2020-01-23 06:22:50 +08:00
|
|
|
|
# EL2 SweRV RISC-V Core<sup>TM</sup> 1.0 from Western Digital
|
|
|
|
|
|
|
|
|
|
This repository contains the SweRV EL2 Core<sup>TM</sup> design RTL
|
|
|
|
|
|
|
|
|
|
## License
|
|
|
|
|
|
|
|
|
|
By contributing to this project, you agree that your contribution is governed by [Apache-2.0](LICENSE).
|
|
|
|
|
Files under the [tools](tools/) directory may be available under a different license. Please review individual file for details.
|
|
|
|
|
|
|
|
|
|
## Directory Structure
|
|
|
|
|
|
|
|
|
|
├── configs # Configurations Dir
|
|
|
|
|
│ └── snapshots # Where generated configuration files are created
|
|
|
|
|
├── design # Design root dir
|
|
|
|
|
│ ├── dbg # Debugger
|
|
|
|
|
│ ├── dec # Decode, Registers and Exceptions
|
|
|
|
|
│ ├── dmi # DMI block
|
|
|
|
|
│ ├── exu # EXU (ALU/MUL/DIV)
|
|
|
|
|
│ ├── ifu # Fetch & Branch Prediction
|
|
|
|
|
│ ├── include
|
|
|
|
|
│ ├── lib
|
|
|
|
|
│ └── lsu # Load/Store
|
|
|
|
|
├── docs
|
|
|
|
|
├── tools # Scripts/Makefiles
|
|
|
|
|
└── testbench # (Very) simple testbench
|
|
|
|
|
├── asm # Example assembly files
|
|
|
|
|
└── hex # Canned demo hex files
|
|
|
|
|
|
|
|
|
|
## Dependencies
|
|
|
|
|
|
|
|
|
|
- Verilator **(4.020 or later)** must be installed on the system if running with verilator
|
|
|
|
|
- If adding/removing instructions, espresso must be installed (used by *tools/coredecode*)
|
|
|
|
|
- RISCV tool chain (based on gcc version 7.3 or higher) must be
|
|
|
|
|
installed so that it can be used to prepare RISCV binaries to run.
|
|
|
|
|
|
|
|
|
|
## Quickstart guide
|
|
|
|
|
1. Clone the repository
|
|
|
|
|
1. Setup RV_ROOT to point to the path in your local filesystem
|
|
|
|
|
1. Determine your configuration {optional}
|
|
|
|
|
1. Run make with tools/Makefile
|
|
|
|
|
|
|
|
|
|
## Release Notes for this version
|
|
|
|
|
Please see [release notes](release-notes.md) for changes and bug fixes in this version of SweRV
|
|
|
|
|
|
|
|
|
|
### Configurations
|
|
|
|
|
|
|
|
|
|
SweRV can be configured by running the `$RV_ROOT/configs/swerv.config` script:
|
|
|
|
|
|
|
|
|
|
`% $RV_ROOT/configs/swerv.config -h` for detailed help options
|
|
|
|
|
|
|
|
|
|
For example to build with a DCCM of size 64 Kb:
|
|
|
|
|
|
|
|
|
|
`% $RV_ROOT/configs/swerv.config -dccm_size=64`
|
|
|
|
|
|
|
|
|
|
This will update the **default** snapshot in $RV_ROOT/configs/snapshots/default/ with parameters for a 64K DCCM.
|
|
|
|
|
|
|
|
|
|
Add `-snapshot=dccm64`, for example, if you wish to name your build snapshot *dccm64* and refer to it during the build.
|
|
|
|
|
|
|
|
|
|
There are 4 predefined target configurations: `default`, `default_ahb`, `typical_pd` and `high_perf` that can be selected via
|
|
|
|
|
the `-target=name` option to swerv.config.
|
|
|
|
|
|
|
|
|
|
This script derives the following consistent set of include files :
|
|
|
|
|
|
|
|
|
|
$RV_ROOT/configs/snapshots/default
|
|
|
|
|
├── common_defines.vh # `defines for testbench or design
|
|
|
|
|
├── defines.h # #defines for C/assembly headers
|
|
|
|
|
├── el2_param.vh # Design parameters
|
|
|
|
|
├── el2_pdef.vh # Parameter structure
|
|
|
|
|
├── pd_defines.vh # `defines for physical design
|
|
|
|
|
├── perl_configs.pl # Perl %configs hash for scripting
|
|
|
|
|
├── pic_map_auto.h # PIC memory map based on configure size
|
|
|
|
|
└── whisper.json # JSON file for swerv-iss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Building a model
|
|
|
|
|
|
|
|
|
|
while in a work directory:
|
|
|
|
|
|
|
|
|
|
1. Set the RV_ROOT environment variable to the root of the SweRV directory structure.
|
|
|
|
|
Example for bash shell:
|
|
|
|
|
`export RV_ROOT=/path/to/swerv`
|
|
|
|
|
Example for csh or its derivatives:
|
|
|
|
|
`setenv RV_ROOT /path/to/swerv`
|
|
|
|
|
|
|
|
|
|
1. Create your specific configuration
|
|
|
|
|
|
|
|
|
|
*(Skip if default is sufficient)*
|
|
|
|
|
*(Name your snapshot to distinguish it from the default. Without an explicit name, it will update/override the __default__ snapshot)*
|
|
|
|
|
For example if `mybuild` is the name for the snapshot:
|
|
|
|
|
|
|
|
|
|
set BUILD_PATH environment variable:
|
|
|
|
|
|
|
|
|
|
`setenv BUILD_PATH snapshots/mybuild`
|
|
|
|
|
|
|
|
|
|
`$RV_ROOT/configs/swerv.config [configuration options..] -snapshot=mybuild`
|
|
|
|
|
|
|
|
|
|
Snapshots are placed in `$BUILD_PATH` directory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Running a simple Hello World program (verilator)
|
|
|
|
|
|
|
|
|
|
`make -f $RV_ROOT/tools/Makefile`
|
|
|
|
|
|
|
|
|
|
This command will build a verilator model of SweRV EL2 with AXI bus, and
|
|
|
|
|
execute a short sequence of instructions that writes out "HELLO WORLD"
|
|
|
|
|
to the bus.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The simulation produces output on the screen like:
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
VerilatorTB: Start of sim
|
|
|
|
|
|
|
|
|
|
----------------------------------
|
|
|
|
|
Hello World from SweRV EL2 @WDC !!
|
|
|
|
|
----------------------------------
|
|
|
|
|
TEST_PASSED
|
|
|
|
|
|
|
|
|
|
Finished : minstret = 437, mcycle = 922
|
|
|
|
|
See "exec.log" for execution trace with register updates..
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
The simulation generates following files:
|
|
|
|
|
|
|
|
|
|
`console.log` contains what the cpu writes to the console address of 0xd0580000.
|
|
|
|
|
`exec.log` shows instruction trace with GPR updates.
|
|
|
|
|
`trace_port.csv` contains a log of the trace port.
|
|
|
|
|
When `debug=1` is provided, a vcd file `sim.vcd` is created and can be browsed by
|
|
|
|
|
gtkwave or similar waveform viewers.
|
|
|
|
|
|
|
|
|
|
You can re-execute simulation using:
|
|
|
|
|
` ./obj_dir/Vtb_top `
|
|
|
|
|
or
|
|
|
|
|
`make -f $RV_ROOT/tools/Makefile verilator`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The simulation run/build command has following generic form:
|
|
|
|
|
|
|
|
|
|
make -f $RV_ROOT/tools/Makefile [<simulator>] [debug=1] [snapshot=mybuild] [target=<target>] [TEST=<test>] [TEST_DIR=<path_to_test_dir>]
|
|
|
|
|
|
|
|
|
|
where:
|
|
|
|
|
```
|
|
|
|
|
<simulator> - can be 'verilator' (by default) 'irun' - Cadence xrun, 'vcs' - Synopsys VCS
|
|
|
|
|
if not provided, 'make' cleans work directory, builds verilator executable and runs a test.
|
|
|
|
|
debug=1 - allows VCD generation for verilator and VCS and SHM waves for irun option.
|
|
|
|
|
<target> - predefined CPU configurations 'default' ( by default), 'default_ahb', 'typical_pd', 'high_perf'
|
|
|
|
|
TEST - allows to run a C (<test>.c) or assembly (<test>.s) test, hello_world2 is run by default
|
|
|
|
|
TEST_DIR - alternative to test source directory testbench/asm
|
|
|
|
|
<snapshot> - run and build executable model of custom CPU configuration, remember to provide 'snapshot' argument
|
|
|
|
|
for runs on custom configurations.
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
|
|
make -f $RV_ROOT/tools/Makefile verilator TEST=cmark
|
|
|
|
|
|
|
|
|
|
will simulate testbench/asm/cmark.c program with verilator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
If you want to compile a test only, you can run:
|
|
|
|
|
|
|
|
|
|
make -f $RV_ROOT/tools/Makefile program.hex TEST=<test> [TEST_DIR=/path/to/dir]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For the cmark test, the script in `$RV_ROOT/tools/calc_cmarks.pl` can be used
|
|
|
|
|
to extract the core-marks score by invoking that script in the run
|
|
|
|
|
directory.
|
|
|
|
|
|
|
|
|
|
The Makefile uses `$RV_ROOT/testbench/linker.ld` file by default to build test executable.
|
|
|
|
|
User can provide test specific linker file in form `<test_name>.ld` to build the test executable,
|
|
|
|
|
in the same directory with the test source.
|
|
|
|
|
|
|
|
|
|
User also can create a test specific makefile in form `<test_name>.makefile`, containing building instructions
|
|
|
|
|
how to create `program.hex` and `data.hex` files used by simulation. The private makefile should be in the same directory
|
|
|
|
|
as the test source.
|
|
|
|
|
*(`program.hex` file is loaded to instruction bus memory slave and 'data.hex' file is loaded to LSU bus memory slave and
|
|
|
|
|
optionally to DCCM at the beginning of simulation)*.
|
|
|
|
|
|
|
|
|
|
The `$RV_ROOT/testbench/asm` directory contains following tests ready to simulate:
|
|
|
|
|
```
|
|
|
|
|
hello_world2 - default tes to run, prints Hello World message to screen and console.log
|
|
|
|
|
hello_world_dccm - the same as above, but takes the string from preloaded DCCM.
|
|
|
|
|
cmark - coremark benchmark running with code and data in external memories
|
|
|
|
|
cmark_dccm - the same as above, running data and stack from DCCM (faster)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
----
|
|
|
|
|
Western Digital, the Western Digital logo, G-Technology, SanDisk, Tegile, Upthere, WD, SweRV Core, SweRV ISS,
|
|
|
|
|
and OmniXtend are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the US
|
|
|
|
|
and/or other countries. All other marks are the property of their respective owners.
|