer0 int output logic dec_timer_t1_pulse, // timer1 int input logic scan_mode ); `define MITCTL_ENABLE 0 `define MITCTL_ENABLE_HALTED 1 `define MITCTL_ENABLE_PAUSED 2 logic [31:0] mitcnt0_ns, mitcnt0, mitcnt1_ns, mitcnt1, mitb0, mitb1, mitb0_b, mitb1_b, mitcnt0_inc, mitcnt1_inc; logic [2:0] mitctl0_ns, mitctl0, mitctl1_ns, mitctl1; logic wr_mitcnt0_wb, wr_mitcnt1_wb, wr_mitb0_wb, wr_mitb1_wb, wr_mitctl0_wb, wr_mitctl1_wb; logic mitcnt0_inc_ok, mitcnt1_inc_ok, mitcnt0_cout_nc, mitcnt1_cout_nc; logic mit0_match_ns; logic mit1_match_ns; logic mitctl0_0_b_ns; logic mitctl0_0_b; logic mitctl1_0_b_ns; logic mitctl1_0_b; assign mit0_match_ns = (mitcnt0[31:0] >= mitb0[31:0]); assign mit1_match_ns = (mitcnt1[31:0] >= mitb1[31:0]); assign dec_timer_t0_pulse = mit0_match_ns; assign dec_timer_t1_pulse = mit1_match_ns; // ---------------------------------------------------------------------- // MITCNT0 (RW) // [31:0] : Internal Timer Counter 0 `define MITCNT0 12'h7d2 assign wr_mitcnt0_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MITCNT0); assign mitcnt0_inc_ok = mitctl0[`MITCTL_ENABLE] & (~dec_pause_state | mitctl0[`MITCTL_ENABLE_PAUSED]) & (~dec_tlu_pmu_fw_halted | mitctl0[`MITCTL_ENABLE_HALTED]) & ~internal_dbg_halt_timers; assign {mitcnt0_cout_nc, mitcnt0_inc[31:0]} = mitcnt0[31:0] + {31'b0, 1'b1}; assign mitcnt0_ns[31:0] = mit0_match_ns ? 'b0 : wr_mitcnt0_wb ? dec_csr_wrdata_wb[31:0] : mitcnt0_inc[31:0]; rvdffe #(32) mitcnt0_ff (.*, .en(wr_mitcnt0_wb | mitcnt0_inc_ok | mit0_match_ns), .din(mitcnt0_ns[31:0]), .dout(mitcnt0[31:0])); // ---------------------------------------------------------------------- // MITCNT1 (RW) // [31:0] : Internal Timer Counter 0 `define MITCNT1 12'h7d5 assign wr_mitcnt1_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MITCNT1); assign mitcnt1_inc_ok = mitctl1[`MITCTL_ENABLE] & (~dec_pause_state | mitctl1[`MITCTL_ENABLE_PAUSED]) & (~dec_tlu_pmu_fw_halted | mitctl1[`MITCTL_ENABLE_HALTED]) & ~internal_dbg_halt_timers; assign {mitcnt1_cout_nc, mitcnt1_inc[31:0]} = mitcnt1[31:0] + {31'b0, 1'b1}; assign mitcnt1_ns[31:0] = mit1_match_ns ? 'b0 : wr_mitcnt1_wb ? dec_csr_wrdata_wb[31:0] : mitcnt1_inc[31:0]; rvdffe #(32) mitcnt1_ff (.*, .en(wr_mitcnt1_wb | mitcnt1_inc_ok | mit1_match_ns), .din(mitcnt1_ns[31:0]), .dout(mitcnt1[31:0])); // ---------------------------------------------------------------------- // MITB0 (RW) // [31:0] : Internal Timer Bound 0 `define MITB0 12'h7d3 assign wr_mitb0_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MITB0); rvdffe #(32) mitb0_ff (.*, .en(wr_mitb0_wb), .din(~dec_csr_wrdata_wb[31:0]), .dout(mitb0_b[31:0])); assign mitb0[31:0] = ~mitb0_b[31:0]; // ---------------------------------------------------------------------- // MITB1 (RW) // [31:0] : Internal Timer Bound 1 `define MITB1 12'h7d6 assign wr_mitb1_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MITB1); rvdffe #(32) mitb1_ff (.*, .en(wr_mitb1_wb), .din(~dec_csr_wrdata_wb[31:0]), .dout(mitb1_b[31:0])); assign mitb1[31:0] = ~mitb1_b[31:0]; // ---------------------------------------------------------------------- // MITCTL0 (RW) Internal Timer Ctl 0 // [31:3] : Reserved, reads 0x0 // [2] : Enable while PAUSEd // [1] : Enable while HALTed // [0] : Enable (resets to 0x1) `define MITCTL0 12'h7d4 assign wr_mitctl0_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MITCTL0); assign mitctl0_ns[2:0] = wr_mitctl0_wb ? {dec_csr_wrdata_wb[2:0]} : {mitctl0[2:0]}; assign mitctl0_0_b_ns = ~mitctl0_ns[0]; rvdff #(3) mitctl0_ff (.*, .clk(free_clk), .din({mitctl0_ns[2:1], mitctl0_0_b_ns}), .dout({mitctl0[2:1], mitctl0_0_b})); assign mitctl0[0] = ~mitctl0_0_b; // ---------------------------------------------------------------------- // MITCTL1 (RW) Internal Timer Ctl 1 // [31:3] : Reserved, reads 0x0 // [2] : Enable while PAUSEd // [1] : Enable while HALTed // [0] : Enable (resets to 0x1) `define MITCTL1 12'h7d7 assign wr_mitctl1_wb = dec_csr_wen_wb_mod & (dec_csr_wraddr_wb[11:0] == `MITCTL1); assign mitctl1_ns[2:0] = wr_mitctl1_wb ? {dec_csr_wrdata_wb[2:0]} : {mitctl1[2:0]}; assign mitctl1_0_b_ns = ~mitctl1_ns[0]; rvdff #(3) mitctl1_ff (.*, .clk(free_clk), .din({mitctl1_ns[2:1], mitctl1_0_b_ns}), .dout({mitctl1[2:1], mitctl1_0_b})); assign mitctl1[0] = ~mitctl1_0_b; logic csr_mitctl0; logic csr_mitctl1; logic csr_mitb0; logic csr_mitb1; logic csr_mitcnt0; logic csr_mitcnt1; assign csr_mitctl0 = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[4] &dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mitctl1 = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign csr_mitb0 = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4] &!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]); assign csr_mitb1 = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[2] &dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]); assign csr_mitcnt0 = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5] &dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1] &!dec_csr_rdaddr_d[0]); assign csr_mitcnt1 = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[2] &!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]); assign dec_timer_read_d = csr_mitcnt1 | csr_mitcnt0 | csr_mitb1 | csr_mitb0 | csr_mitctl0 | csr_mitctl1; assign dec_timer_rddata_d[31:0] = ( ({32{csr_mitcnt0}} & mitcnt0[31:0]) | ({32{csr_mitcnt1}} & mitcnt1[31:0]) | ({32{csr_mitb0}} & mitb0[31:0]) | ({32{csr_mitb1}} & mitb1[31:0]) | ({32{csr_mitctl0}} & {29'b0, mitctl0[2:0]}) | ({32{csr_mitctl1}} & {29'b0, mitctl1[2:0]}) ); endmodule // dec_timer_ctl