abstractaccelerator/design/lib/axi4_to_ahb.sv

480 lines
25 KiB
Systemverilog

// SPDX-License-Identifier: Apache-2.0
// Copyright 2019 Western Digital Corporation or its affiliates.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//********************************************************************************
// $Id$
//
// Owner:
// Function: AXI4 -> AHB Bridge
// Comments:
//
//********************************************************************************
module axi4_to_ahb #(parameter TAG = 1) (
input clk,
input rst_l,
input scan_mode,
input bus_clk_en,
input clk_override,
// AXI signals
// AXI Write Channels
input logic axi_awvalid,
output logic axi_awready,
input logic [TAG-1:0] axi_awid,
input logic [31:0] axi_awaddr,
input logic [2:0] axi_awsize,
input logic [2:0] axi_awprot,
input logic axi_wvalid,
output logic axi_wready,
input logic [63:0] axi_wdata,
input logic [7:0] axi_wstrb,
input logic axi_wlast,
output logic axi_bvalid,
input logic axi_bready,
output logic [1:0] axi_bresp,
output logic [TAG-1:0] axi_bid,
// AXI Read Channels
input logic axi_arvalid,
output logic axi_arready,
input logic [TAG-1:0] axi_arid,
input logic [31:0] axi_araddr,
input logic [2:0] axi_arsize,
input logic [2:0] axi_arprot,
output logic axi_rvalid,
input logic axi_rready,
output logic [TAG-1:0] axi_rid,
output logic [63:0] axi_rdata,
output logic [1:0] axi_rresp,
output logic axi_rlast,
// AHB-Lite signals
output logic [31:0] ahb_haddr, // ahb bus address
output logic [2:0] ahb_hburst, // tied to 0
output logic ahb_hmastlock, // tied to 0
output logic [3:0] ahb_hprot, // tied to 4'b0011
output logic [2:0] ahb_hsize, // size of bus transaction (possible values 0,1,2,3)
output logic [1:0] ahb_htrans, // Transaction type (possible values 0,2 only right now)
output logic ahb_hwrite, // ahb bus write
output logic [63:0] ahb_hwdata, // ahb bus write data
input logic [63:0] ahb_hrdata, // ahb bus read data
input logic ahb_hready, // slave ready to accept transaction
input logic ahb_hresp // slave response (high indicates erro)
);
localparam ID = 1;
localparam PRTY = 1;
typedef enum logic [2:0] {IDLE=3'b000, CMD_RD=3'b001, CMD_WR=3'b010, DATA_RD=3'b011, DATA_WR=3'b100, DONE=3'b101, STREAM_RD=3'b110, STREAM_ERR_RD=3'b111} state_t;
state_t buf_state, buf_nxtstate;
logic slave_valid;
logic slave_ready;
logic [TAG-1:0] slave_tag;
logic [63:0] slave_rdata;
logic [3:0] slave_opc;
logic wrbuf_en, wrbuf_data_en;
logic wrbuf_cmd_sent, wrbuf_rst;
logic wrbuf_vld;
logic wrbuf_data_vld;
logic [TAG-1:0] wrbuf_tag;
logic [2:0] wrbuf_size;
logic [31:0] wrbuf_addr;
logic [63:0] wrbuf_data;
logic [7:0] wrbuf_byteen;
logic bus_write_clk_en;
logic bus_clk, bus_write_clk;
logic master_valid;
logic master_ready;
logic [TAG-1:0] master_tag;
logic [31:0] master_addr;
logic [63:0] master_wdata;
logic [2:0] master_size;
logic [2:0] master_opc;
// Buffer signals (one entry buffer)
logic [31:0] buf_addr;
logic [1:0] buf_size;
logic buf_write;
logic [7:0] buf_byteen;
logic buf_aligned;
logic [63:0] buf_data;
logic [TAG-1:0] buf_tag;
//Miscellaneous signals
logic buf_rst;
logic [TAG-1:0] buf_tag_in;
logic [31:0] buf_addr_in;
logic [7:0] buf_byteen_in;
logic [63:0] buf_data_in;
logic buf_write_in;
logic buf_aligned_in;
logic [2:0] buf_size_in;
logic buf_state_en;
logic buf_wr_en;
logic buf_data_wr_en;
logic slvbuf_error_en;
logic wr_cmd_vld;
logic cmd_done_rst, cmd_done, cmd_doneQ;
logic trxn_done;
logic [2:0] buf_cmd_byte_ptr, buf_cmd_byte_ptrQ, buf_cmd_nxtbyte_ptr;
logic buf_cmd_byte_ptr_en;
logic found;
logic slave_valid_pre;
logic ahb_hready_q;
logic ahb_hresp_q;
logic [1:0] ahb_htrans_q;
logic ahb_hwrite_q;
logic [63:0] ahb_hrdata_q;
logic slvbuf_write;
logic slvbuf_error;
logic [TAG-1:0] slvbuf_tag;
logic slvbuf_error_in;
logic slvbuf_wr_en;
logic bypass_en;
logic rd_bypass_idle;
logic last_addr_en;
logic [31:0] last_bus_addr;
// Clocks
logic buf_clken, slvbuf_clken;
logic ahbm_addr_clken;
logic ahbm_data_clken;
logic buf_clk, slvbuf_clk;
logic ahbm_clk;
logic ahbm_addr_clk;
logic ahbm_data_clk;
// Function to get the length from byte enable
function automatic logic [1:0] get_write_size;
input logic [7:0] byteen;
logic [1:0] size;
size[1:0] = (2'b11 & {2{(byteen[7:0] == 8'hff)}}) |
(2'b10 & {2{((byteen[7:0] == 8'hf0) | (byteen[7:0] == 8'h0f))}}) |
(2'b01 & {2{((byteen[7:0] == 8'hc0) | (byteen[7:0] == 8'h30) | (byteen[7:0] == 8'h0c) | (byteen[7:0] == 8'h03))}});
return size[1:0];
endfunction // get_write_size
// Function to get the length from byte enable
function automatic logic [2:0] get_write_addr;
input logic [7:0] byteen;
logic [2:0] addr;
addr[2:0] = (3'h0 & {3{((byteen[7:0] == 8'hff) | (byteen[7:0] == 8'h0f) | (byteen[7:0] == 8'h03))}}) |
(3'h2 & {3{(byteen[7:0] == 8'h0c)}}) |
(3'h4 & {3{((byteen[7:0] == 8'hf0) | (byteen[7:0] == 8'h03))}}) |
(3'h6 & {3{(byteen[7:0] == 8'hc0)}});
return addr[2:0];
endfunction // get_write_size
// Function to get the next byte pointer
function automatic logic [2:0] get_nxtbyte_ptr (logic [2:0] current_byte_ptr, logic [7:0] byteen, logic get_next);
logic [2:0] start_ptr;
logic found;
found = '0;
//get_nxtbyte_ptr[2:0] = current_byte_ptr[2:0];
start_ptr[2:0] = get_next ? (current_byte_ptr[2:0] + 3'b1) : current_byte_ptr[2:0];
for (int j=0; j<8; j++) begin
if (~found) begin
get_nxtbyte_ptr[2:0] = 3'(j);
found |= (byteen[j] & (3'(j) >= start_ptr[2:0])) ;
end
end
endfunction // get_nextbyte_ptr
// Write buffer
assign wrbuf_en = axi_awvalid & axi_awready & master_ready;
assign wrbuf_data_en = axi_wvalid & axi_wready & master_ready;
assign wrbuf_cmd_sent = master_valid & master_ready & (master_opc[2:1] == 2'b01);
assign wrbuf_rst = wrbuf_cmd_sent & ~wrbuf_en;
assign axi_awready = ~(wrbuf_vld & ~wrbuf_cmd_sent) & master_ready;
assign axi_wready = ~(wrbuf_data_vld & ~wrbuf_cmd_sent) & master_ready;
assign axi_arready = ~(wrbuf_vld & wrbuf_data_vld) & master_ready;
assign axi_rlast = 1'b1;
assign wr_cmd_vld = (wrbuf_vld & wrbuf_data_vld);
assign master_valid = wr_cmd_vld | axi_arvalid;
assign master_tag[TAG-1:0] = wr_cmd_vld ? wrbuf_tag[TAG-1:0] : axi_arid[TAG-1:0];
assign master_opc[2:0] = wr_cmd_vld ? 3'b011 : 3'b0;
assign master_addr[31:0] = wr_cmd_vld ? wrbuf_addr[31:0] : axi_araddr[31:0];
assign master_size[2:0] = wr_cmd_vld ? wrbuf_size[2:0] : axi_arsize[2:0];
assign master_wdata[63:0] = wrbuf_data[63:0];
// AXI response channel signals
assign axi_bvalid = slave_valid & slave_ready & slave_opc[3];
assign axi_bresp[1:0] = slave_opc[0] ? 2'b10 : (slave_opc[1] ? 2'b11 : 2'b0);
assign axi_bid[TAG-1:0] = slave_tag[TAG-1:0];
assign axi_rvalid = slave_valid & slave_ready & (slave_opc[3:2] == 2'b0);
assign axi_rresp[1:0] = slave_opc[0] ? 2'b10 : (slave_opc[1] ? 2'b11 : 2'b0);
assign axi_rid[TAG-1:0] = slave_tag[TAG-1:0];
assign axi_rdata[63:0] = slave_rdata[63:0];
assign slave_ready = axi_bready & axi_rready;
// Clock header logic
assign bus_write_clk_en = bus_clk_en & ((axi_awvalid & axi_awready) | (axi_wvalid & axi_wready));
`ifdef RV_FPGA_OPTIMIZE
assign bus_clk = 1'b0;
assign bus_write_clk = 1'b0;
assign buf_clk = 1'b0;
assign ahbm_clk = 1'b0;
assign ahbm_addr_clk = 1'b0;
assign ahbm_data_clk = 1'b0;
`else
rvclkhdr bus_cgc (.en(bus_clk_en), .l1clk(bus_clk), .*); // ifndef FGPA_OPTIMIZE
rvclkhdr bus_write_cgc (.en(bus_write_clk_en), .l1clk(bus_write_clk), .*); // ifndef FGPA_OPTIMIZE
rvclkhdr buf_cgc (.en(buf_clken), .l1clk(buf_clk), .*); // ifndef FGPA_OPTIMIZE
rvclkhdr ahbm_cgc (.en(bus_clk_en), .l1clk(ahbm_clk), .*); // ifndef FGPA_OPTIMIZE
rvclkhdr ahbm_addr_cgc (.en(ahbm_addr_clken), .l1clk(ahbm_addr_clk), .*); // ifndef FGPA_OPTIMIZE
rvclkhdr ahbm_data_cgc (.en(ahbm_data_clken), .l1clk(ahbm_data_clk), .*); // ifndef FGPA_OPTIMIZE
`endif
// FIFO state machine
always_comb begin
buf_nxtstate = IDLE;
buf_state_en = 1'b0;
buf_wr_en = 1'b0;
buf_data_wr_en = 1'b0;
slvbuf_error_in = 1'b0;
slvbuf_error_en = 1'b0;
buf_write_in = 1'b0;
cmd_done = 1'b0;
trxn_done = 1'b0;
buf_cmd_byte_ptr_en = 1'b0;
buf_cmd_byte_ptr[2:0] = '0;
slave_valid_pre = 1'b0;
master_ready = 1'b0;
ahb_htrans[1:0] = 2'b0;
slvbuf_wr_en = 1'b0;
bypass_en = 1'b0;
rd_bypass_idle = 1'b0;
case (buf_state)
IDLE: begin
master_ready = 1'b1;
buf_write_in = (master_opc[2:1] == 2'b01);
buf_nxtstate = buf_write_in ? CMD_WR : CMD_RD;
buf_state_en = master_valid & master_ready;
buf_wr_en = buf_state_en;
buf_data_wr_en = buf_state_en & (buf_nxtstate == CMD_WR);
buf_cmd_byte_ptr_en = buf_state_en;
buf_cmd_byte_ptr[2:0] = buf_write_in ? get_nxtbyte_ptr(3'b0,buf_byteen_in[7:0],1'b0) : master_addr[2:0];
bypass_en = buf_state_en;
rd_bypass_idle = bypass_en & (buf_nxtstate == CMD_RD);
ahb_htrans[1:0] = {2{bypass_en}} & 2'b10;
end
CMD_RD: begin
buf_nxtstate = (master_valid & (master_opc[2:0] == 3'b000))? STREAM_RD : DATA_RD;
buf_state_en = ahb_hready_q & (ahb_htrans_q[1:0] != 2'b0) & ~ahb_hwrite_q;
cmd_done = buf_state_en & ~master_valid;
slvbuf_wr_en = buf_state_en;
master_ready = buf_state_en & (buf_nxtstate == STREAM_RD);
buf_wr_en = master_ready;
bypass_en = master_ready & master_valid;
buf_cmd_byte_ptr[2:0] = bypass_en ? master_addr[2:0] : buf_addr[2:0];
ahb_htrans[1:0] = 2'b10 & {2{~buf_state_en | bypass_en}};
end
STREAM_RD: begin
master_ready = (ahb_hready_q & ~ahb_hresp_q) & ~(master_valid & master_opc[2:1] == 2'b01);
buf_wr_en = (master_valid & master_ready & (master_opc[2:0] == 3'b000)); // update the fifo if we are streaming the read commands
buf_nxtstate = ahb_hresp_q ? STREAM_ERR_RD : (buf_wr_en ? STREAM_RD : DATA_RD); // assuming that the master accpets the slave response right away.
buf_state_en = (ahb_hready_q | ahb_hresp_q);
buf_data_wr_en = buf_state_en;
slvbuf_error_in = ahb_hresp_q;
slvbuf_error_en = buf_state_en;
slave_valid_pre = buf_state_en & ~ahb_hresp_q; // send a response right away if we are not going through an error response.
cmd_done = buf_state_en & ~master_valid; // last one of the stream should not send a htrans
bypass_en = master_ready & master_valid & (buf_nxtstate == STREAM_RD) & buf_state_en;
buf_cmd_byte_ptr[2:0] = bypass_en ? master_addr[2:0] : buf_addr[2:0];
ahb_htrans[1:0] = 2'b10 & {2{~((buf_nxtstate != STREAM_RD) & buf_state_en)}};
slvbuf_wr_en = buf_wr_en; // shifting the contents from the buf to slv_buf for streaming cases
end // case: STREAM_RD
STREAM_ERR_RD: begin
buf_nxtstate = DATA_RD;
buf_state_en = ahb_hready_q & (ahb_htrans_q[1:0] != 2'b0) & ~ahb_hwrite_q;
slave_valid_pre = buf_state_en;
slvbuf_wr_en = buf_state_en; // Overwrite slvbuf with buffer
buf_cmd_byte_ptr[2:0] = buf_addr[2:0];
ahb_htrans[1:0] = 2'b10 & {2{~buf_state_en}};
end
DATA_RD: begin
buf_nxtstate = DONE;
buf_state_en = (ahb_hready_q | ahb_hresp_q);
buf_data_wr_en = buf_state_en;
slvbuf_error_in= ahb_hresp_q;
slvbuf_error_en= buf_state_en;
slvbuf_wr_en = buf_state_en;
end
CMD_WR: begin
buf_nxtstate = DATA_WR;
trxn_done = ahb_hready_q & ahb_hwrite_q & (ahb_htrans_q[1:0] != 2'b0);
buf_state_en = trxn_done;
buf_cmd_byte_ptr_en = buf_state_en;
slvbuf_wr_en = buf_state_en;
buf_cmd_byte_ptr = trxn_done ? get_nxtbyte_ptr(buf_cmd_byte_ptrQ[2:0],buf_byteen[7:0],1'b1) : buf_cmd_byte_ptrQ;
cmd_done = trxn_done & (buf_aligned | (buf_cmd_byte_ptrQ == 3'b111) |
(buf_byteen[get_nxtbyte_ptr(buf_cmd_byte_ptrQ[2:0],buf_byteen[7:0],1'b1)] == 1'b0));
ahb_htrans[1:0] = {2{~(cmd_done | cmd_doneQ)}} & 2'b10;
end
DATA_WR: begin
buf_state_en = (cmd_doneQ & ahb_hready_q) | ahb_hresp_q;
master_ready = buf_state_en & ~ahb_hresp_q & slave_ready; // Ready to accept new command if current command done and no error
buf_nxtstate = (ahb_hresp_q | ~slave_ready) ? DONE :
((master_valid & master_ready) ? ((master_opc[2:1] == 2'b01) ? CMD_WR : CMD_RD) : IDLE);
slvbuf_error_in = ahb_hresp_q;
slvbuf_error_en = buf_state_en;
buf_write_in = (master_opc[2:1] == 2'b01);
buf_wr_en = buf_state_en & ((buf_nxtstate == CMD_WR) | (buf_nxtstate == CMD_RD));
buf_data_wr_en = buf_wr_en;
cmd_done = (ahb_hresp_q | (ahb_hready_q & (ahb_htrans_q[1:0] != 2'b0) &
((buf_cmd_byte_ptrQ == 3'b111) | (buf_byteen[get_nxtbyte_ptr(buf_cmd_byte_ptrQ[2:0],buf_byteen[7:0],1'b1)] == 1'b0))));
bypass_en = buf_state_en & buf_write_in & (buf_nxtstate == CMD_WR); // Only bypass for writes for the time being
ahb_htrans[1:0] = {2{(~(cmd_done | cmd_doneQ) | bypass_en)}} & 2'b10;
slave_valid_pre = buf_state_en & (buf_nxtstate != DONE);
trxn_done = ahb_hready_q & ahb_hwrite_q & (ahb_htrans_q[1:0] != 2'b0);
buf_cmd_byte_ptr_en = trxn_done | bypass_en;
buf_cmd_byte_ptr = bypass_en ? get_nxtbyte_ptr(3'b0,buf_byteen_in[7:0],1'b0) :
trxn_done ? get_nxtbyte_ptr(buf_cmd_byte_ptrQ[2:0],buf_byteen[7:0],1'b1) : buf_cmd_byte_ptrQ;
end
DONE: begin
buf_nxtstate = IDLE;
buf_state_en = slave_ready;
slvbuf_error_en = 1'b1;
slave_valid_pre = 1'b1;
end
endcase
end
assign buf_rst = 1'b0;
assign cmd_done_rst = slave_valid_pre;
assign buf_addr_in[2:0] = (buf_aligned_in & (master_opc[2:1] == 2'b01)) ? get_write_addr(wrbuf_byteen[7:0]) : master_addr[2:0];
assign buf_addr_in[31:3] = master_addr[31:3];
assign buf_tag_in[TAG-1:0] = master_tag[TAG-1:0];
assign buf_byteen_in[7:0] = wrbuf_byteen[7:0];
assign buf_data_in[63:0] = (buf_state == DATA_RD) ? ahb_hrdata_q[63:0] : master_wdata[63:0];
assign buf_size_in[1:0] = (buf_aligned_in & (master_size[1:0] == 2'b11) & (master_opc[2:1] == 2'b01)) ? get_write_size(wrbuf_byteen[7:0]) : master_size[1:0];
assign buf_aligned_in = (master_opc[2:0] == 3'b0) | // reads are always aligned since they are either DW or sideeffects
(master_size[1:0] == 2'b0) | (master_size[1:0] == 2'b01) | (master_size[1:0] == 2'b10) | // Always aligned for Byte/HW/Word since they can be only for non-idempotent. IFU/SB are always aligned
((master_size[1:0] == 2'b11) &
((wrbuf_byteen[7:0] == 8'h3) | (wrbuf_byteen[7:0] == 8'hc) | (wrbuf_byteen[7:0] == 8'h30) | (wrbuf_byteen[7:0] == 8'hc0) |
(wrbuf_byteen[7:0] == 8'hf) | (wrbuf_byteen[7:0] == 8'hf0) | (wrbuf_byteen[7:0] == 8'hff)));
// Generate the ahb signals
assign ahb_haddr[31:3] = bypass_en ? master_addr[31:3] : buf_addr[31:3];
assign ahb_haddr[2:0] = {3{(ahb_htrans == 2'b10)}} & buf_cmd_byte_ptr[2:0]; // Trxn should be aligned during IDLE
assign ahb_hsize[2:0] = bypass_en ? {1'b0, ({2{buf_aligned_in}} & buf_size_in[1:0])} :
{1'b0, ({2{buf_aligned}} & buf_size[1:0])}; // Send the full size for aligned trxn
assign ahb_hburst[2:0] = 3'b0;
assign ahb_hmastlock = 1'b0;
assign ahb_hprot[3:0] = {3'b001,~axi_arprot[2]};
assign ahb_hwrite = bypass_en ? (master_opc[2:1] == 2'b01) : buf_write;
assign ahb_hwdata[63:0] = buf_data[63:0];
assign slave_valid = slave_valid_pre;
assign slave_opc[3:2] = slvbuf_write ? 2'b11 : 2'b00;
assign slave_opc[1:0] = {2{slvbuf_error}} & 2'b10;
assign slave_rdata[63:0] = slvbuf_error ? {2{last_bus_addr[31:0]}} : ((buf_state == DONE) ? buf_data[63:0] : ahb_hrdata_q[63:0]);
assign slave_tag[TAG-1:0] = slvbuf_tag[TAG-1:0];
assign last_addr_en = (ahb_htrans[1:0] != 2'b0) & ahb_hready & ahb_hwrite ;
rvdffsc_fpga #(1) wrbuf_vldff (.din(1'b1), .clear(wrbuf_rst), .dout(wrbuf_vld), .en(wrbuf_en), .clk(bus_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffsc_fpga #(1) wrbuf_data_vldff (.din(1'b1), .clear(wrbuf_rst), .dout(wrbuf_data_vld), .en(wrbuf_data_en), .clk(bus_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffs_fpga #(TAG) wrbuf_tagff (.din(axi_awid[TAG-1:0]), .dout(wrbuf_tag[TAG-1:0]), .en(wrbuf_en), .clk(bus_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffs_fpga #(3) wrbuf_sizeff (.din(axi_awsize[2:0]), .dout(wrbuf_size[2:0]), .en(wrbuf_en), .clk(bus_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffs_fpga #(8) wrbuf_byteenff (.din(axi_wstrb[7:0]), .dout(wrbuf_byteen[7:0]), .en(wrbuf_data_en), .clk(bus_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffsc_fpga #($bits(state_t)) buf_state_ff (.din(buf_nxtstate), .clear(buf_rst), .dout({buf_state}), .en(buf_state_en), .clk(ahbm_clk),.clken(bus_clk_en), .rawclk(clk), .*);
rvdffs_fpga #(1) buf_writeff (.din(buf_write_in), .dout(buf_write), .en(buf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(TAG) buf_tagff (.din(buf_tag_in[TAG-1:0]), .dout(buf_tag[TAG-1:0]), .en(buf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(2) buf_sizeff (.din(buf_size_in[1:0]), .dout(buf_size[1:0]), .en(buf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(1) buf_alignedff (.din(buf_aligned_in), .dout(buf_aligned), .en(buf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(8) buf_byteenff (.din(buf_byteen_in[7:0]), .dout(buf_byteen[7:0]), .en(buf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(1) slvbuf_writeff (.din(buf_write), .dout(slvbuf_write), .en(slvbuf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(TAG) slvbuf_tagff (.din(buf_tag[TAG-1:0]), .dout(slvbuf_tag[TAG-1:0]), .en(slvbuf_wr_en), .clk(buf_clk), .clken(buf_clken), .rawclk(clk), .*);
rvdffs_fpga #(1) slvbuf_errorff (.din(slvbuf_error_in), .dout(slvbuf_error), .en(slvbuf_error_en), .clk(ahbm_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffsc_fpga #(1) buf_cmd_doneff (.din(1'b1), .clear(cmd_done_rst), .dout(cmd_doneQ),.en(cmd_done), .clk(ahbm_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffs_fpga #(3) buf_cmd_byte_ptrff (.din(buf_cmd_byte_ptr[2:0]), .dout(buf_cmd_byte_ptrQ[2:0]), .en(buf_cmd_byte_ptr_en), .clk(ahbm_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdff_fpga #(1) hready_ff (.din(ahb_hready), .dout(ahb_hready_q), .clk(ahbm_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdff_fpga #(2) htrans_ff (.din(ahb_htrans[1:0]), .dout(ahb_htrans_q[1:0]), .clk(ahbm_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdff_fpga #(1) hwrite_ff (.din(ahb_hwrite), .dout(ahb_hwrite_q), .clk(ahbm_addr_clk), .clken(ahbm_addr_clken), .rawclk(clk), .*);
rvdff_fpga #(1) hresp_ff (.din(ahb_hresp), .dout(ahb_hresp_q), .clk(ahbm_clk), .clken(bus_clk_en), .rawclk(clk), .*);
rvdffe #(.WIDTH(32)) last_bus_addrff (.din(ahb_haddr[31:0]), .dout(last_bus_addr[31:0]), .en(last_addr_en & bus_clk_en), .*);
rvdffe #(.WIDTH(64)) buf_dataff (.din(buf_data_in[63:0]), .dout(buf_data[63:0]), .en(buf_data_wr_en & bus_clk_en), .*);
rvdffe #(.WIDTH(32)) wrbuf_addrff (.din(axi_awaddr[31:0]), .dout(wrbuf_addr[31:0]), .en(wrbuf_en & bus_clk_en), .*);
rvdffe #(.WIDTH(64)) wrbuf_dataff (.din(axi_wdata[63:0]), .dout(wrbuf_data[63:0]), .en(wrbuf_data_en & bus_clk_en), .*);
rvdffe #(.WIDTH(64)) hrdata_ff (.din(ahb_hrdata[63:0]), .dout(ahb_hrdata_q[63:0]), .en(ahbm_data_clken), .*);
rvdffe #(.WIDTH(32)) buf_addrff (.din(buf_addr_in[31:0]), .dout(buf_addr[31:0]), .en(buf_wr_en & bus_clk_en), .*);
// Clock headers
// clock enables for ahbm addr/data
assign buf_clken = bus_clk_en & (buf_wr_en | slvbuf_wr_en | clk_override);
assign ahbm_addr_clken = bus_clk_en & ((ahb_hready & ahb_htrans[1]) | clk_override);
assign ahbm_data_clken = bus_clk_en & ((buf_state != IDLE) | clk_override);
`ifdef ASSERT_ON
property ahb_trxn_aligned;
@(posedge ahbm_clk) ahb_htrans[1] |-> ((ahb_hsize[2:0] == 3'h0) |
((ahb_hsize[2:0] == 3'h1) & (ahb_haddr[0] == 1'b0)) |
((ahb_hsize[2:0] == 3'h2) & (ahb_haddr[1:0] == 2'b0)) |
((ahb_hsize[2:0] == 3'h3) & (ahb_haddr[2:0] == 3'b0)));
endproperty
assert_ahb_trxn_aligned: assert property (ahb_trxn_aligned) else
$display("Assertion ahb_trxn_aligned failed: ahb_htrans=2'h%h, ahb_hsize=3'h%h, ahb_haddr=32'h%h",ahb_htrans[1:0], ahb_hsize[2:0], ahb_haddr[31:0]);
property ahb_error_protocol;
@(posedge ahbm_clk) (ahb_hready & ahb_hresp) |-> (~$past(ahb_hready) & $past(ahb_hresp));
endproperty
assert_ahb_error_protocol: assert property (ahb_error_protocol) else
$display("Bus Error with hReady isn't preceded with Bus Error without hready");
`endif
endmodule // axi4_to_ahb