cores-swerv-el2/design/dec/el2_dec_tlu_ctl.sv

2623 lines
137 KiB
Systemverilog
Raw Normal View History

2020-01-23 06:22:50 +08:00
// SPDX-License-Identifier: Apache-2.0
// Copyright 2020 Western Digital Corporation or it's affiliates.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//********************************************************************************
// el2_dec_tlu_ctl.sv
//
//
// Function: CSRs, Commit/WB, flushing, exceptions, interrupts
// Comments:
//
//********************************************************************************
module el2_dec_tlu_ctl
import el2_pkg::*;
#(
`include "el2_param.vh"
)
(
input logic clk,
input logic active_clk,
input logic free_clk,
input logic rst_l,
input logic scan_mode,
input logic [31:1] rst_vec, // reset vector, from core pins
input logic nmi_int, // nmi pin
input logic [31:1] nmi_vec, // nmi vector
input logic i_cpu_halt_req, // Asynchronous Halt request to CPU
input logic i_cpu_run_req, // Asynchronous Restart request to CPU
input logic lsu_fastint_stall_any, // needed by lsu for 2nd pass of dma with ecc correction, stall next cycle
// perf counter inputs
input logic ifu_pmu_instr_aligned, // aligned instructions
input logic ifu_pmu_fetch_stall, // fetch unit stalled
input logic ifu_pmu_ic_miss, // icache miss
input logic ifu_pmu_ic_hit, // icache hit
input logic ifu_pmu_bus_error, // Instruction side bus error
input logic ifu_pmu_bus_busy, // Instruction side bus busy
input logic ifu_pmu_bus_trxn, // Instruction side bus transaction
input logic dec_pmu_instr_decoded, // decoded instructions
input logic dec_pmu_decode_stall, // decode stall
input logic dec_pmu_presync_stall, // decode stall due to presync'd inst
input logic dec_pmu_postsync_stall,// decode stall due to postsync'd inst
input logic lsu_store_stall_any, // SB or WB is full, stall decode
input logic dma_dccm_stall_any, // DMA stall of lsu
input logic dma_iccm_stall_any, // DMA stall of ifu
input logic exu_pmu_i0_br_misp, // pipe 0 branch misp
input logic exu_pmu_i0_br_ataken, // pipe 0 branch actual taken
input logic exu_pmu_i0_pc4, // pipe 0 4 byte branch
input logic lsu_pmu_bus_trxn, // D side bus transaction
input logic lsu_pmu_bus_misaligned, // D side bus misaligned
input logic lsu_pmu_bus_error, // D side bus error
input logic lsu_pmu_bus_busy, // D side bus busy
input logic lsu_pmu_load_external_m, // D side bus load
input logic lsu_pmu_store_external_m, // D side bus store
input logic dma_pmu_dccm_read, // DMA DCCM read
input logic dma_pmu_dccm_write, // DMA DCCM write
input logic dma_pmu_any_read, // DMA read
input logic dma_pmu_any_write, // DMA write
input logic [31:1] lsu_fir_addr, // Fast int address
input logic [1:0] lsu_fir_error, // Fast int lookup error
input logic iccm_dma_sb_error, // I side dma single bit error
input el2_lsu_error_pkt_t lsu_error_pkt_r, // lsu precise exception/error packet
input logic lsu_single_ecc_error_incr, // LSU inc SB error counter
input logic dec_pause_state, // Pause counter not zero
input logic lsu_imprecise_error_store_any, // store bus error
input logic lsu_imprecise_error_load_any, // store bus error
input logic [31:0] lsu_imprecise_error_addr_any, // store bus error address
input logic dec_csr_wen_unq_d, // valid csr with write - for csr legal
input logic dec_csr_any_unq_d, // valid csr - for csr legal
input logic [11:0] dec_csr_rdaddr_d, // read address for csr
input logic dec_csr_wen_r, // csr write enable at wb
input logic [11:0] dec_csr_wraddr_r, // write address for csr
input logic [31:0] dec_csr_wrdata_r, // csr write data at wb
input logic dec_csr_stall_int_ff, // csr is mie/mstatus
input logic dec_tlu_i0_valid_r, // pipe 0 op at e4 is valid
input logic [31:1] exu_npc_r, // for NPC tracking
input logic [31:1] dec_tlu_i0_pc_r, // for PC/NPC tracking
input el2_trap_pkt_t dec_tlu_packet_r, // exceptions known at decode
input logic [31:0] dec_illegal_inst, // For mtval
input logic dec_i0_decode_d, // decode valid, used for clean icache diagnostics
// branch info from pipe0 for errors or counter updates
input logic [1:0] exu_i0_br_hist_r, // history
input logic exu_i0_br_error_r, // error
input logic exu_i0_br_start_error_r, // start error
input logic exu_i0_br_valid_r, // valid
input logic exu_i0_br_mp_r, // mispredict
input logic exu_i0_br_middle_r, // middle of bank
// branch info from pipe1 for errors or counter updates
input logic exu_i0_br_way_r, // way hit or repl
// Debug start
output logic dec_dbg_cmd_done, // abstract command done
output logic dec_dbg_cmd_fail, // abstract command failed
output logic dec_tlu_dbg_halted, // Core is halted and ready for debug command
output logic dec_tlu_debug_mode, // Core is in debug mode
output logic dec_tlu_resume_ack, // Resume acknowledge
output logic dec_tlu_debug_stall, // stall decode while waiting on core to empty
output logic dec_tlu_flush_noredir_r , // Tell fetch to idle on this flush
output logic dec_tlu_mpc_halted_only, // Core is halted only due to MPC
output logic dec_tlu_flush_leak_one_r, // single step
output logic dec_tlu_flush_err_r, // iside perr/ecc rfpc. This is the D stage of the error
output logic dec_tlu_flush_extint, // fast ext int started
output logic [31:2] dec_tlu_meihap, // meihap for fast int
input logic dbg_halt_req, // DM requests a halt
input logic dbg_resume_req, // DM requests a resume
input logic ifu_miss_state_idle, // I-side miss buffer empty
input logic lsu_idle_any, // lsu is idle
input logic dec_div_active, // oop div is active
output el2_trigger_pkt_t [3:0] trigger_pkt_any, // trigger info for trigger blocks
input logic ifu_ic_error_start, // IC single bit error
input logic ifu_iccm_rd_ecc_single_err, // ICCM single bit error
input logic [70:0] ifu_ic_debug_rd_data, // diagnostic icache read data
input logic ifu_ic_debug_rd_data_valid, // diagnostic icache read data valid
output el2_cache_debug_pkt_t dec_tlu_ic_diag_pkt, // packet of DICAWICS, DICAD0/1, DICAGO info for icache diagnostics
// Debug end
input logic [7:0] pic_claimid, // pic claimid for csr
input logic [3:0] pic_pl, // pic priv level for csr
input logic mhwakeup, // high priority external int, wakeup if halted
input logic mexintpend, // external interrupt pending
input logic timer_int, // timer interrupt pending
input logic soft_int, // software interrupt pending
output logic o_cpu_halt_status, // PMU interface, halted
output logic o_cpu_halt_ack, // halt req ack
output logic o_cpu_run_ack, // run req ack
output logic o_debug_mode_status, // Core to the PMU that core is in debug mode. When core is in debug mode, the PMU should refrain from sendng a halt or run request
input logic [31:4] core_id, // Core ID
// external MPC halt/run interface
input logic mpc_debug_halt_req, // Async halt request
input logic mpc_debug_run_req, // Async run request
input logic mpc_reset_run_req, // Run/halt after reset
output logic mpc_debug_halt_ack, // Halt ack
output logic mpc_debug_run_ack, // Run ack
output logic debug_brkpt_status, // debug breakpoint
output logic [3:0] dec_tlu_meicurpl, // to PIC
output logic [3:0] dec_tlu_meipt, // to PIC
output logic [31:0] dec_csr_rddata_d, // csr read data at wb
output logic dec_csr_legal_d, // csr indicates legal operation
output el2_br_tlu_pkt_t dec_tlu_br0_r_pkt, // branch pkt to bp
output logic dec_tlu_i0_kill_writeb_wb, // I0 is flushed, don't writeback any results to arch state
output logic dec_tlu_flush_lower_wb, // commit has a flush (exception, int, mispredict at e4)
output logic dec_tlu_i0_commit_cmt, // committed an instruction
output logic dec_tlu_i0_kill_writeb_r, // I0 is flushed, don't writeback any results to arch state
output logic dec_tlu_flush_lower_r, // commit has a flush (exception, int)
output logic [31:1] dec_tlu_flush_path_r, // flush pc
output logic dec_tlu_fence_i_r, // flush is a fence_i rfnpc, flush icache
output logic dec_tlu_wr_pause_r, // CSR write to pause reg is at R.
output logic dec_tlu_flush_pause_r, // Flush is due to pause
output logic dec_tlu_presync_d, // CSR read needs to be presync'd
output logic dec_tlu_postsync_d, // CSR needs to be presync'd
output logic [31:0] dec_tlu_mrac_ff, // CSR for memory region control
output logic dec_tlu_force_halt, // halt has been forced
output logic dec_tlu_perfcnt0, // toggles when pipe0 perf counter 0 has an event inc
output logic dec_tlu_perfcnt1, // toggles when pipe0 perf counter 1 has an event inc
output logic dec_tlu_perfcnt2, // toggles when pipe0 perf counter 2 has an event inc
output logic dec_tlu_perfcnt3, // toggles when pipe0 perf counter 3 has an event inc
output logic dec_tlu_i0_exc_valid_wb1, // pipe 0 exception valid
output logic dec_tlu_i0_valid_wb1, // pipe 0 valid
output logic dec_tlu_int_valid_wb1, // pipe 2 int valid
output logic [4:0] dec_tlu_exc_cause_wb1, // exception or int cause
output logic [31:0] dec_tlu_mtval_wb1, // MTVAL value
// feature disable from mfdc
output logic dec_tlu_external_ldfwd_disable, // disable external load forwarding
output logic dec_tlu_sideeffect_posted_disable, // disable posted stores to side-effect address
output logic dec_tlu_core_ecc_disable, // disable core ECC
output logic dec_tlu_bpred_disable, // disable branch prediction
output logic dec_tlu_wb_coalescing_disable, // disable writebuffer coalescing
output logic dec_tlu_pipelining_disable, // disable pipelining
output logic [2:0] dec_tlu_dma_qos_prty, // DMA QoS priority coming from MFDC [18:16]
// clock gating overrides from mcgc
output logic dec_tlu_misc_clk_override, // override misc clock domain gating
output logic dec_tlu_dec_clk_override, // override decode clock domain gating
output logic dec_tlu_ifu_clk_override, // override fetch clock domain gating
output logic dec_tlu_lsu_clk_override, // override load/store clock domain gating
output logic dec_tlu_bus_clk_override, // override bus clock domain gating
output logic dec_tlu_pic_clk_override, // override PIC clock domain gating
output logic dec_tlu_dccm_clk_override, // override DCCM clock domain gating
output logic dec_tlu_icm_clk_override // override ICCM clock domain gating
);
logic clk_override, e4e5_int_clk, nmi_lsu_load_type, nmi_lsu_store_type, nmi_int_detected_f, nmi_lsu_load_type_f,
nmi_lsu_store_type_f, allow_dbg_halt_csr_write, dbg_cmd_done_ns, i_cpu_run_req_d1_raw, debug_mode_status, lsu_single_ecc_error_r_d1,
sel_npc_r, sel_npc_resume, ce_int,
nmi_in_debug_mode, dpc_capture_npc, dpc_capture_pc, tdata_load, tdata_opcode, tdata_action, perfcnt_halted;
logic reset_delayed, reset_detect, reset_detected;
logic wr_mstatus_r, wr_mtvec_r, wr_mcyclel_r, wr_mcycleh_r,
wr_minstretl_r, wr_minstreth_r, wr_mscratch_r, wr_mepc_r, wr_mcause_r, wr_mscause_r, wr_mtval_r,
wr_mrac_r, wr_meihap_r, wr_meicurpl_r, wr_meipt_r, wr_dcsr_r,
wr_dpc_r, wr_meicidpl_r, wr_meivt_r, wr_meicpct_r, wr_micect_r, wr_miccmect_r, wr_mfdht_r, wr_mfdhs_r,
wr_mdccmect_r,wr_mhpme3_r, wr_mhpme4_r, wr_mhpme5_r, wr_mhpme6_r;
logic wr_mpmc_r;
logic [1:1] mpmc_b_ns, mpmc, mpmc_b;
logic set_mie_pmu_fw_halt, fw_halted_ns, fw_halted;
logic wr_mcountinhibit_r;
logic [6:0] mcountinhibit;
logic wr_mtsel_r, wr_mtdata1_t0_r, wr_mtdata1_t1_r, wr_mtdata1_t2_r, wr_mtdata1_t3_r, wr_mtdata2_t0_r, wr_mtdata2_t1_r, wr_mtdata2_t2_r, wr_mtdata2_t3_r;
logic [31:0] mtdata2_t0, mtdata2_t1, mtdata2_t2, mtdata2_t3, mtdata2_tsel_out, mtdata1_tsel_out;
logic [9:0] mtdata1_t0_ns, mtdata1_t0, mtdata1_t1_ns, mtdata1_t1, mtdata1_t2_ns, mtdata1_t2, mtdata1_t3_ns, mtdata1_t3;
logic [9:0] tdata_wrdata_r;
logic [1:0] mtsel_ns, mtsel;
logic tlu_i0_kill_writeb_r;
logic [1:0] mstatus_ns, mstatus;
logic [1:0] mfdhs_ns, mfdhs;
logic [31:0] force_halt_ctr, force_halt_ctr_f;
logic force_halt;
logic [5:0] mfdht, mfdht_ns;
logic mstatus_mie_ns;
logic [30:0] mtvec_ns, mtvec;
logic [15:2] dcsr_ns, dcsr;
logic [3:0] mip_ns, mip;
logic [3:0] mie_ns, mie;
logic [31:0] mcyclel_ns, mcyclel;
logic [31:0] mcycleh_ns, mcycleh;
logic [31:0] minstretl_ns, minstretl;
logic [31:0] minstreth_ns, minstreth;
logic [31:0] micect_ns, micect, miccmect_ns, miccmect, mdccmect_ns, mdccmect;
logic [26:0] micect_inc, miccmect_inc, mdccmect_inc;
logic [31:0] mscratch;
logic [31:0] mhpmc3, mhpmc3_ns, mhpmc4, mhpmc4_ns, mhpmc5, mhpmc5_ns, mhpmc6, mhpmc6_ns;
logic [31:0] mhpmc3h, mhpmc3h_ns, mhpmc4h, mhpmc4h_ns, mhpmc5h, mhpmc5h_ns, mhpmc6h, mhpmc6h_ns;
logic [9:0] mhpme3, mhpme4, mhpme5, mhpme6;
logic [31:0] mrac;
logic [9:2] meihap;
logic [31:10] meivt;
logic [3:0] meicurpl_ns, meicurpl;
logic [3:0] meicidpl_ns, meicidpl;
logic [3:0] meipt_ns, meipt;
logic [31:0] mdseac;
logic mdseac_locked_ns, mdseac_locked_f, mdseac_en, nmi_lsu_detected;
logic [31:1] mepc_ns, mepc;
logic [31:1] dpc_ns, dpc;
logic [31:0] mcause_ns, mcause;
logic [2:0] mscause_ns, mscause, mscause_type;
logic [31:0] mtval_ns, mtval;
logic dec_pause_state_f, dec_tlu_wr_pause_r_d1, pause_expired_r, pause_expired_wb;
logic tlu_flush_lower_r, tlu_flush_lower_r_d1;
logic [31:1] tlu_flush_path_r, tlu_flush_path_r_d1;
logic i0_valid_wb;
logic tlu_i0_commit_cmt;
logic [31:1] vectored_path, interrupt_path;
logic [16:0] dicawics_ns, dicawics;
logic wr_dicawics_r, wr_dicad0_r, wr_dicad1_r, wr_dicad0h_r;
logic [31:0] dicad0_ns, dicad0, dicad0h_ns, dicad0h;
logic [6:0] dicad1_ns, dicad1_raw;
logic [31:0] dicad1;
logic ebreak_r, ebreak_to_debug_mode_r, ecall_r, illegal_r, mret_r, inst_acc_r, fence_i_r,
ic_perr_r, iccm_sbecc_r, ebreak_to_debug_mode_r_d1, kill_ebreak_count_r, inst_acc_second_r;
logic ic_perr_r_d1, iccm_sbecc_r_d1;
logic ce_int_ready, ext_int_ready, timer_int_ready, soft_int_ready, mhwakeup_ready,
take_ext_int, take_ce_int, take_timer_int, take_soft_int, take_nmi, take_nmi_r_d1;
logic i0_exception_valid_r, interrupt_valid_r, i0_exception_valid_r_d1, interrupt_valid_r_d1, exc_or_int_valid_r, exc_or_int_valid_r_d1,
mdccme_ce_req, miccme_ce_req, mice_ce_req;
logic synchronous_flush_r;
logic [4:0] exc_cause_r, exc_cause_wb;
logic mcyclel_cout, mcyclel_cout_f;
logic [31:0] mcyclel_inc;
logic [31:0] mcycleh_inc;
logic minstretl_cout, minstretl_cout_f, minstret_enable;
logic [31:0] minstretl_inc, minstretl_read;
logic [31:0] minstreth_inc, minstreth_read;
logic [31:1] pc_r, pc_r_d1, npc_r, npc_r_d1;
logic valid_csr;
logic rfpc_i0_r;
logic lsu_i0_rfnpc_r;
logic dec_tlu_br0_error_r, dec_tlu_br0_start_error_r, dec_tlu_br0_v_r;
logic lsu_i0_exc_r, lsu_i0_exc_r_raw, lsu_exc_ma_r, lsu_exc_acc_r, lsu_exc_st_r,
lsu_exc_valid_r, lsu_exc_valid_r_raw, lsu_exc_valid_r_d1, lsu_i0_exc_r_d1, block_interrupts;
logic i0_trigger_eval_r;
logic request_debug_mode_r, request_debug_mode_r_d1, request_debug_mode_done, request_debug_mode_done_f;
logic take_halt, halt_taken, halt_taken_f, internal_dbg_halt_mode, dbg_tlu_halted_f, take_reset,
dbg_tlu_halted, core_empty, lsu_idle_any_f, ifu_miss_state_idle_f, resume_ack_ns,
debug_halt_req_f, debug_resume_req_f, enter_debug_halt_req, dcsr_single_step_done, dcsr_single_step_done_f,
debug_halt_req_d1, debug_halt_req_ns, dcsr_single_step_running, dcsr_single_step_running_f, internal_dbg_halt_timers;
logic [3:0] i0_trigger_r, trigger_action, trigger_enabled,
i0_trigger_chain_masked_r;
logic i0_trigger_hit_r, i0_trigger_hit_raw_r, i0_trigger_action_r,
trigger_hit_r_d1,
mepc_trigger_hit_sel_pc_r;
logic [3:0] update_hit_bit_r, i0_iside_trigger_has_pri_r,i0trigger_qual_r, i0_lsu_trigger_has_pri_r;
logic cpu_halt_status, cpu_halt_ack, cpu_run_ack, ext_halt_pulse, i_cpu_halt_req_d1, i_cpu_run_req_d1;
logic inst_acc_r_raw, trigger_hit_dmode_r, trigger_hit_dmode_r_d1;
logic [8:0] mcgc;
logic [18:0] mfdc;
logic i_cpu_halt_req_sync_qual, i_cpu_run_req_sync_qual, pmu_fw_halt_req_ns, pmu_fw_halt_req_f,
fw_halt_req, enter_pmu_fw_halt_req, pmu_fw_tlu_halted, pmu_fw_tlu_halted_f, internal_pmu_fw_halt_mode,
internal_pmu_fw_halt_mode_f;
logic nmi_int_delayed, nmi_int_detected;
logic [3:0] trigger_execute, trigger_data, trigger_store;
logic dec_tlu_pmu_fw_halted;
logic mpc_run_state_ns, debug_brkpt_status_ns, mpc_debug_halt_ack_ns, mpc_debug_run_ack_ns, dbg_halt_state_ns, dbg_run_state_ns,
dbg_halt_state_f, mpc_debug_halt_req_sync_f, mpc_debug_run_req_sync_f, mpc_halt_state_f, mpc_halt_state_ns, mpc_run_state_f, debug_brkpt_status_f,
mpc_debug_halt_ack_f, mpc_debug_run_ack_f, dbg_run_state_f, mpc_debug_halt_req_sync_pulse,
mpc_debug_run_req_sync_pulse, debug_brkpt_valid, debug_halt_req, debug_resume_req, dec_tlu_mpc_halted_only_ns;
logic take_ext_int_start, ext_int_freeze, take_ext_int_start_d1, take_ext_int_start_d2,
take_ext_int_start_d3, ext_int_freeze_d1, csr_meicpct, ignore_ext_int_due_to_lsu_stall;
logic mcause_sel_nmi_store, mcause_sel_nmi_load, mcause_sel_nmi_ext, fast_int_meicpct;
logic [1:0] mcause_fir_error_type;
logic dbg_halt_req_held_ns, dbg_halt_req_held, dbg_halt_req_final;
logic iccm_repair_state_ns, iccm_repair_state_d1, iccm_repair_state_rfnpc;
logic nmi_int_sync, timer_int_sync, soft_int_sync, i_cpu_halt_req_sync, i_cpu_run_req_sync, mpc_debug_halt_req_sync, mpc_debug_run_req_sync, mpc_debug_halt_req_sync_raw;
logic csr_wr_clk;
logic lsu_r_wb_clk;
logic e4e5_clk, e4_valid, e5_valid, e4e5_valid, internal_dbg_halt_mode_f, internal_dbg_halt_mode_f2;
logic lsu_pmu_load_external_r, lsu_pmu_store_external_r;
logic dec_tlu_flush_noredir_r_d1, dec_tlu_flush_pause_r_d1;
logic lsu_single_ecc_error_r;
logic [31:0] lsu_error_pkt_addr_r;
logic mcyclel_cout_in;
logic i0_valid_no_ebreak_ecall_r;
logic minstret_enable_f;
logic sel_exu_npc_r, sel_flush_npc_r, sel_hold_npc_r;
logic pc0_valid_r;
logic [14:0] mfdc_int, mfdc_ns;
logic [31:0] mrac_in;
logic [31:27] csr_sat;
logic [8:6] dcsr_cause;
logic enter_debug_halt_req_le, dcsr_cause_upgradeable;
logic icache_rd_valid, icache_wr_valid, icache_rd_valid_f, icache_wr_valid_f;
logic [3:0] mhpmc_inc_r, mhpmc_inc_r_d1;
logic [3:0][9:0] mhpme_vec;
logic mhpmc3_wr_en0, mhpmc3_wr_en1, mhpmc3_wr_en;
logic mhpmc4_wr_en0, mhpmc4_wr_en1, mhpmc4_wr_en;
logic mhpmc5_wr_en0, mhpmc5_wr_en1, mhpmc5_wr_en;
logic mhpmc6_wr_en0, mhpmc6_wr_en1, mhpmc6_wr_en;
logic mhpmc3h_wr_en0, mhpmc3h_wr_en;
logic mhpmc4h_wr_en0, mhpmc4h_wr_en;
logic mhpmc5h_wr_en0, mhpmc5h_wr_en;
logic mhpmc6h_wr_en0, mhpmc6h_wr_en;
logic [63:0] mhpmc3_incr, mhpmc4_incr, mhpmc5_incr, mhpmc6_incr;
logic perfcnt_halted_d1;
logic [3:0] perfcnt_during_sleep;
logic [9:0] event_saturate_r;
logic trace_tclk;
el2_inst_pkt_t pmu_i0_itype_qual;
logic csr_mfdht;
logic csr_mfdhs;
logic csr_misa;
logic csr_mvendorid;
logic csr_marchid;
logic csr_mimpid;
logic csr_mhartid;
logic csr_mstatus;
logic csr_mtvec;
logic csr_mip;
logic csr_mie;
logic csr_mcyclel;
logic csr_mcycleh;
logic csr_minstretl;
logic csr_minstreth;
logic csr_mscratch;
logic csr_mepc;
logic csr_mcause;
logic csr_mscause;
logic csr_mtval;
logic csr_mrac;
logic csr_dmst;
logic csr_mdseac;
logic csr_meihap;
logic csr_meivt;
logic csr_meipt;
logic csr_meicurpl;
logic csr_meicidpl;
logic csr_dcsr;
logic csr_mcgc;
logic csr_mfdc;
logic csr_dpc;
logic csr_mtsel;
logic csr_mtdata1;
logic csr_mtdata2;
logic csr_mhpmc3;
logic csr_mhpmc4;
logic csr_mhpmc5;
logic csr_mhpmc6;
logic csr_mhpmc3h;
logic csr_mhpmc4h;
logic csr_mhpmc5h;
logic csr_mhpmc6h;
logic csr_mhpme3;
logic csr_mhpme4;
logic csr_mhpme5;
logic csr_mhpme6;
logic csr_mcountinhibit;
logic csr_mpmc;
logic csr_mcpc;
logic csr_mdeau;
logic csr_micect;
logic csr_miccmect;
logic csr_mdccmect;
logic csr_dicawics;
logic csr_dicad0h;
logic csr_dicad0;
logic csr_dicad1;
logic csr_dicago;
logic presync;
logic postsync;
logic legal;
logic dec_csr_wen_r_mod;
logic flush_clkvalid;
logic sel_fir_addr;
logic wr_mie_r;
logic mtval_capture_pc_r;
logic mtval_capture_pc_plus2_r;
logic mtval_capture_inst_r;
logic mtval_capture_lsu_r;
logic mtval_clear_r;
logic wr_mcgc_r;
logic wr_mfdc_r;
logic wr_mdeau_r;
logic trigger_hit_for_dscr_cause_r_d1;
assign clk_override = dec_tlu_dec_clk_override;
// Async inputs to the core have to be sync'd to the core clock.
rvsyncss #(7) syncro_ff(.*,
.clk(free_clk),
.din ({nmi_int, timer_int, soft_int, i_cpu_halt_req, i_cpu_run_req, mpc_debug_halt_req, mpc_debug_run_req}),
.dout({nmi_int_sync, timer_int_sync, soft_int_sync, i_cpu_halt_req_sync, i_cpu_run_req_sync, mpc_debug_halt_req_sync_raw, mpc_debug_run_req_sync}));
// for CSRs that have inpipe writes only
rvoclkhdr csrwr_r_cgc ( .en(dec_csr_wen_r_mod | clk_override), .l1clk(csr_wr_clk), .* );
rvoclkhdr lsu_r_wb_cgc ( .en(lsu_error_pkt_r.exc_valid | lsu_exc_valid_r_d1 | clk_override), .l1clk(lsu_r_wb_clk), .* );
assign e4_valid = dec_tlu_i0_valid_r;
assign e4e5_valid = e4_valid | e5_valid;
assign flush_clkvalid = internal_dbg_halt_mode_f | i_cpu_run_req_d1 | interrupt_valid_r | interrupt_valid_r_d1 |
reset_delayed | pause_expired_r | pause_expired_wb | ic_perr_r | ic_perr_r_d1 | iccm_sbecc_r | iccm_sbecc_r_d1 |
clk_override;
rvoclkhdr e4e5_cgc ( .en(e4e5_valid | clk_override), .l1clk(e4e5_clk), .* );
rvoclkhdr e4e5_int_cgc ( .en(e4e5_valid | flush_clkvalid), .l1clk(e4e5_int_clk), .* );
rvdff #(11) freeff (.*, .clk(free_clk), .din ({iccm_repair_state_ns, ic_perr_r, iccm_sbecc_r, e4_valid, internal_dbg_halt_mode,
lsu_pmu_load_external_m, lsu_pmu_store_external_m, tlu_flush_lower_r, tlu_i0_kill_writeb_r,
internal_dbg_halt_mode_f, force_halt}),
.dout({iccm_repair_state_d1, ic_perr_r_d1, iccm_sbecc_r_d1, e5_valid, internal_dbg_halt_mode_f,
lsu_pmu_load_external_r, lsu_pmu_store_external_r, tlu_flush_lower_r_d1, dec_tlu_i0_kill_writeb_wb,
internal_dbg_halt_mode_f2, dec_tlu_force_halt}));
assign dec_tlu_i0_kill_writeb_r = tlu_i0_kill_writeb_r;
rvdff #(2) reset_ff (.*, .clk(free_clk), .din({1'b1, reset_detect}), .dout({reset_detect, reset_detected}));
assign reset_delayed = reset_detect ^ reset_detected;
rvdff #(4) nmi_ff (.*, .clk(free_clk), .din({nmi_int_sync, nmi_int_detected, nmi_lsu_load_type, nmi_lsu_store_type}), .dout({nmi_int_delayed, nmi_int_detected_f, nmi_lsu_load_type_f, nmi_lsu_store_type_f}));
// Filter subsequent bus errors after the first, until the lock on MDSEAC is cleared
assign nmi_lsu_detected = ~mdseac_locked_f & (lsu_imprecise_error_load_any | lsu_imprecise_error_store_any);
assign nmi_int_detected = (nmi_int_sync & ~nmi_int_delayed) | nmi_lsu_detected | (nmi_int_detected_f & ~take_nmi_r_d1) | (take_ext_int_start_d3 & |lsu_fir_error[1:0]);
// if the first nmi is a lsu type, note it. If there's already an nmi pending, ignore
assign nmi_lsu_load_type = (nmi_lsu_detected & lsu_imprecise_error_load_any & ~(nmi_int_detected_f & ~take_nmi_r_d1)) | (nmi_lsu_load_type_f & ~take_nmi_r_d1);
assign nmi_lsu_store_type = (nmi_lsu_detected & lsu_imprecise_error_store_any & ~(nmi_int_detected_f & ~take_nmi_r_d1)) | (nmi_lsu_store_type_f & ~take_nmi_r_d1);
`define MSTATUS_MIE 0
`define MIP_MCEIP 3
`define MIP_MEIP 2
`define MIP_MTIP 1
`define MIP_MSIP 0
`define MIE_MCEIE 3
`define MIE_MEIE 2
`define MIE_MTIE 1
`define MIE_MSIE 0
`define DCSR_EBREAKM 15
`define DCSR_STEPIE 11
`define DCSR_STOPC 10
`define DCSR_STEP 2
// ----------------------------------------------------------------------
// MPC halt
// - can interact with debugger halt and v-v
// fast ints in progress have priority
assign mpc_debug_halt_req_sync = mpc_debug_halt_req_sync_raw & ~ext_int_freeze_d1;
rvdff #(10) mpvhalt_ff (.*, .clk(free_clk),
.din({mpc_debug_halt_req_sync, mpc_debug_run_req_sync,
mpc_halt_state_ns, mpc_run_state_ns, debug_brkpt_status_ns,
mpc_debug_halt_ack_ns, mpc_debug_run_ack_ns,
dbg_halt_state_ns, dbg_run_state_ns,
dec_tlu_mpc_halted_only_ns}),
.dout({mpc_debug_halt_req_sync_f, mpc_debug_run_req_sync_f,
mpc_halt_state_f, mpc_run_state_f, debug_brkpt_status_f,
mpc_debug_halt_ack_f, mpc_debug_run_ack_f,
dbg_halt_state_f, dbg_run_state_f,
dec_tlu_mpc_halted_only}));
// turn level sensitive requests into pulses
assign mpc_debug_halt_req_sync_pulse = mpc_debug_halt_req_sync & ~mpc_debug_halt_req_sync_f;
assign mpc_debug_run_req_sync_pulse = mpc_debug_run_req_sync & ~mpc_debug_run_req_sync_f;
// states
assign mpc_halt_state_ns = (mpc_halt_state_f | mpc_debug_halt_req_sync_pulse | (reset_delayed & ~mpc_reset_run_req)) & ~mpc_debug_run_req_sync;
assign mpc_run_state_ns = (mpc_run_state_f | (mpc_debug_run_req_sync_pulse & ~mpc_debug_run_ack_f)) & (internal_dbg_halt_mode_f & ~dcsr_single_step_running_f);
assign dbg_halt_state_ns = (dbg_halt_state_f | (dbg_halt_req_final | dcsr_single_step_done_f | trigger_hit_dmode_r_d1 | ebreak_to_debug_mode_r_d1)) & ~dbg_resume_req;
assign dbg_run_state_ns = (dbg_run_state_f | dbg_resume_req) & (internal_dbg_halt_mode_f & ~dcsr_single_step_running_f);
// tell dbg we are only MPC halted
assign dec_tlu_mpc_halted_only_ns = ~dbg_halt_state_f & mpc_halt_state_f;
// this asserts from detection of bkpt until after we leave debug mode
assign debug_brkpt_valid = ebreak_to_debug_mode_r_d1 | trigger_hit_dmode_r_d1;
assign debug_brkpt_status_ns = (debug_brkpt_valid | debug_brkpt_status_f) & (internal_dbg_halt_mode & ~dcsr_single_step_running_f);
// acks back to interface
assign mpc_debug_halt_ack_ns = mpc_halt_state_f & internal_dbg_halt_mode_f & mpc_debug_halt_req_sync & core_empty;
assign mpc_debug_run_ack_ns = (mpc_debug_run_req_sync & ~dbg_halt_state_ns & ~mpc_debug_halt_req_sync) | (mpc_debug_run_ack_f & mpc_debug_run_req_sync) ;
// Pins
assign mpc_debug_halt_ack = mpc_debug_halt_ack_f;
assign mpc_debug_run_ack = mpc_debug_run_ack_f;
assign debug_brkpt_status = debug_brkpt_status_f;
// DBG halt req is a pulse, fast ext int in progress has priority
assign dbg_halt_req_held_ns = (dbg_halt_req | dbg_halt_req_held) & ext_int_freeze_d1;
assign dbg_halt_req_final = (dbg_halt_req | dbg_halt_req_held) & ~ext_int_freeze_d1;
// combine MPC and DBG halt requests
assign debug_halt_req = (dbg_halt_req_final | mpc_debug_halt_req_sync | (reset_delayed & ~mpc_reset_run_req)) & ~internal_dbg_halt_mode_f & ~ext_int_freeze_d1;
assign debug_resume_req = ~debug_resume_req_f & // squash back to back resumes
((mpc_run_state_ns & ~dbg_halt_state_ns) | // MPC run req
(dbg_run_state_ns & ~mpc_halt_state_ns)); // dbg request is a pulse
// HALT
// dbg/pmu/fw requests halt, service as soon as lsu is not blocking interrupts
assign take_halt = (debug_halt_req_f | pmu_fw_halt_req_f) & ~synchronous_flush_r & ~mret_r & ~halt_taken_f & ~dec_tlu_flush_noredir_r_d1 & ~take_reset;
// hold after we take a halt, so we don't keep taking halts
assign halt_taken = (dec_tlu_flush_noredir_r_d1 & ~dec_tlu_flush_pause_r_d1 & ~take_ext_int_start_d1) | (halt_taken_f & ~dbg_tlu_halted_f & ~pmu_fw_tlu_halted_f & ~interrupt_valid_r_d1);
// After doing halt flush (RFNPC) wait until core is idle before asserting a particular halt mode
// It takes a cycle for mb_empty to assert after a fetch, take_halt covers that cycle
assign core_empty = force_halt |
(lsu_idle_any & lsu_idle_any_f & ifu_miss_state_idle & ifu_miss_state_idle_f & ~debug_halt_req & ~debug_halt_req_d1 & ~dec_div_active);
//--------------------------------------------------------------------------------
// Debug start
//
assign enter_debug_halt_req = (~internal_dbg_halt_mode_f & debug_halt_req) | dcsr_single_step_done_f | trigger_hit_dmode_r_d1 | ebreak_to_debug_mode_r_d1;
// dbg halt state active from request until non-step resume
assign internal_dbg_halt_mode = debug_halt_req_ns | (internal_dbg_halt_mode_f & ~(debug_resume_req_f & ~dcsr[`DCSR_STEP]));
// dbg halt can access csrs as long as we are not stepping
assign allow_dbg_halt_csr_write = internal_dbg_halt_mode_f & ~dcsr_single_step_running_f;
// hold debug_halt_req_ns high until we enter debug halt
assign debug_halt_req_ns = enter_debug_halt_req | (debug_halt_req_f & ~dbg_tlu_halted);
assign dbg_tlu_halted = (debug_halt_req_f & core_empty & halt_taken) | (dbg_tlu_halted_f & ~debug_resume_req_f);
assign resume_ack_ns = (debug_resume_req_f & dbg_tlu_halted_f & dbg_run_state_ns);
assign dcsr_single_step_done = dec_tlu_i0_valid_r & ~dec_tlu_dbg_halted & dcsr[`DCSR_STEP] & ~rfpc_i0_r;
assign dcsr_single_step_running = (debug_resume_req_f & dcsr[`DCSR_STEP]) | (dcsr_single_step_running_f & ~dcsr_single_step_done_f);
assign dbg_cmd_done_ns = dec_tlu_i0_valid_r & dec_tlu_dbg_halted;
// used to hold off commits after an in-pipe debug mode request (triggers, DCSR)
assign request_debug_mode_r = (trigger_hit_dmode_r | ebreak_to_debug_mode_r) | (request_debug_mode_r_d1 & ~dec_tlu_flush_lower_wb);
assign request_debug_mode_done = (request_debug_mode_r_d1 | request_debug_mode_done_f) & ~dbg_tlu_halted_f;
rvdff #(18) halt_ff (.*, .clk(free_clk),
.din({dec_tlu_flush_noredir_r, halt_taken, lsu_idle_any, ifu_miss_state_idle, dbg_tlu_halted,
resume_ack_ns, debug_halt_req_ns, debug_resume_req, trigger_hit_dmode_r,
dcsr_single_step_done, debug_halt_req, dec_tlu_wr_pause_r, dec_pause_state,
request_debug_mode_r, request_debug_mode_done, dcsr_single_step_running, dec_tlu_flush_pause_r,
dbg_halt_req_held_ns}),
.dout({dec_tlu_flush_noredir_r_d1, halt_taken_f, lsu_idle_any_f, ifu_miss_state_idle_f, dbg_tlu_halted_f,
dec_tlu_resume_ack , debug_halt_req_f, debug_resume_req_f, trigger_hit_dmode_r_d1,
dcsr_single_step_done_f, debug_halt_req_d1, dec_tlu_wr_pause_r_d1, dec_pause_state_f,
request_debug_mode_r_d1, request_debug_mode_done_f, dcsr_single_step_running_f, dec_tlu_flush_pause_r_d1,
dbg_halt_req_held}));
assign dec_tlu_debug_stall = debug_halt_req_f;
assign dec_tlu_dbg_halted = dbg_tlu_halted_f;
assign dec_tlu_debug_mode = internal_dbg_halt_mode_f;
assign dec_tlu_pmu_fw_halted = pmu_fw_tlu_halted_f;
// kill fetch redirection on flush if going to halt, or if there's a fence during db-halt
assign dec_tlu_flush_noredir_r = take_halt | (fence_i_r & internal_dbg_halt_mode) | dec_tlu_flush_pause_r | (i0_trigger_hit_r & trigger_hit_dmode_r) | take_ext_int_start;
assign dec_tlu_flush_extint = take_ext_int_start;
// 1 cycle after writing the PAUSE counter, flush with noredir to idle F1-D.
assign dec_tlu_flush_pause_r = dec_tlu_wr_pause_r_d1 & ~interrupt_valid_r & ~take_ext_int_start;
// detect end of pause counter and rfpc
assign pause_expired_r = ~dec_pause_state & dec_pause_state_f & ~(ext_int_ready | ce_int_ready | timer_int_ready | soft_int_ready | nmi_int_detected | ext_int_freeze_d1) & ~interrupt_valid_r_d1 & ~debug_halt_req_f & ~pmu_fw_halt_req_f & ~halt_taken_f;
assign dec_tlu_flush_leak_one_r = dec_tlu_flush_lower_r & dcsr[`DCSR_STEP] & (dec_tlu_resume_ack | dcsr_single_step_running) & ~dec_tlu_flush_noredir_r;
assign dec_tlu_flush_err_r = dec_tlu_flush_lower_r & (ic_perr_r_d1 | iccm_sbecc_r_d1);
// If DM attempts to access an illegal CSR, send cmd_fail back
assign dec_dbg_cmd_done = dbg_cmd_done_ns;
assign dec_dbg_cmd_fail = illegal_r & dec_dbg_cmd_done;
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
// Triggers
//
`define MTDATA1_DMODE 9
`define MTDATA1_SEL 7
`define MTDATA1_ACTION 6
`define MTDATA1_CHAIN 5
`define MTDATA1_MATCH 4
`define MTDATA1_M_ENABLED 3
`define MTDATA1_EXE 2
`define MTDATA1_ST 1
`define MTDATA1_LD 0
// Prioritize trigger hits with other exceptions.
//
// Trigger should have highest priority except:
// - trigger is an execute-data and there is an inst_access exception (lsu triggers won't fire, inst. is nop'd by decode)
// - trigger is a store-data and there is a lsu_acc_exc or lsu_ma_exc.
assign trigger_execute[3:0] = {mtdata1_t3[`MTDATA1_EXE], mtdata1_t2[`MTDATA1_EXE], mtdata1_t1[`MTDATA1_EXE], mtdata1_t0[`MTDATA1_EXE]};
assign trigger_data[3:0] = {mtdata1_t3[`MTDATA1_SEL], mtdata1_t2[`MTDATA1_SEL], mtdata1_t1[`MTDATA1_SEL], mtdata1_t0[`MTDATA1_SEL]};
assign trigger_store[3:0] = {mtdata1_t3[`MTDATA1_ST], mtdata1_t2[`MTDATA1_ST], mtdata1_t1[`MTDATA1_ST], mtdata1_t0[`MTDATA1_ST]};
// MSTATUS[MIE] needs to be on to take triggers unless the action is trigger to debug mode.
assign trigger_enabled[3:0] = {(mtdata1_t3[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t3[`MTDATA1_M_ENABLED],
(mtdata1_t2[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t2[`MTDATA1_M_ENABLED],
(mtdata1_t1[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t1[`MTDATA1_M_ENABLED],
(mtdata1_t0[`MTDATA1_ACTION] | mstatus[`MSTATUS_MIE]) & mtdata1_t0[`MTDATA1_M_ENABLED]};
// iside exceptions are always in i0
assign i0_iside_trigger_has_pri_r[3:0] = ~( (trigger_execute[3:0] & trigger_data[3:0] & {4{inst_acc_r_raw}}) | // exe-data with inst_acc
({4{exu_i0_br_error_r | exu_i0_br_start_error_r}})); // branch error in i0
// lsu excs have to line up with their respective triggers since the lsu op can be i0
assign i0_lsu_trigger_has_pri_r[3:0] = ~(trigger_store[3:0] & trigger_data[3:0] & {4{lsu_i0_exc_r_raw}});
// trigger hits have to be eval'd to cancel side effect lsu ops even though the pipe is already frozen
assign i0_trigger_eval_r = dec_tlu_i0_valid_r;
assign i0trigger_qual_r[3:0] = {4{i0_trigger_eval_r}} & dec_tlu_packet_r.i0trigger[3:0] & i0_iside_trigger_has_pri_r[3:0] & i0_lsu_trigger_has_pri_r[3:0] & trigger_enabled[3:0];
// Qual trigger hits
assign i0_trigger_r[3:0] = ~{4{dec_tlu_flush_lower_wb | dec_tlu_dbg_halted}} & i0trigger_qual_r[3:0];
// chaining can mask raw trigger info
assign i0_trigger_chain_masked_r[3:0] = {i0_trigger_r[3] & (~mtdata1_t2[`MTDATA1_CHAIN] | i0_trigger_r[2]),
i0_trigger_r[2] & (~mtdata1_t2[`MTDATA1_CHAIN] | i0_trigger_r[3]),
i0_trigger_r[1] & (~mtdata1_t0[`MTDATA1_CHAIN] | i0_trigger_r[0]),
i0_trigger_r[0] & (~mtdata1_t0[`MTDATA1_CHAIN] | i0_trigger_r[1])};
// This is the highest priority by this point.
assign i0_trigger_hit_raw_r = |i0_trigger_chain_masked_r[3:0];
assign i0_trigger_hit_r = i0_trigger_hit_raw_r;
// Actions include breakpoint, or dmode. Dmode is only possible if the DMODE bit is set.
// Otherwise, take a breakpoint.
assign trigger_action[3:0] = {mtdata1_t3[`MTDATA1_ACTION] & mtdata1_t3[`MTDATA1_DMODE],
mtdata1_t2[`MTDATA1_ACTION] & mtdata1_t2[`MTDATA1_DMODE],
mtdata1_t1[`MTDATA1_ACTION] & mtdata1_t1[`MTDATA1_DMODE],
mtdata1_t0[`MTDATA1_ACTION] & mtdata1_t0[`MTDATA1_DMODE]};
// this is needed to set the HIT bit in the triggers
assign update_hit_bit_r[3:0] = ({4{i0_trigger_hit_r}} & i0_trigger_chain_masked_r[3:0]);
// action, 1 means dmode. Simultaneous triggers with at least 1 set for dmode force entire action to dmode.
assign i0_trigger_action_r = |(i0_trigger_chain_masked_r[3:0] & trigger_action[3:0]);
assign trigger_hit_dmode_r = (i0_trigger_hit_r & i0_trigger_action_r);
assign mepc_trigger_hit_sel_pc_r = i0_trigger_hit_r & ~trigger_hit_dmode_r;
//
// Debug end
//--------------------------------------------------------------------------------
//----------------------------------------------------------------------
//
// Commit
//
//----------------------------------------------------------------------
//--------------------------------------------------------------------------------
// External halt (not debug halt)
// - Fully interlocked handshake
// i_cpu_halt_req ____|--------------|_______________
// core_empty ---------------|___________
// o_cpu_halt_ack _________________|----|__________
// o_cpu_halt_status _______________|---------------------|_________
// i_cpu_run_req ______|----------|____
// o_cpu_run_ack ____________|------|________
//
// debug mode has priority, ignore PMU/FW halt/run while in debug mode
assign i_cpu_halt_req_sync_qual = i_cpu_halt_req_sync & ~dec_tlu_debug_mode & ~ext_int_freeze_d1;
assign i_cpu_run_req_sync_qual = i_cpu_run_req_sync & ~dec_tlu_debug_mode & pmu_fw_tlu_halted_f & ~ext_int_freeze_d1;
rvdff #(8) exthaltff (.*, .clk(free_clk), .din({i_cpu_halt_req_sync_qual, i_cpu_run_req_sync_qual, cpu_halt_status,
cpu_halt_ack, cpu_run_ack, internal_pmu_fw_halt_mode,
pmu_fw_halt_req_ns, pmu_fw_tlu_halted}),
.dout({i_cpu_halt_req_d1, i_cpu_run_req_d1_raw, o_cpu_halt_status,
o_cpu_halt_ack, o_cpu_run_ack, internal_pmu_fw_halt_mode_f,
pmu_fw_halt_req_f, pmu_fw_tlu_halted_f}));
// only happens if we aren't in dgb_halt
assign ext_halt_pulse = i_cpu_halt_req_sync_qual & ~i_cpu_halt_req_d1;
assign enter_pmu_fw_halt_req = ext_halt_pulse | fw_halt_req;
assign pmu_fw_halt_req_ns = (enter_pmu_fw_halt_req | (pmu_fw_halt_req_f & ~pmu_fw_tlu_halted)) & ~debug_halt_req_f;
assign internal_pmu_fw_halt_mode = pmu_fw_halt_req_ns | (internal_pmu_fw_halt_mode_f & ~i_cpu_run_req_d1 & ~debug_halt_req_f);
// debug halt has priority
assign pmu_fw_tlu_halted = ((pmu_fw_halt_req_f & core_empty & halt_taken & ~enter_debug_halt_req) | (pmu_fw_tlu_halted_f & ~i_cpu_run_req_d1)) & ~debug_halt_req_f;
assign cpu_halt_ack = i_cpu_halt_req_d1 & pmu_fw_tlu_halted_f;
assign cpu_halt_status = (pmu_fw_tlu_halted_f & ~i_cpu_run_req_d1) | (o_cpu_halt_status & ~i_cpu_run_req_d1 & ~internal_dbg_halt_mode_f);
assign cpu_run_ack = (o_cpu_halt_status & i_cpu_run_req_sync_qual) | (o_cpu_run_ack & i_cpu_run_req_sync_qual);
assign debug_mode_status = internal_dbg_halt_mode_f;
assign o_debug_mode_status = debug_mode_status;
`ifdef ASSERT_ON
assert_commit_while_halted: assert #0 (~(tlu_i0_commit_cmt & o_cpu_halt_status)) else $display("ERROR: Commiting while cpu_halt_status asserted!");
assert_flush_while_fastint: assert #0 (~((take_ext_int_start_d1 | take_ext_int_start_d2) & dec_tlu_flush_lower_r)) else $display("ERROR: TLU Flushing inside fast interrupt procedure!");
`endif
// high priority interrupts can wakeup from external halt, so can unmasked timer interrupts
assign i_cpu_run_req_d1 = i_cpu_run_req_d1_raw | ((nmi_int_detected | timer_int_ready | soft_int_ready | (mhwakeup & mhwakeup_ready)) & o_cpu_halt_status & ~i_cpu_halt_req_d1);
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
assign lsu_single_ecc_error_r = lsu_single_ecc_error_incr;
rvdff #(2) lsu_dccm_errorff (.*, .clk(free_clk), .din({mdseac_locked_ns, lsu_single_ecc_error_r}), .dout({mdseac_locked_f, lsu_single_ecc_error_r_d1}));
assign lsu_error_pkt_addr_r[31:0] = lsu_error_pkt_r.addr[31:0];
rvdff #(2) lsu_error_wbff (.*, .clk(lsu_r_wb_clk), .din({lsu_exc_valid_r, lsu_i0_exc_r}), .dout({lsu_exc_valid_r_d1, lsu_i0_exc_r_d1}));
assign lsu_exc_valid_r_raw = lsu_error_pkt_r.exc_valid & ~dec_tlu_flush_lower_wb;
assign lsu_i0_exc_r_raw = lsu_error_pkt_r.exc_valid;
assign lsu_i0_exc_r = lsu_i0_exc_r_raw & lsu_exc_valid_r_raw & ~i0_trigger_hit_r & ~rfpc_i0_r;
assign lsu_exc_valid_r = lsu_i0_exc_r;
assign lsu_exc_ma_r = lsu_i0_exc_r & ~lsu_error_pkt_r.exc_type;
assign lsu_exc_acc_r = lsu_i0_exc_r & lsu_error_pkt_r.exc_type;
assign lsu_exc_st_r = lsu_i0_exc_r & lsu_error_pkt_r.inst_type;
// Single bit ECC errors on loads are RFNPC corrected, with the corrected data written to the GPR.
// LSU turns the load into a store and patches the data in the DCCM
assign lsu_i0_rfnpc_r = dec_tlu_i0_valid_r & ~i0_trigger_hit_r &
(~lsu_error_pkt_r.inst_type & lsu_error_pkt_r.single_ecc_error);
// Final commit valids
assign tlu_i0_commit_cmt = dec_tlu_i0_valid_r &
~rfpc_i0_r &
~lsu_i0_exc_r &
~inst_acc_r &
~dec_tlu_dbg_halted &
~request_debug_mode_r_d1 &
~i0_trigger_hit_r;
// unified place to manage the killing of arch state writebacks
assign tlu_i0_kill_writeb_r = rfpc_i0_r | lsu_i0_exc_r | inst_acc_r | (illegal_r & dec_tlu_dbg_halted) | i0_trigger_hit_r;
assign dec_tlu_i0_commit_cmt = tlu_i0_commit_cmt;
// refetch PC, microarch flush
// ic errors only in pipe0
assign rfpc_i0_r = ((dec_tlu_i0_valid_r & ~tlu_flush_lower_r_d1 & (exu_i0_br_error_r | exu_i0_br_start_error_r)) | // inst commit with rfpc
((ic_perr_r_d1 | iccm_sbecc_r_d1) & ~ext_int_freeze_d1)) & // ic/iccm without inst commit
~i0_trigger_hit_r & // unless there's a trigger. Err signal to ic/iccm will assert anyway to clear the error.
~lsu_i0_rfnpc_r;
// From the indication of a iccm single bit error until the first commit or flush, maintain a repair state. In the repair state, rfnpc i0 commits.
assign iccm_repair_state_ns = iccm_sbecc_r_d1 | (iccm_repair_state_d1 & ~dec_tlu_flush_lower_r);
`define MCPC 12'h7c2
// this is a flush of last resort, meaning only assert it if there is no other flush happening.
assign iccm_repair_state_rfnpc = tlu_i0_commit_cmt & iccm_repair_state_d1 &
~(ebreak_r | ecall_r | mret_r | take_reset | illegal_r | (dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCPC)));
// go ahead and repair the branch error on other flushes, doesn't have to be the rfpc flush
assign dec_tlu_br0_error_r = exu_i0_br_error_r & dec_tlu_i0_valid_r & ~tlu_flush_lower_r_d1;
assign dec_tlu_br0_start_error_r = exu_i0_br_start_error_r & dec_tlu_i0_valid_r & ~tlu_flush_lower_r_d1;
assign dec_tlu_br0_v_r = exu_i0_br_valid_r & dec_tlu_i0_valid_r & ~tlu_flush_lower_r_d1 & (~exu_i0_br_mp_r | ~exu_pmu_i0_br_ataken);
assign dec_tlu_br0_r_pkt.hist[1:0] = exu_i0_br_hist_r[1:0];
assign dec_tlu_br0_r_pkt.br_error = dec_tlu_br0_error_r;
assign dec_tlu_br0_r_pkt.br_start_error = dec_tlu_br0_start_error_r;
assign dec_tlu_br0_r_pkt.valid = dec_tlu_br0_v_r;
assign dec_tlu_br0_r_pkt.way = exu_i0_br_way_r;
assign dec_tlu_br0_r_pkt.middle = exu_i0_br_middle_r;
assign ebreak_r = (dec_tlu_packet_r.pmu_i0_itype == EBREAK) & dec_tlu_i0_valid_r & ~i0_trigger_hit_r & ~dcsr[`DCSR_EBREAKM] & ~rfpc_i0_r;
assign ecall_r = (dec_tlu_packet_r.pmu_i0_itype == ECALL) & dec_tlu_i0_valid_r & ~i0_trigger_hit_r & ~rfpc_i0_r;
assign illegal_r = ~dec_tlu_packet_r.legal & dec_tlu_i0_valid_r & ~i0_trigger_hit_r & ~rfpc_i0_r;
assign mret_r = (dec_tlu_packet_r.pmu_i0_itype == MRET) & dec_tlu_i0_valid_r & ~i0_trigger_hit_r & ~rfpc_i0_r;
// fence_i includes debug only fence_i's
assign fence_i_r = (dec_tlu_packet_r.fence_i & dec_tlu_i0_valid_r & ~i0_trigger_hit_r) & ~rfpc_i0_r;
assign ic_perr_r = ifu_ic_error_start & ~ext_int_freeze_d1 & (~internal_dbg_halt_mode_f | dcsr_single_step_running) & ~internal_pmu_fw_halt_mode_f;
assign iccm_sbecc_r = ifu_iccm_rd_ecc_single_err & ~ext_int_freeze_d1 & (~internal_dbg_halt_mode_f | dcsr_single_step_running) & ~internal_pmu_fw_halt_mode_f;
assign inst_acc_r_raw = dec_tlu_packet_r.icaf & dec_tlu_i0_valid_r;
assign inst_acc_r = inst_acc_r_raw & ~rfpc_i0_r & ~i0_trigger_hit_r;
assign inst_acc_second_r = dec_tlu_packet_r.icaf_f1;
assign ebreak_to_debug_mode_r = (dec_tlu_packet_r.pmu_i0_itype == EBREAK) & dec_tlu_i0_valid_r & ~i0_trigger_hit_r & dcsr[`DCSR_EBREAKM] & ~rfpc_i0_r;
rvdff #(1) exctype_wb_ff (.*, .clk(e4e5_clk),
.din (ebreak_to_debug_mode_r ),
.dout(ebreak_to_debug_mode_r_d1));
assign dec_tlu_fence_i_r = fence_i_r;
//
// Exceptions
//
// - MEPC <- PC
// - PC <- MTVEC, assert flush_lower
// - MCAUSE <- cause
// - MSCAUSE <- secondary cause
// - MTVAL <-
// - MPIE <- MIE
// - MIE <- 0
//
assign i0_exception_valid_r = (ebreak_r | ecall_r | illegal_r | inst_acc_r) & ~rfpc_i0_r & ~dec_tlu_dbg_halted;
// Cause:
//
// 0x2 : illegal
// 0x3 : breakpoint
// 0xb : Environment call M-mode
assign exc_cause_r[4:0] = ( ({5{take_ext_int}} & 5'h0b) |
({5{take_timer_int}} & 5'h07) |
({5{take_soft_int}} & 5'h03) |
({5{take_ce_int}} & 5'h1e) |
({5{illegal_r}} & 5'h02) |
({5{ecall_r}} & 5'h0b) |
({5{inst_acc_r}} & 5'h01) |
({5{ebreak_r | i0_trigger_hit_r}} & 5'h03) |
({5{lsu_exc_ma_r & ~lsu_exc_st_r}} & 5'h04) |
({5{lsu_exc_acc_r & ~lsu_exc_st_r}} & 5'h05) |
({5{lsu_exc_ma_r & lsu_exc_st_r}} & 5'h06) |
({5{lsu_exc_acc_r & lsu_exc_st_r}} & 5'h07)
) & ~{5{take_nmi}};
//
// Interrupts
//
// exceptions that are committed have already happened and will cause an int at E4 to wait a cycle
// or more if MSTATUS[MIE] is cleared.
//
// -in priority order, highest to lowest
// -single cycle window where a csr write to MIE/MSTATUS is at E4 when the other conditions for externals are met.
// Hold off externals for a cycle to make sure we are consistent with what was just written
assign mhwakeup_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MEIP] & mie_ns[`MIE_MEIE];
assign ext_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MEIP] & mie_ns[`MIE_MEIE] & ~ignore_ext_int_due_to_lsu_stall;
assign ce_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MCEIP] & mie_ns[`MIE_MCEIE];
assign soft_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MSIP] & mie_ns[`MIE_MSIE];
assign timer_int_ready = ~dec_csr_stall_int_ff & mstatus_mie_ns & mip[`MIP_MTIP] & mie_ns[`MIE_MTIE];
assign internal_dbg_halt_timers = internal_dbg_halt_mode_f & ~dcsr_single_step_running;
assign block_interrupts = ( (internal_dbg_halt_mode & (~dcsr_single_step_running | dec_tlu_i0_valid_r)) | // No ints in db-halt unless we are single stepping
internal_pmu_fw_halt_mode | i_cpu_halt_req_d1 |// No ints in PMU/FW halt. First we exit halt
take_nmi | // NMI is top priority
ebreak_to_debug_mode_r | // Heading to debug mode, hold off ints
synchronous_flush_r | // exception flush this cycle
exc_or_int_valid_r_d1 | // ext/int past cycle (need time for MIE to update)
mret_r | // mret in progress, for cases were ISR enables ints before mret
ext_int_freeze_d1 // Fast interrupt in progress (optional)
);
if (pt.FAST_INTERRUPT_REDIRECT) begin
rvdff #(4) fastint_ff (.*, .clk(free_clk),
.din({take_ext_int_start, take_ext_int_start_d1, take_ext_int_start_d2, ext_int_freeze}),
.dout({take_ext_int_start_d1, take_ext_int_start_d2, take_ext_int_start_d3, ext_int_freeze_d1}));
assign take_ext_int_start = ext_int_ready & ~block_interrupts;
assign ext_int_freeze = take_ext_int_start | take_ext_int_start_d1 | take_ext_int_start_d2 | take_ext_int_start_d3;
assign take_ext_int = take_ext_int_start_d3 & ~|lsu_fir_error[1:0];
assign fast_int_meicpct = csr_meicpct & dec_csr_any_unq_d; // MEICPCT becomes illegal if fast ints are enabled
assign ignore_ext_int_due_to_lsu_stall = lsu_fastint_stall_any;
end
else begin
assign take_ext_int_start = 1'b0;
assign ext_int_freeze = 1'b0;
assign ext_int_freeze_d1 = 1'b0;
assign take_ext_int_start_d1 = 1'b0;
assign take_ext_int_start_d2 = 1'b0;
assign take_ext_int_start_d3 = 1'b0;
assign fast_int_meicpct = 1'b0;
assign ignore_ext_int_due_to_lsu_stall = 1'b0;
assign take_ext_int = ext_int_ready & ~block_interrupts;
end
assign take_ce_int = ce_int_ready & ~ext_int_ready & ~block_interrupts;
assign take_soft_int = soft_int_ready & ~ext_int_ready & ~ce_int_ready & ~block_interrupts;
assign take_timer_int = timer_int_ready & ~soft_int_ready & ~ext_int_ready & ~ce_int_ready & ~block_interrupts;
assign take_reset = reset_delayed & mpc_reset_run_req;
assign take_nmi = nmi_int_detected & ~internal_pmu_fw_halt_mode & (~internal_dbg_halt_mode | (dcsr_single_step_running_f & dcsr[`DCSR_STEPIE] & ~dec_tlu_i0_valid_r & ~dcsr_single_step_done_f)) &
~synchronous_flush_r & ~mret_r & ~take_reset & ~ebreak_to_debug_mode_r & (~ext_int_freeze_d1 | (take_ext_int_start_d3 & |lsu_fir_error[1:0]));
assign interrupt_valid_r = take_ext_int | take_timer_int | take_soft_int | take_nmi | take_ce_int;
// Compute interrupt path:
// If vectored async is set in mtvec, flush path for interrupts is MTVEC + (4 * CAUSE);
assign vectored_path[31:1] = {mtvec[30:1], 1'b0} + {25'b0, exc_cause_r[4:0], 1'b0};
assign interrupt_path[31:1] = take_nmi ? nmi_vec[31:1] : ((mtvec[0] == 1'b1) ? vectored_path[31:1] : {mtvec[30:1], 1'b0});
assign sel_npc_r = lsu_i0_rfnpc_r | fence_i_r | iccm_repair_state_rfnpc | (i_cpu_run_req_d1 & ~interrupt_valid_r) | (rfpc_i0_r & ~dec_tlu_i0_valid_r);
assign sel_npc_resume = (i_cpu_run_req_d1 & pmu_fw_tlu_halted_f) | pause_expired_r;
assign sel_fir_addr = take_ext_int_start_d3 & ~|lsu_fir_error[1:0];
assign synchronous_flush_r = i0_exception_valid_r | // exception
rfpc_i0_r | // rfpc
lsu_exc_valid_r | // lsu exception in either pipe 0 or pipe 1
fence_i_r | // fence, a rfnpc
lsu_i0_rfnpc_r | // lsu dccm sb ecc
iccm_repair_state_rfnpc | // Iccm sb ecc
debug_resume_req_f | // resume from debug halt, fetch the dpc
sel_npc_resume | // resume from pmu/fw halt, or from pause and fetch the NPC
dec_tlu_wr_pause_r_d1 | // flush at start of pause
i0_trigger_hit_r; // trigger hit, ebreak or goto debug mode
assign tlu_flush_lower_r = interrupt_valid_r | mret_r | synchronous_flush_r | take_halt | take_reset | take_ext_int_start;
assign tlu_flush_path_r[31:1] = take_reset ? rst_vec[31:1] :
( ({31{sel_fir_addr}} & lsu_fir_addr[31:1]) |
({31{~take_nmi & sel_npc_r}} & npc_r[31:1]) |
({31{~take_nmi & rfpc_i0_r & dec_tlu_i0_valid_r & ~sel_npc_r}} & dec_tlu_i0_pc_r[31:1]) |
({31{interrupt_valid_r & ~sel_fir_addr}} & interrupt_path[31:1]) |
({31{(i0_exception_valid_r | lsu_exc_valid_r |
(i0_trigger_hit_r & ~trigger_hit_dmode_r)) & ~interrupt_valid_r & ~sel_fir_addr}} & {mtvec[30:1],1'b0}) |
({31{~take_nmi & mret_r}} & mepc[31:1]) |
({31{~take_nmi & debug_resume_req_f}} & dpc[31:1]) |
({31{~take_nmi & sel_npc_resume}} & npc_r_d1[31:1]) );
rvdff #(31) flush_lower_ff (.*, .clk(e4e5_int_clk),
.din({tlu_flush_path_r[31:1]}),
.dout({tlu_flush_path_r_d1[31:1]}));
assign dec_tlu_flush_lower_wb = tlu_flush_lower_r_d1;
assign dec_tlu_flush_lower_r = tlu_flush_lower_r;
assign dec_tlu_flush_path_r[31:1] = tlu_flush_path_r[31:1];
// this is used to capture mepc, etc.
assign exc_or_int_valid_r = lsu_exc_valid_r | i0_exception_valid_r | interrupt_valid_r | (i0_trigger_hit_r & ~trigger_hit_dmode_r);
rvdff #(12) excinfo_wb_ff (.*, .clk(e4e5_int_clk),
.din({interrupt_valid_r, i0_exception_valid_r, exc_or_int_valid_r,
exc_cause_r[4:0], tlu_i0_commit_cmt & ~illegal_r, i0_trigger_hit_r,
take_nmi, pause_expired_r }),
.dout({interrupt_valid_r_d1, i0_exception_valid_r_d1, exc_or_int_valid_r_d1,
exc_cause_wb[4:0], i0_valid_wb, trigger_hit_r_d1,
take_nmi_r_d1, pause_expired_wb}));
//----------------------------------------------------------------------
//
// CSRs
//
//----------------------------------------------------------------------
// ----------------------------------------------------------------------
// MISA (RO)
// [31:30] XLEN - implementation width, 2'b01 - 32 bits
// [12] M - integer mul/div
// [8] I - RV32I
// [2] C - Compressed extension
`define MISA 12'h301
// MVENDORID, MARCHID, MIMPID, MHARTID
`define MVENDORID 12'hf11
`define MARCHID 12'hf12
`define MIMPID 12'hf13
`define MHARTID 12'hf14
// ----------------------------------------------------------------------
// MSTATUS (RW)
// [12:11] MPP : Prior priv level, always 2'b11, not flopped
// [7] MPIE : Int enable previous [1]
// [3] MIE : Int enable [0]
`define MSTATUS 12'h300
//When executing a MRET instruction, supposing MPP holds the value 3, MIE
//is set to MPIE; the privilege mode is changed to 3; MPIE is set to 1; and MPP is set to 3
assign dec_csr_wen_r_mod = dec_csr_wen_r & ~i0_trigger_hit_r & ~rfpc_i0_r;
assign wr_mstatus_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MSTATUS);
// set this even if we don't go to fwhalt due to debug halt. We committed the inst, so ...
assign set_mie_pmu_fw_halt = ~mpmc_b_ns[1] & fw_halt_req;
assign mstatus_ns[1:0] = ( ({2{~wr_mstatus_r & exc_or_int_valid_r}} & {mstatus[`MSTATUS_MIE], 1'b0}) |
({2{ wr_mstatus_r & exc_or_int_valid_r}} & {dec_csr_wrdata_r[3], 1'b0}) |
({2{mret_r & ~exc_or_int_valid_r}} & {1'b1, mstatus[1]}) |
({2{set_mie_pmu_fw_halt}} & {mstatus[1], 1'b1}) |
({2{wr_mstatus_r & ~exc_or_int_valid_r}} & {dec_csr_wrdata_r[7], dec_csr_wrdata_r[3]}) |
({2{~wr_mstatus_r & ~exc_or_int_valid_r & ~mret_r & ~set_mie_pmu_fw_halt}} & mstatus[1:0]) );
// gate MIE if we are single stepping and DCSR[STEPIE] is off
assign mstatus_mie_ns = mstatus[`MSTATUS_MIE] & (~dcsr_single_step_running_f | dcsr[`DCSR_STEPIE]);
rvdff #(2) mstatus_ff (.*, .clk(free_clk), .din(mstatus_ns[1:0]), .dout(mstatus[1:0]));
// ----------------------------------------------------------------------
// MTVEC (RW)
// [31:2] BASE : Trap vector base address
// [1] - Reserved, not implemented, reads zero
// [0] MODE : 0 = Direct, 1 = Asyncs are vectored to BASE + (4 * CAUSE)
`define MTVEC 12'h305
assign wr_mtvec_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTVEC);
assign mtvec_ns[30:0] = {dec_csr_wrdata_r[31:2], dec_csr_wrdata_r[0]} ;
rvdffe #(31) mtvec_ff (.*, .en(wr_mtvec_r), .din(mtvec_ns[30:0]), .dout(mtvec[30:0]));
// ----------------------------------------------------------------------
// MIP (RW)
//
// [30] MCEIP : (RO) M-Mode Correctable Error interrupt pending
// [11] MEIP : (RO) M-Mode external interrupt pending
// [7] MTIP : (RO) M-Mode timer interrupt pending
// [3] MSIP : (RO) M-Mode software interrupt pending
`define MIP 12'h344
assign ce_int = (mdccme_ce_req | miccme_ce_req | mice_ce_req);
assign mip_ns[3:0] = {ce_int, mexintpend, timer_int_sync, soft_int_sync};
rvdff #(4) mip_ff (.*, .clk(free_clk), .din(mip_ns[3:0]), .dout(mip[3:0]));
// ----------------------------------------------------------------------
// MIE (RW)
// [30] MCEIE : (RO) M-Mode Correctable Error interrupt enable
// [11] MEIE : (RW) M-Mode external interrupt enable
// [7] MTIE : (RW) M-Mode timer interrupt enable
// [3] MSIE : (RW) M-Mode software interrupt enable
`define MIE 12'h304
assign wr_mie_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MIE);
assign mie_ns[3:0] = wr_mie_r ? {dec_csr_wrdata_r[30], dec_csr_wrdata_r[11], dec_csr_wrdata_r[7], dec_csr_wrdata_r[3]} : mie[3:0];
rvdff #(4) mie_ff (.*, .clk(csr_wr_clk), .din(mie_ns[3:0]), .dout(mie[3:0]));
// ----------------------------------------------------------------------
// MCYCLEL (RW)
// [31:0] : Lower Cycle count
`define MCYCLEL 12'hb00
assign kill_ebreak_count_r = ebreak_to_debug_mode_r & dcsr[`DCSR_STOPC];
assign wr_mcyclel_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCYCLEL);
assign mcyclel_cout_in = ~(kill_ebreak_count_r | (dec_tlu_dbg_halted & dcsr[`DCSR_STOPC]) | dec_tlu_pmu_fw_halted | mcountinhibit[0]);
assign {mcyclel_cout, mcyclel_inc[31:0]} = mcyclel[31:0] + {31'b0, mcyclel_cout_in};
assign mcyclel_ns[31:0] = wr_mcyclel_r ? dec_csr_wrdata_r[31:0] : mcyclel_inc[31:0];
rvdffe #(32) mcyclel_ff (.*, .en(wr_mcyclel_r | mcyclel_cout_in), .din(mcyclel_ns[31:0]), .dout(mcyclel[31:0]));
rvdff #(1) mcyclef_cout_ff (.*, .clk(free_clk), .din(mcyclel_cout & ~wr_mcycleh_r), .dout(mcyclel_cout_f));
// ----------------------------------------------------------------------
// MCYCLEH (RW)
// [63:32] : Higher Cycle count
// Chained with mcyclel. Note: mcyclel overflow due to a mcycleh write gets ignored.
`define MCYCLEH 12'hb80
assign wr_mcycleh_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCYCLEH);
assign mcycleh_inc[31:0] = mcycleh[31:0] + {31'b0, mcyclel_cout_f};
assign mcycleh_ns[31:0] = wr_mcycleh_r ? dec_csr_wrdata_r[31:0] : mcycleh_inc[31:0];
rvdffe #(32) mcycleh_ff (.*, .en(wr_mcycleh_r | mcyclel_cout_f), .din(mcycleh_ns[31:0]), .dout(mcycleh[31:0]));
// ----------------------------------------------------------------------
// MINSTRETL (RW)
// [31:0] : Lower Instruction retired count
// From the spec "Some CSRs, such as the instructions retired counter, instret, may be modified as side effects
// of instruction execution. In these cases, if a CSR access instruction reads a CSR, it reads the
// value prior to the execution of the instruction. If a CSR access instruction writes a CSR, the
// update occurs after the execution of the instruction. In particular, a value written to instret by
// one instruction will be the value read by the following instruction (i.e., the increment of instret
// caused by the first instruction retiring happens before the write of the new value)."
`define MINSTRETL 12'hb02
assign i0_valid_no_ebreak_ecall_r = tlu_i0_commit_cmt & ~(ebreak_r | ecall_r | ebreak_to_debug_mode_r | illegal_r | mcountinhibit[2]);
assign wr_minstretl_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MINSTRETL);
assign {minstretl_cout, minstretl_inc[31:0]} = minstretl[31:0] + {31'b0,i0_valid_no_ebreak_ecall_r};
assign minstret_enable = i0_valid_no_ebreak_ecall_r | wr_minstretl_r;
assign minstretl_ns[31:0] = wr_minstretl_r ? dec_csr_wrdata_r[31:0] : minstretl_inc[31:0];
rvdffe #(32) minstretl_ff (.*, .en(minstret_enable), .din(minstretl_ns[31:0]), .dout(minstretl[31:0]));
rvdff #(2) minstretf_cout_ff (.*, .clk(free_clk), .din({minstret_enable, minstretl_cout & ~wr_minstreth_r}), .dout({minstret_enable_f, minstretl_cout_f}));
assign minstretl_read[31:0] = minstretl[31:0];
// ----------------------------------------------------------------------
// MINSTRETH (RW)
// [63:32] : Higher Instret count
// Chained with minstretl. Note: minstretl overflow due to a minstreth write gets ignored.
`define MINSTRETH 12'hb82
assign wr_minstreth_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MINSTRETH);
assign minstreth_inc[31:0] = minstreth[31:0] + {31'b0, minstretl_cout_f};
assign minstreth_ns[31:0] = wr_minstreth_r ? dec_csr_wrdata_r[31:0] : minstreth_inc[31:0];
rvdffe #(32) minstreth_ff (.*, .en(minstret_enable_f | wr_minstreth_r), .din(minstreth_ns[31:0]), .dout(minstreth[31:0]));
assign minstreth_read[31:0] = minstreth_inc[31:0];
// ----------------------------------------------------------------------
// MSCRATCH (RW)
// [31:0] : Scratch register
`define MSCRATCH 12'h340
assign wr_mscratch_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MSCRATCH);
rvdffe #(32) mscratch_ff (.*, .en(wr_mscratch_r), .din(dec_csr_wrdata_r[31:0]), .dout(mscratch[31:0]));
// ----------------------------------------------------------------------
// MEPC (RW)
// [31:1] : Exception PC
`define MEPC 12'h341
// NPC
assign sel_exu_npc_r = ~dec_tlu_dbg_halted & ~tlu_flush_lower_r_d1 & dec_tlu_i0_valid_r;
assign sel_flush_npc_r = ~dec_tlu_dbg_halted & tlu_flush_lower_r_d1 & ~dec_tlu_flush_noredir_r_d1;
assign sel_hold_npc_r = ~sel_exu_npc_r & ~sel_flush_npc_r;
assign npc_r[31:1] = ( ({31{sel_exu_npc_r}} & exu_npc_r[31:1]) |
({31{~mpc_reset_run_req & reset_delayed}} & rst_vec[31:1]) | // init to reset vector for mpc halt on reset case
({31{(sel_flush_npc_r)}} & tlu_flush_path_r_d1[31:1]) |
({31{(sel_hold_npc_r)}} & npc_r_d1[31:1]) );
rvdffe #(31) npwbc_ff (.*, .en(sel_exu_npc_r | sel_flush_npc_r | reset_delayed), .din(npc_r[31:1]), .dout(npc_r_d1[31:1]));
// PC has to be captured for exceptions and interrupts. For MRET, we could execute it and then take an
// interrupt before the next instruction.
assign pc0_valid_r = ~dec_tlu_dbg_halted & dec_tlu_i0_valid_r;
assign pc_r[31:1] = ( ({31{ pc0_valid_r}} & dec_tlu_i0_pc_r[31:1]) |
({31{~pc0_valid_r}} & pc_r_d1[31:1]));
rvdffe #(31) pwbc_ff (.*, .en(pc0_valid_r), .din(pc_r[31:1]), .dout(pc_r_d1[31:1]));
assign wr_mepc_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MEPC);
assign mepc_ns[31:1] = ( ({31{i0_exception_valid_r | lsu_exc_valid_r | mepc_trigger_hit_sel_pc_r}} & pc_r[31:1]) |
({31{interrupt_valid_r}} & npc_r[31:1]) |
({31{wr_mepc_r & ~exc_or_int_valid_r}} & dec_csr_wrdata_r[31:1]) |
({31{~wr_mepc_r & ~exc_or_int_valid_r}} & mepc[31:1]) );
rvdff #(31) mepc_ff (.*, .clk(e4e5_int_clk), .din(mepc_ns[31:1]), .dout(mepc[31:1]));
// ----------------------------------------------------------------------
// MCAUSE (RW)
// [31:0] : Exception Cause
`define MCAUSE 12'h342
assign wr_mcause_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCAUSE);
assign mcause_sel_nmi_store = exc_or_int_valid_r & take_nmi & nmi_lsu_store_type;
assign mcause_sel_nmi_load = exc_or_int_valid_r & take_nmi & nmi_lsu_load_type;
assign mcause_sel_nmi_ext = exc_or_int_valid_r & take_nmi & |lsu_fir_error[1:0];
// FIR value decoder
// 0 no error
// 1 uncorrectable ecc => f000_1000
// 2 dccm region access error => f000_1001
// 3 non dccm region access error => f000_1002
assign mcause_fir_error_type[1:0] = {&lsu_fir_error[1:0], lsu_fir_error[1] & ~lsu_fir_error[0]};
assign mcause_ns[31:0] = ( ({32{mcause_sel_nmi_store}} & {32'hf000_0000}) |
({32{mcause_sel_nmi_load}} & {32'hf000_0001}) |
({32{mcause_sel_nmi_ext}} & {28'hf000_100, 2'b0, mcause_fir_error_type[1:0]}) |
({32{exc_or_int_valid_r & ~take_nmi}} & {interrupt_valid_r, 26'b0, exc_cause_r[4:0]}) |
({32{wr_mcause_r & ~exc_or_int_valid_r}} & dec_csr_wrdata_r[31:0]) |
({32{~wr_mcause_r & ~exc_or_int_valid_r}} & mcause[31:0]) );
rvdff #(32) mcause_ff (.*, .clk(e4e5_int_clk), .din(mcause_ns[31:0]), .dout(mcause[31:0]));
// ----------------------------------------------------------------------
// MSCAUSE (RW)
// [2:0] : Secondary exception Cause
`define MSCAUSE 12'h7ff
assign wr_mscause_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MSCAUSE);
assign mscause_type[2:0] = ( ({3{lsu_i0_exc_r}} & lsu_error_pkt_r.mscause[2:0]) |
({3{i0_trigger_hit_r}} & 3'b001) |
({3{inst_acc_r}} & {1'b0,dec_tlu_packet_r.icaf_type[1:0]})
);
assign mscause_ns[2:0] = ( ({3{exc_or_int_valid_r}} & mscause_type[2:0]) |
({3{ wr_mscause_r & ~exc_or_int_valid_r}} & dec_csr_wrdata_r[2:0]) |
({3{~wr_mscause_r & ~exc_or_int_valid_r}} & mscause[2:0])
);
rvdff #(3) mscause_ff (.*, .clk(e4e5_int_clk), .din(mscause_ns[2:0]), .dout(mscause[2:0]));
// ----------------------------------------------------------------------
// MTVAL (RW)
// [31:0] : Exception address if relevant
`define MTVAL 12'h343
assign wr_mtval_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTVAL);
assign mtval_capture_pc_r = exc_or_int_valid_r & (ebreak_r | (inst_acc_r & ~inst_acc_second_r) | mepc_trigger_hit_sel_pc_r) & ~take_nmi;
assign mtval_capture_pc_plus2_r = exc_or_int_valid_r & (inst_acc_r & inst_acc_second_r) & ~take_nmi;
assign mtval_capture_inst_r = exc_or_int_valid_r & illegal_r & ~take_nmi;
assign mtval_capture_lsu_r = exc_or_int_valid_r & lsu_exc_valid_r & ~take_nmi;
assign mtval_clear_r = exc_or_int_valid_r & ~mtval_capture_pc_r & ~mtval_capture_inst_r & ~mtval_capture_lsu_r & ~mepc_trigger_hit_sel_pc_r;
assign mtval_ns[31:0] = (({32{mtval_capture_pc_r}} & {pc_r[31:1], 1'b0}) |
({32{mtval_capture_pc_plus2_r}} & {pc_r[31:1] + 31'b1, 1'b0}) |
({32{mtval_capture_inst_r}} & dec_illegal_inst[31:0]) |
({32{mtval_capture_lsu_r}} & lsu_error_pkt_addr_r[31:0]) |
({32{wr_mtval_r & ~interrupt_valid_r}} & dec_csr_wrdata_r[31:0]) |
({32{~take_nmi & ~wr_mtval_r & ~mtval_capture_pc_r & ~mtval_capture_inst_r & ~mtval_clear_r & ~mtval_capture_lsu_r}} & mtval[31:0]) );
rvdff #(32) mtval_ff (.*, .clk(e4e5_int_clk), .din(mtval_ns[31:0]), .dout(mtval[31:0]));
// ----------------------------------------------------------------------
// MCGC (RW) Clock gating control
// [31:9] : Reserved, reads 0x0
// [8] : misc_clk_override
// [7] : dec_clk_override
// [6] : unused
// [5] : ifu_clk_override
// [4] : lsu_clk_override
// [3] : bus_clk_override
// [2] : pic_clk_override
// [1] : dccm_clk_override
// [0] : icm_clk_override
//
`define MCGC 12'h7f8
assign wr_mcgc_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCGC);
rvdffe #(9) mcgc_ff (.*, .en(wr_mcgc_r), .din(dec_csr_wrdata_r[8:0]), .dout(mcgc[8:0]));
assign dec_tlu_misc_clk_override = mcgc[8];
assign dec_tlu_dec_clk_override = mcgc[7];
assign dec_tlu_ifu_clk_override = mcgc[5];
assign dec_tlu_lsu_clk_override = mcgc[4];
assign dec_tlu_bus_clk_override = mcgc[3];
assign dec_tlu_pic_clk_override = mcgc[2];
assign dec_tlu_dccm_clk_override = mcgc[1];
assign dec_tlu_icm_clk_override = mcgc[0];
// ----------------------------------------------------------------------
// MFDC (RW) Feature Disable Control
// [31:19] : Reserved, reads 0x0
// [18:16] : DMA QoS Prty
// [15:12] : Reserved, reads 0x0
// [11] : Disable external load forwarding
// [10] : Disable dual issue
// [9] : Disable pic multiple ints
// [8] : Disable core ecc
// [7] : Unused, 0x0
// [6] : Disable Sideeffect lsu posting
// [5:4] : Unused, 0x0
// [3] : Disable branch prediction and return stack
// [2] : Disable write buffer coalescing
// [1] : Unused, 0x0
// [0] : Disable pipelining - Enable single instruction execution
//
`define MFDC 12'h7f9
assign wr_mfdc_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MFDC);
rvdffe #(15) mfdc_ff (.*, .en(wr_mfdc_r), .din({mfdc_ns[14:0]}), .dout(mfdc_int[14:0]));
if(pt.BUILD_AXI4==1) begin : axi4
// flip poweron value of bit 6 for AXI build
assign mfdc_ns[14:0] = {~dec_csr_wrdata_r[18:16],dec_csr_wrdata_r[11:7], ~dec_csr_wrdata_r[6], dec_csr_wrdata_r[5:0]};
assign mfdc[18:0] = {~mfdc_int[14:12], 4'b0, mfdc_int[11:7], ~mfdc_int[6], mfdc_int[5:0]};
end
else begin
assign mfdc_ns[14:0] = {~dec_csr_wrdata_r[18:16],dec_csr_wrdata_r[11:0]};
assign mfdc[18:0] = {~mfdc_int[14:12], 4'b0, mfdc_int[11:0]};
end
assign dec_tlu_dma_qos_prty[2:0] = mfdc[18:16];
assign dec_tlu_external_ldfwd_disable = mfdc[11];
assign dec_tlu_core_ecc_disable = mfdc[8];
assign dec_tlu_sideeffect_posted_disable = mfdc[6];
assign dec_tlu_bpred_disable = mfdc[3];
assign dec_tlu_wb_coalescing_disable = mfdc[2];
assign dec_tlu_pipelining_disable = mfdc[0];
// ----------------------------------------------------------------------
// MCPC (RW) Pause counter
// [31:0] : Reads 0x0, decs in the wb register in decode_ctl
assign dec_tlu_wr_pause_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCPC) & ~interrupt_valid_r & ~take_ext_int_start;
// ----------------------------------------------------------------------
// MRAC (RW)
// [31:0] : Region Access Control Register, 16 regions, {side_effect, cachable} pairs
`define MRAC 12'h7c0
assign wr_mrac_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MRAC);
// prevent pairs of 0x11, side_effect and cacheable
assign mrac_in[31:0] = {dec_csr_wrdata_r[31], dec_csr_wrdata_r[30] & ~dec_csr_wrdata_r[31],
dec_csr_wrdata_r[29], dec_csr_wrdata_r[28] & ~dec_csr_wrdata_r[29],
dec_csr_wrdata_r[27], dec_csr_wrdata_r[26] & ~dec_csr_wrdata_r[27],
dec_csr_wrdata_r[25], dec_csr_wrdata_r[24] & ~dec_csr_wrdata_r[25],
dec_csr_wrdata_r[23], dec_csr_wrdata_r[22] & ~dec_csr_wrdata_r[23],
dec_csr_wrdata_r[21], dec_csr_wrdata_r[20] & ~dec_csr_wrdata_r[21],
dec_csr_wrdata_r[19], dec_csr_wrdata_r[18] & ~dec_csr_wrdata_r[19],
dec_csr_wrdata_r[17], dec_csr_wrdata_r[16] & ~dec_csr_wrdata_r[17],
dec_csr_wrdata_r[15], dec_csr_wrdata_r[14] & ~dec_csr_wrdata_r[15],
dec_csr_wrdata_r[13], dec_csr_wrdata_r[12] & ~dec_csr_wrdata_r[13],
dec_csr_wrdata_r[11], dec_csr_wrdata_r[10] & ~dec_csr_wrdata_r[11],
dec_csr_wrdata_r[9], dec_csr_wrdata_r[8] & ~dec_csr_wrdata_r[9],
dec_csr_wrdata_r[7], dec_csr_wrdata_r[6] & ~dec_csr_wrdata_r[7],
dec_csr_wrdata_r[5], dec_csr_wrdata_r[4] & ~dec_csr_wrdata_r[5],
dec_csr_wrdata_r[3], dec_csr_wrdata_r[2] & ~dec_csr_wrdata_r[3],
dec_csr_wrdata_r[1], dec_csr_wrdata_r[0] & ~dec_csr_wrdata_r[1]};
rvdffe #(32) mrac_ff (.*, .en(wr_mrac_r), .din(mrac_in[31:0]), .dout(mrac[31:0]));
// drive to LSU/IFU
assign dec_tlu_mrac_ff[31:0] = mrac[31:0];
// ----------------------------------------------------------------------
// MDEAU (WAR0)
// [31:0] : Dbus Error Address Unlock register
//
`define MDEAU 12'hbc0
assign wr_mdeau_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MDEAU);
// ----------------------------------------------------------------------
// MDSEAC (R)
// [31:0] : Dbus Store Error Address Capture register
//
`define MDSEAC 12'hfc0
// only capture error bus if the MDSEAC reg is not locked
assign mdseac_locked_ns = mdseac_en | (mdseac_locked_f & ~wr_mdeau_r);
assign mdseac_en = (lsu_imprecise_error_store_any | lsu_imprecise_error_load_any) & ~nmi_int_detected_f & ~mdseac_locked_f;
rvdffe #(32) mdseac_ff (.*, .en(mdseac_en), .din(lsu_imprecise_error_addr_any[31:0]), .dout(mdseac[31:0]));
// ----------------------------------------------------------------------
// MPMC (R0W1)
// [0] : FW halt
// [1] : Set MSTATUS[MIE] on halt
`define MPMC 12'h7c6
assign wr_mpmc_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MPMC);
// allow the cycle of the dbg halt flush that contains the wr_mpmc_r to
// set the mstatus bit potentially, use delayed version of internal dbg halt.
assign fw_halt_req = wr_mpmc_r & dec_csr_wrdata_r[0] & ~internal_dbg_halt_mode_f2 & ~ext_int_freeze_d1;
assign fw_halted_ns = (fw_halt_req | fw_halted) & ~set_mie_pmu_fw_halt;
assign mpmc_b_ns[1] = wr_mpmc_r ? ~dec_csr_wrdata_r[1] : ~mpmc[1];
rvdff #(1) mpmc_ff (.*, .clk(csr_wr_clk), .din(mpmc_b_ns[1]), .dout(mpmc_b[1]));
rvdff #(1) fwh_ff (.*, .clk(free_clk), .din(fw_halted_ns), .dout(fw_halted));
assign mpmc[1] = ~mpmc_b[1];
// ----------------------------------------------------------------------
// MICECT (I-Cache error counter/threshold)
// [31:27] : Icache parity error threshold
// [26:0] : Icache parity error count
`define MICECT 12'h7f0
assign csr_sat[31:27] = (dec_csr_wrdata_r[31:27] > 5'd26) ? 5'd26 : dec_csr_wrdata_r[31:27];
assign wr_micect_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MICECT);
assign micect_inc[26:0] = micect[26:0] + {26'b0, ic_perr_r_d1};
assign micect_ns = wr_micect_r ? {csr_sat[31:27], dec_csr_wrdata_r[26:0]} : {micect[31:27], micect_inc[26:0]};
rvdffe #(32) micect_ff (.*, .en(wr_micect_r | ic_perr_r_d1), .din(micect_ns[31:0]), .dout(micect[31:0]));
assign mice_ce_req = |({32'hffffffff << micect[31:27]} & {5'b0, micect[26:0]});
// ----------------------------------------------------------------------
// MICCMECT (ICCM error counter/threshold)
// [31:27] : ICCM parity error threshold
// [26:0] : ICCM parity error count
`define MICCMECT 12'h7f1
assign wr_miccmect_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MICCMECT);
assign miccmect_inc[26:0] = miccmect[26:0] + {26'b0, iccm_sbecc_r_d1 | iccm_dma_sb_error};
assign miccmect_ns = wr_miccmect_r ? {csr_sat[31:27], dec_csr_wrdata_r[26:0]} : {miccmect[31:27], miccmect_inc[26:0]};
rvdffe #(32) miccmect_ff (.*, .en(wr_miccmect_r | iccm_sbecc_r_d1 | iccm_dma_sb_error), .din(miccmect_ns[31:0]), .dout(miccmect[31:0]));
assign miccme_ce_req = |({32'hffffffff << miccmect[31:27]} & {5'b0, miccmect[26:0]});
// ----------------------------------------------------------------------
// MDCCMECT (DCCM error counter/threshold)
// [31:27] : DCCM parity error threshold
// [26:0] : DCCM parity error count
`define MDCCMECT 12'h7f2
assign wr_mdccmect_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MDCCMECT);
assign mdccmect_inc[26:0] = mdccmect[26:0] + {26'b0, lsu_single_ecc_error_r_d1};
assign mdccmect_ns = wr_mdccmect_r ? {csr_sat[31:27], dec_csr_wrdata_r[26:0]} : {mdccmect[31:27], mdccmect_inc[26:0]};
rvdffe #(32) mdccmect_ff (.*, .en(wr_mdccmect_r | lsu_single_ecc_error_r_d1), .din(mdccmect_ns[31:0]), .dout(mdccmect[31:0]));
assign mdccme_ce_req = |({32'hffffffff << mdccmect[31:27]} & {5'b0, mdccmect[26:0]});
// ----------------------------------------------------------------------
// MFDHT (Force Debug Halt Threshold)
// [5:1] : Halt timeout threshold (power of 2)
// [0] : Halt timeout enabled
`define MFDHT 12'h7ce
assign wr_mfdht_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MFDHT);
assign mfdht_ns[5:0] = wr_mfdht_r ? dec_csr_wrdata_r[5:0] : mfdht[5:0];
rvdff #(6) mfdht_ff (.*, .clk(active_clk), .din(mfdht_ns[5:0]), .dout(mfdht[5:0]));
// ----------------------------------------------------------------------
// MFDHS(RW)
// [1] : LSU operation pending when debug halt threshold reached
// [0] : IFU operation pending when debug halt threshold reached
`define MFDHS 12'h7cf
assign wr_mfdhs_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MFDHS);
assign mfdhs_ns[1:0] = wr_mfdhs_r ? dec_csr_wrdata_r[1:0] : ((dbg_tlu_halted & ~dbg_tlu_halted_f) ? {~lsu_idle_any_f, ~ifu_miss_state_idle_f} : mfdhs[1:0]);
rvdffs #(2) mfdhs_ff (.*, .clk(active_clk), .en(wr_mfdhs_r | dbg_tlu_halted), .din(mfdhs_ns[1:0]), .dout(mfdhs[1:0]));
assign force_halt_ctr[31:0] = debug_halt_req_f ? (force_halt_ctr_f[31:0] + 32'b1) : (dbg_tlu_halted_f ? 32'b0 : force_halt_ctr_f[31:0]);
rvdffs #(32) forcehaltctr_ff (.*, .clk(active_clk), .en(mfdht[0]), .din(force_halt_ctr[31:0]), .dout(force_halt_ctr_f[31:0]));
assign force_halt = mfdht[0] & |(force_halt_ctr_f[31:0] & (32'hffffffff << mfdht[5:1]));
// ----------------------------------------------------------------------
// MEIVT (External Interrupt Vector Table (R/W))
// [31:10]: Base address (R/W)
// [9:0] : Reserved, reads 0x0
`define MEIVT 12'hbc8
assign wr_meivt_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MEIVT);
rvdffe #(22) meivt_ff (.*, .en(wr_meivt_r), .din(dec_csr_wrdata_r[31:10]), .dout(meivt[31:10]));
// ----------------------------------------------------------------------
// MEIHAP (External Interrupt Handler Access Pointer (R))
// [31:10]: Base address (R/W)
// [9:2] : ClaimID (R)
// [1:0] : Reserved, 0x0
`define MEIHAP 12'hfc8
assign wr_meihap_r = wr_meicpct_r;
rvdffe #(8) meihap_ff (.*, .en(wr_meihap_r), .din(pic_claimid[7:0]), .dout(meihap[9:2]));
assign dec_tlu_meihap[31:2] = {meivt[31:10], meihap[9:2]};
// ----------------------------------------------------------------------
// MEICURPL (R/W)
// [31:4] : Reserved (read 0x0)
// [3:0] : CURRPRI - Priority level of current interrupt service routine (R/W)
`define MEICURPL 12'hbcc
assign wr_meicurpl_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MEICURPL);
assign meicurpl_ns[3:0] = wr_meicurpl_r ? dec_csr_wrdata_r[3:0] : meicurpl[3:0];
rvdff #(4) meicurpl_ff (.*, .clk(csr_wr_clk), .din(meicurpl_ns[3:0]), .dout(meicurpl[3:0]));
// PIC needs this reg
assign dec_tlu_meicurpl[3:0] = meicurpl[3:0];
// ----------------------------------------------------------------------
// MEICIDPL (R/W)
// [31:4] : Reserved (read 0x0)
// [3:0] : External Interrupt Claim ID's Priority Level Register
`define MEICIDPL 12'hbcb
assign wr_meicidpl_r = (dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MEICIDPL)) | take_ext_int_start;
assign meicidpl_ns[3:0] = wr_meicpct_r ? pic_pl[3:0] : (wr_meicidpl_r ? dec_csr_wrdata_r[3:0] : meicidpl[3:0]);
rvdff #(4) meicidpl_ff (.*, .clk(free_clk), .din(meicidpl_ns[3:0]), .dout(meicidpl[3:0]));
// ----------------------------------------------------------------------
// MEICPCT (Capture CLAIMID in MEIHAP and PL in MEICIDPL
// [31:1] : Reserved (read 0x0)
// [0] : Capture (W1, Read 0)
`define MEICPCT 12'hbca
assign wr_meicpct_r = (dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MEICPCT)) | take_ext_int_start;
// ----------------------------------------------------------------------
// MEIPT (External Interrupt Priority Threshold)
// [31:4] : Reserved (read 0x0)
// [3:0] : PRITHRESH
`define MEIPT 12'hbc9
assign wr_meipt_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MEIPT);
assign meipt_ns[3:0] = wr_meipt_r ? dec_csr_wrdata_r[3:0] : meipt[3:0];
rvdff #(4) meipt_ff (.*, .clk(active_clk), .din(meipt_ns[3:0]), .dout(meipt[3:0]));
// to PIC
assign dec_tlu_meipt[3:0] = meipt[3:0];
// ----------------------------------------------------------------------
// DCSR (R/W) (Only accessible in debug mode)
// [31:28] : xdebugver (hard coded to 0x4) RO
// [27:16] : 0x0, reserved
// [15] : ebreakm
// [14] : 0x0, reserved
// [13] : ebreaks (0x0 for this core)
// [12] : ebreaku (0x0 for this core)
// [11] : stepie
// [10] : stopcount
// [9] : 0x0 //stoptime
// [8:6] : cause (RO)
// [5:4] : 0x0, reserved
// [3] : nmip
// [2] : step
// [1:0] : prv (0x3 for this core)
//
`define DCSR 12'h7b0
// RV has clarified that 'priority 4' in the spec means top priority.
// 4. single step. 3. Debugger request. 2. Ebreak. 1. Trigger.
// RV debug spec indicates a cause priority change for trigger hits during single step.
assign trigger_hit_for_dscr_cause_r_d1 = trigger_hit_dmode_r_d1 | (trigger_hit_r_d1 & dcsr_single_step_done_f);
assign dcsr_cause[8:6] = ( ({3{dcsr_single_step_done_f & ~ebreak_to_debug_mode_r_d1 & ~trigger_hit_for_dscr_cause_r_d1 & ~debug_halt_req}} & 3'b100) |
({3{debug_halt_req & ~ebreak_to_debug_mode_r_d1 & ~trigger_hit_for_dscr_cause_r_d1}} & 3'b011) |
({3{ebreak_to_debug_mode_r_d1 & ~trigger_hit_for_dscr_cause_r_d1}} & 3'b001) |
({3{trigger_hit_for_dscr_cause_r_d1}} & 3'b010));
assign wr_dcsr_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DCSR);
// Multiple halt enter requests can happen before we are halted.
// We have to continue to upgrade based on dcsr_cause priority but we can't downgrade.
assign dcsr_cause_upgradeable = internal_dbg_halt_mode_f & (dcsr[8:6] == 3'b011);
assign enter_debug_halt_req_le = enter_debug_halt_req & (~dbg_tlu_halted | dcsr_cause_upgradeable);
assign nmi_in_debug_mode = nmi_int_detected_f & internal_dbg_halt_mode_f;
assign dcsr_ns[15:2] = enter_debug_halt_req_le ? {dcsr[15:9], dcsr_cause[8:6], dcsr[5:2]} :
(wr_dcsr_r ? {dec_csr_wrdata_r[15], 3'b0, dec_csr_wrdata_r[11:10], 1'b0, dcsr[8:6], 2'b00, nmi_in_debug_mode | dcsr[3], dec_csr_wrdata_r[2]} :
{dcsr[15:4], nmi_in_debug_mode, dcsr[2]});
rvdffe #(14) dcsr_ff (.*, .en(enter_debug_halt_req_le | wr_dcsr_r | internal_dbg_halt_mode | take_nmi), .din(dcsr_ns[15:2]), .dout(dcsr[15:2]));
// ----------------------------------------------------------------------
// DPC (R/W) (Only accessible in debug mode)
// [31:0] : Debug PC
`define DPC 12'h7b1
assign wr_dpc_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DPC);
assign dpc_capture_npc = dbg_tlu_halted & ~dbg_tlu_halted_f & ~request_debug_mode_done;
assign dpc_capture_pc = request_debug_mode_r;
assign dpc_ns[31:1] = ( ({31{~dpc_capture_pc & ~dpc_capture_npc & wr_dpc_r}} & dec_csr_wrdata_r[31:1]) |
({31{dpc_capture_pc}} & pc_r[31:1]) |
({31{~dpc_capture_pc & dpc_capture_npc}} & npc_r[31:1]) );
rvdffe #(31) dpc_ff (.*, .en(wr_dpc_r | dpc_capture_pc | dpc_capture_npc), .din(dpc_ns[31:1]), .dout(dpc[31:1]));
// ----------------------------------------------------------------------
// DICAWICS (R/W) (Only accessible in debug mode)
// [31:25] : Reserved
// [24] : Array select, 0 is data, 1 is tag
// [23:22] : Reserved
// [21:20] : Way select
// [19:17] : Reserved
// [16:3] : Index
// [2:0] : Reserved
`define DICAWICS 12'h7c8
assign dicawics_ns[16:0] = {dec_csr_wrdata_r[24], dec_csr_wrdata_r[21:20], dec_csr_wrdata_r[16:3]};
assign wr_dicawics_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DICAWICS);
rvdffe #(17) dicawics_ff (.*, .en(wr_dicawics_r), .din(dicawics_ns[16:0]), .dout(dicawics[16:0]));
// ----------------------------------------------------------------------
// DICAD0 (R/W) (Only accessible in debug mode)
//
// If dicawics[array] is 0
// [31:0] : inst data
//
// If dicawics[array] is 1
// [31:16] : Tag
// [15:7] : Reserved
// [6:4] : LRU
// [3:1] : Reserved
// [0] : Valid
`define DICAD0 12'h7c9
assign dicad0_ns[31:0] = wr_dicad0_r ? dec_csr_wrdata_r[31:0] : ifu_ic_debug_rd_data[31:0];
assign wr_dicad0_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DICAD0);
rvdffe #(32) dicad0_ff (.*, .en(wr_dicad0_r | ifu_ic_debug_rd_data_valid), .din(dicad0_ns[31:0]), .dout(dicad0[31:0]));
// ----------------------------------------------------------------------
// DICAD0H (R/W) (Only accessible in debug mode)
//
// If dicawics[array] is 0
// [63:32] : inst data
//
`define DICAD0H 12'h7cc
assign dicad0h_ns[31:0] = wr_dicad0h_r ? dec_csr_wrdata_r[31:0] : ifu_ic_debug_rd_data[63:32];
assign wr_dicad0h_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DICAD0H);
rvdffe #(32) dicad0h_ff (.*, .en(wr_dicad0h_r | ifu_ic_debug_rd_data_valid), .din(dicad0h_ns[31:0]), .dout(dicad0h[31:0]));
if (pt.ICACHE_ECC == 1) begin
// ----------------------------------------------------------------------
// DICAD1 (R/W) (Only accessible in debug mode)
// [6:0] : ECC
`define DICAD1 12'h7ca
assign dicad1_ns[6:0] = wr_dicad1_r ? dec_csr_wrdata_r[6:0] : ifu_ic_debug_rd_data[70:64];
assign wr_dicad1_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DICAD1);
rvdffs #(7) dicad1_ff (.*, .clk(active_clk), .en(wr_dicad1_r | ifu_ic_debug_rd_data_valid), .din(dicad1_ns[6:0]), .dout(dicad1_raw[6:0]));
assign dicad1[31:0] = {25'b0, dicad1_raw[6:0]};
end
else begin
// ----------------------------------------------------------------------
// DICAD1 (R/W) (Only accessible in debug mode)
// [3:0] : Parity
`define DICAD1 12'h7ca
assign dicad1_ns[3:0] = wr_dicad1_r ? dec_csr_wrdata_r[3:0] : ifu_ic_debug_rd_data[67:64];
assign wr_dicad1_r = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DICAD1);
rvdffs #(4) dicad1_ff (.*, .clk(active_clk), .en(wr_dicad1_r | ifu_ic_debug_rd_data_valid), .din(dicad1_ns[3:0]), .dout(dicad1_raw[3:0]));
assign dicad1[31:0] = {28'b0, dicad1_raw[3:0]};
end
// ----------------------------------------------------------------------
// DICAGO (R/W) (Only accessible in debug mode)
// [0] : Go
`define DICAGO 12'h7cb
if (pt.ICACHE_ECC == 1)
assign dec_tlu_ic_diag_pkt.icache_wrdata[70:0] = {dicad1[6:0], dicad0h[31:0], dicad0[31:0]};
else
assign dec_tlu_ic_diag_pkt.icache_wrdata[67:0] = {dicad1[3:0], dicad0h[31:0], dicad0[31:0]};
assign dec_tlu_ic_diag_pkt.icache_dicawics[16:0] = dicawics[16:0];
assign icache_rd_valid = allow_dbg_halt_csr_write & dec_csr_any_unq_d & dec_i0_decode_d & ~dec_csr_wen_unq_d & (dec_csr_rdaddr_d[11:0] == `DICAGO);
assign icache_wr_valid = allow_dbg_halt_csr_write & dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `DICAGO);
rvdff #(2) dicgo_ff (.*, .clk(active_clk), .din({icache_rd_valid, icache_wr_valid}), .dout({icache_rd_valid_f, icache_wr_valid_f}));
assign dec_tlu_ic_diag_pkt.icache_rd_valid = icache_rd_valid_f;
assign dec_tlu_ic_diag_pkt.icache_wr_valid = icache_wr_valid_f;
// ----------------------------------------------------------------------
// MTSEL (R/W)
// [1:0] : Trigger select : 00, 01, 10 are data/address triggers. 11 is inst count
`define MTSEL 12'h7a0
assign wr_mtsel_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTSEL);
assign mtsel_ns[1:0] = wr_mtsel_r ? {dec_csr_wrdata_r[1:0]} : mtsel[1:0];
rvdff #(2) mtsel_ff (.*, .clk(csr_wr_clk), .din(mtsel_ns[1:0]), .dout(mtsel[1:0]));
// ----------------------------------------------------------------------
// MTDATA1 (R/W)
// [31:0] : Trigger Data 1
`define MTDATA1 12'h7a1
// for triggers 0, 1, 2 and 3 aka Match Control
// [31:28] : type, hard coded to 0x2
// [27] : dmode
// [26:21] : hard coded to 0x1f
// [20] : hit
// [19] : select (0 - address, 1 - data)
// [18] : timing, always 'before', reads 0x0
// [17:12] : action, bits [17:13] not implemented and reads 0x0
// [11] : chain
// [10:7] : match, bits [10:8] not implemented and reads 0x0
// [6] : M
// [5:3] : not implemented, reads 0x0
// [2] : execute
// [1] : store
// [0] : load
//
// decoder ring
// [27] : => 9
// [20] : => 8
// [19] : => 7
// [12] : => 6
// [11] : => 5
// [7] : => 4
// [6] : => 3
// [2] : => 2
// [1] : => 1
// [0] : => 0
// don't allow setting load-data.
assign tdata_load = dec_csr_wrdata_r[0] & ~dec_csr_wrdata_r[19];
// don't allow setting execute-data.
assign tdata_opcode = dec_csr_wrdata_r[2] & ~dec_csr_wrdata_r[19];
// don't allow clearing DMODE and action=1
assign tdata_action = (dec_csr_wrdata_r[27] & dbg_tlu_halted_f) & dec_csr_wrdata_r[12];
assign tdata_wrdata_r[9:0] = {dec_csr_wrdata_r[27] & dbg_tlu_halted_f,
dec_csr_wrdata_r[20:19],
tdata_action,
dec_csr_wrdata_r[11],
dec_csr_wrdata_r[7:6],
tdata_opcode,
dec_csr_wrdata_r[1],
tdata_load};
// If the DMODE bit is set, tdata1 can only be updated in debug_mode
assign wr_mtdata1_t0_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b0) & (~mtdata1_t0[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign mtdata1_t0_ns[9:0] = wr_mtdata1_t0_r ? tdata_wrdata_r[9:0] :
{mtdata1_t0[9], update_hit_bit_r[0] | mtdata1_t0[8], mtdata1_t0[7:0]};
assign wr_mtdata1_t1_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b01) & (~mtdata1_t1[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign mtdata1_t1_ns[9:0] = wr_mtdata1_t1_r ? tdata_wrdata_r[9:0] :
{mtdata1_t1[9], update_hit_bit_r[1] | mtdata1_t1[8], mtdata1_t1[7:0]};
assign wr_mtdata1_t2_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b10) & (~mtdata1_t2[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign mtdata1_t2_ns[9:0] = wr_mtdata1_t2_r ? tdata_wrdata_r[9:0] :
{mtdata1_t2[9], update_hit_bit_r[2] | mtdata1_t2[8], mtdata1_t2[7:0]};
assign wr_mtdata1_t3_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA1) & (mtsel[1:0] == 2'b11) & (~mtdata1_t3[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign mtdata1_t3_ns[9:0] = wr_mtdata1_t3_r ? tdata_wrdata_r[9:0] :
{mtdata1_t3[9], update_hit_bit_r[3] | mtdata1_t3[8], mtdata1_t3[7:0]};
rvdff #(10) mtdata1_t0_ff (.*, .clk(active_clk), .din(mtdata1_t0_ns[9:0]), .dout(mtdata1_t0[9:0]));
rvdff #(10) mtdata1_t1_ff (.*, .clk(active_clk), .din(mtdata1_t1_ns[9:0]), .dout(mtdata1_t1[9:0]));
rvdff #(10) mtdata1_t2_ff (.*, .clk(active_clk), .din(mtdata1_t2_ns[9:0]), .dout(mtdata1_t2[9:0]));
rvdff #(10) mtdata1_t3_ff (.*, .clk(active_clk), .din(mtdata1_t3_ns[9:0]), .dout(mtdata1_t3[9:0]));
assign mtdata1_tsel_out[31:0] = ( ({32{(mtsel[1:0] == 2'b00)}} & {4'h2, mtdata1_t0[9], 6'b011111, mtdata1_t0[8:7], 6'b0, mtdata1_t0[6:5], 3'b0, mtdata1_t0[4:3], 3'b0, mtdata1_t0[2:0]}) |
({32{(mtsel[1:0] == 2'b01)}} & {4'h2, mtdata1_t1[9], 6'b011111, mtdata1_t1[8:7], 6'b0, mtdata1_t1[6:5], 3'b0, mtdata1_t1[4:3], 3'b0, mtdata1_t1[2:0]}) |
({32{(mtsel[1:0] == 2'b10)}} & {4'h2, mtdata1_t2[9], 6'b011111, mtdata1_t2[8:7], 6'b0, mtdata1_t2[6:5], 3'b0, mtdata1_t2[4:3], 3'b0, mtdata1_t2[2:0]}) |
({32{(mtsel[1:0] == 2'b11)}} & {4'h2, mtdata1_t3[9], 6'b011111, mtdata1_t3[8:7], 6'b0, mtdata1_t3[6:5], 3'b0, mtdata1_t3[4:3], 3'b0, mtdata1_t3[2:0]}));
assign trigger_pkt_any[0].select = mtdata1_t0[`MTDATA1_SEL];
assign trigger_pkt_any[0].match = mtdata1_t0[`MTDATA1_MATCH];
assign trigger_pkt_any[0].store = mtdata1_t0[`MTDATA1_ST];
assign trigger_pkt_any[0].load = mtdata1_t0[`MTDATA1_LD];
assign trigger_pkt_any[0].execute = mtdata1_t0[`MTDATA1_EXE];
assign trigger_pkt_any[0].m = mtdata1_t0[`MTDATA1_M_ENABLED];
assign trigger_pkt_any[1].select = mtdata1_t1[`MTDATA1_SEL];
assign trigger_pkt_any[1].match = mtdata1_t1[`MTDATA1_MATCH];
assign trigger_pkt_any[1].store = mtdata1_t1[`MTDATA1_ST];
assign trigger_pkt_any[1].load = mtdata1_t1[`MTDATA1_LD];
assign trigger_pkt_any[1].execute = mtdata1_t1[`MTDATA1_EXE];
assign trigger_pkt_any[1].m = mtdata1_t1[`MTDATA1_M_ENABLED];
assign trigger_pkt_any[2].select = mtdata1_t2[`MTDATA1_SEL];
assign trigger_pkt_any[2].match = mtdata1_t2[`MTDATA1_MATCH];
assign trigger_pkt_any[2].store = mtdata1_t2[`MTDATA1_ST];
assign trigger_pkt_any[2].load = mtdata1_t2[`MTDATA1_LD];
assign trigger_pkt_any[2].execute = mtdata1_t2[`MTDATA1_EXE];
assign trigger_pkt_any[2].m = mtdata1_t2[`MTDATA1_M_ENABLED];
assign trigger_pkt_any[3].select = mtdata1_t3[`MTDATA1_SEL];
assign trigger_pkt_any[3].match = mtdata1_t3[`MTDATA1_MATCH];
assign trigger_pkt_any[3].store = mtdata1_t3[`MTDATA1_ST];
assign trigger_pkt_any[3].load = mtdata1_t3[`MTDATA1_LD];
assign trigger_pkt_any[3].execute = mtdata1_t3[`MTDATA1_EXE];
assign trigger_pkt_any[3].m = mtdata1_t3[`MTDATA1_M_ENABLED];
// ----------------------------------------------------------------------
// MTDATA2 (R/W)
// [31:0] : Trigger Data 2
`define MTDATA2 12'h7a2
// If the DMODE bit is set, tdata2 can only be updated in debug_mode
assign wr_mtdata2_t0_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b0) & (~mtdata1_t0[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign wr_mtdata2_t1_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b01) & (~mtdata1_t1[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign wr_mtdata2_t2_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b10) & (~mtdata1_t2[`MTDATA1_DMODE] | dbg_tlu_halted_f);
assign wr_mtdata2_t3_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MTDATA2) & (mtsel[1:0] == 2'b11) & (~mtdata1_t3[`MTDATA1_DMODE] | dbg_tlu_halted_f);
rvdffe #(32) mtdata2_t0_ff (.*, .en(wr_mtdata2_t0_r), .din(dec_csr_wrdata_r[31:0]), .dout(mtdata2_t0[31:0]));
rvdffe #(32) mtdata2_t1_ff (.*, .en(wr_mtdata2_t1_r), .din(dec_csr_wrdata_r[31:0]), .dout(mtdata2_t1[31:0]));
rvdffe #(32) mtdata2_t2_ff (.*, .en(wr_mtdata2_t2_r), .din(dec_csr_wrdata_r[31:0]), .dout(mtdata2_t2[31:0]));
rvdffe #(32) mtdata2_t3_ff (.*, .en(wr_mtdata2_t3_r), .din(dec_csr_wrdata_r[31:0]), .dout(mtdata2_t3[31:0]));
assign mtdata2_tsel_out[31:0] = ( ({32{(mtsel[1:0] == 2'b00)}} & mtdata2_t0[31:0]) |
({32{(mtsel[1:0] == 2'b01)}} & mtdata2_t1[31:0]) |
({32{(mtsel[1:0] == 2'b10)}} & mtdata2_t2[31:0]) |
({32{(mtsel[1:0] == 2'b11)}} & mtdata2_t3[31:0]));
assign trigger_pkt_any[0].tdata2[31:0] = mtdata2_t0[31:0];
assign trigger_pkt_any[1].tdata2[31:0] = mtdata2_t1[31:0];
assign trigger_pkt_any[2].tdata2[31:0] = mtdata2_t2[31:0];
assign trigger_pkt_any[3].tdata2[31:0] = mtdata2_t3[31:0];
//----------------------------------------------------------------------
// Performance Monitor Counters section starts
//----------------------------------------------------------------------
`define MHPME_NOEVENT 10'd0
`define MHPME_CLK_ACTIVE 10'd1 // OOP - out of pipe
`define MHPME_ICACHE_HIT 10'd2 // OOP
`define MHPME_ICACHE_MISS 10'd3 // OOP
`define MHPME_INST_COMMIT 10'd4
`define MHPME_INST_COMMIT_16B 10'd5
`define MHPME_INST_COMMIT_32B 10'd6
`define MHPME_INST_ALIGNED 10'd7 // OOP
`define MHPME_INST_DECODED 10'd8 // OOP
`define MHPME_INST_MUL 10'd9
`define MHPME_INST_DIV 10'd10
`define MHPME_INST_LOAD 10'd11
`define MHPME_INST_STORE 10'd12
`define MHPME_INST_MALOAD 10'd13
`define MHPME_INST_MASTORE 10'd14
`define MHPME_INST_ALU 10'd15
`define MHPME_INST_CSRREAD 10'd16
`define MHPME_INST_CSRRW 10'd17
`define MHPME_INST_CSRWRITE 10'd18
`define MHPME_INST_EBREAK 10'd19
`define MHPME_INST_ECALL 10'd20
`define MHPME_INST_FENCE 10'd21
`define MHPME_INST_FENCEI 10'd22
`define MHPME_INST_MRET 10'd23
`define MHPME_INST_BRANCH 10'd24
`define MHPME_BRANCH_MP 10'd25
`define MHPME_BRANCH_TAKEN 10'd26
`define MHPME_BRANCH_NOTP 10'd27
`define MHPME_FETCH_STALL 10'd28 // OOP
`define MHPME_ALGNR_STALL 10'd29 // OOP
`define MHPME_DECODE_STALL 10'd30 // OOP
`define MHPME_POSTSYNC_STALL 10'd31 // OOP
`define MHPME_PRESYNC_STALL 10'd32 // OOP
`define MHPME_LSU_SB_WB_STALL 10'd34 // OOP
`define MHPME_DMA_DCCM_STALL 10'd35 // OOP
`define MHPME_DMA_ICCM_STALL 10'd36 // OOP
`define MHPME_EXC_TAKEN 10'd37
`define MHPME_TIMER_INT_TAKEN 10'd38
`define MHPME_EXT_INT_TAKEN 10'd39
`define MHPME_FLUSH_LOWER 10'd40
`define MHPME_BR_ERROR 10'd41
`define MHPME_IBUS_TRANS 10'd42 // OOP
`define MHPME_DBUS_TRANS 10'd43 // OOP
`define MHPME_DBUS_MA_TRANS 10'd44 // OOP
`define MHPME_IBUS_ERROR 10'd45 // OOP
`define MHPME_DBUS_ERROR 10'd46 // OOP
`define MHPME_IBUS_STALL 10'd47 // OOP
`define MHPME_DBUS_STALL 10'd48 // OOP
`define MHPME_INT_DISABLED 10'd49 // OOP
`define MHPME_INT_STALLED 10'd50 // OOP
`define MHPME_INST_BITMANIP 10'd54
`define MHPME_DBUS_LOAD 10'd55
`define MHPME_DBUS_STORE 10'd56
// Counts even during sleep state
`define MHPME_SLEEP_CYC 10'd512 // OOP
`define MHPME_DMA_READ_ALL 10'd513 // OOP
`define MHPME_DMA_WRITE_ALL 10'd514 // OOP
`define MHPME_DMA_READ_DCCM 10'd515 // OOP
`define MHPME_DMA_WRITE_DCCM 10'd516 // OOP
// Pack the event selects into a vector for genvar
assign mhpme_vec[0][9:0] = mhpme3[9:0];
assign mhpme_vec[1][9:0] = mhpme4[9:0];
assign mhpme_vec[2][9:0] = mhpme5[9:0];
assign mhpme_vec[3][9:0] = mhpme6[9:0];
// only consider committed itypes
//logic [3:0] pmu_i0_itype_qual;
assign pmu_i0_itype_qual[3:0] = dec_tlu_packet_r.pmu_i0_itype[3:0] & {4{tlu_i0_commit_cmt}};
// Generate the muxed incs for all counters based on event type
for (genvar i=0 ; i < 4; i++) begin
assign mhpmc_inc_r[i] = {{~mcountinhibit[i+3]}} &
(
({1{(mhpme_vec[i][9:0] == `MHPME_CLK_ACTIVE )}} & 1'b1) |
({1{(mhpme_vec[i][9:0] == `MHPME_ICACHE_HIT )}} & {ifu_pmu_ic_hit}) |
({1{(mhpme_vec[i][9:0] == `MHPME_ICACHE_MISS )}} & {ifu_pmu_ic_miss}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_COMMIT )}} & {tlu_i0_commit_cmt & ~illegal_r}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_COMMIT_16B )}} & {tlu_i0_commit_cmt & ~exu_pmu_i0_pc4 & ~illegal_r}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_COMMIT_32B )}} & {tlu_i0_commit_cmt & exu_pmu_i0_pc4 & ~illegal_r}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_ALIGNED )}} & ifu_pmu_instr_aligned) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_DECODED )}} & dec_pmu_instr_decoded) |
({1{(mhpme_vec[i][9:0] == `MHPME_DECODE_STALL )}} & {dec_pmu_decode_stall}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_MUL )}} & {(pmu_i0_itype_qual == MUL)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_DIV )}} & {dec_tlu_packet_r.pmu_divide & tlu_i0_commit_cmt}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_LOAD )}} & {(pmu_i0_itype_qual == LOAD)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_STORE )}} & {(pmu_i0_itype_qual == STORE)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_MALOAD )}} & {(pmu_i0_itype_qual == LOAD)} &
{1{dec_tlu_packet_r.pmu_lsu_misaligned}}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_MASTORE )}} & {(pmu_i0_itype_qual == STORE)} &
{1{dec_tlu_packet_r.pmu_lsu_misaligned}}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_ALU )}} & {(pmu_i0_itype_qual == ALU)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_CSRREAD )}} & {(pmu_i0_itype_qual == CSRREAD)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_CSRWRITE )}} & {(pmu_i0_itype_qual == CSRWRITE)})|
({1{(mhpme_vec[i][9:0] == `MHPME_INST_CSRRW )}} & {(pmu_i0_itype_qual == CSRRW)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_EBREAK )}} & {(pmu_i0_itype_qual == EBREAK)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_ECALL )}} & {(pmu_i0_itype_qual == ECALL)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_FENCE )}} & {(pmu_i0_itype_qual == FENCE)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_FENCEI )}} & {(pmu_i0_itype_qual == FENCEI)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_MRET )}} & {(pmu_i0_itype_qual == MRET)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_BRANCH )}} & {
((pmu_i0_itype_qual == CONDBR) | (pmu_i0_itype_qual == JAL))}) |
({1{(mhpme_vec[i][9:0] == `MHPME_BRANCH_MP )}} & {exu_pmu_i0_br_misp & tlu_i0_commit_cmt}) |
({1{(mhpme_vec[i][9:0] == `MHPME_BRANCH_TAKEN )}} & {exu_pmu_i0_br_ataken & tlu_i0_commit_cmt}) |
({1{(mhpme_vec[i][9:0] == `MHPME_BRANCH_NOTP )}} & {dec_tlu_packet_r.pmu_i0_br_unpred & tlu_i0_commit_cmt}) |
({1{(mhpme_vec[i][9:0] == `MHPME_FETCH_STALL )}} & { ifu_pmu_fetch_stall}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DECODE_STALL )}} & { dec_pmu_decode_stall}) |
({1{(mhpme_vec[i][9:0] == `MHPME_POSTSYNC_STALL )}} & {dec_pmu_postsync_stall}) |
({1{(mhpme_vec[i][9:0] == `MHPME_PRESYNC_STALL )}} & {dec_pmu_presync_stall}) |
({1{(mhpme_vec[i][9:0] == `MHPME_LSU_SB_WB_STALL )}} & { lsu_store_stall_any}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DMA_DCCM_STALL )}} & { dma_dccm_stall_any}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DMA_ICCM_STALL )}} & { dma_iccm_stall_any}) |
({1{(mhpme_vec[i][9:0] == `MHPME_EXC_TAKEN )}} & { (i0_exception_valid_r | i0_trigger_hit_r | lsu_exc_valid_r)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_TIMER_INT_TAKEN )}} & { take_timer_int}) |
({1{(mhpme_vec[i][9:0] == `MHPME_EXT_INT_TAKEN )}} & { take_ext_int}) |
({1{(mhpme_vec[i][9:0] == `MHPME_FLUSH_LOWER )}} & { tlu_flush_lower_r}) |
({1{(mhpme_vec[i][9:0] == `MHPME_BR_ERROR )}} & {(dec_tlu_br0_error_r | dec_tlu_br0_start_error_r) & rfpc_i0_r}) |
({1{(mhpme_vec[i][9:0] == `MHPME_IBUS_TRANS )}} & {ifu_pmu_bus_trxn}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DBUS_TRANS )}} & {lsu_pmu_bus_trxn}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DBUS_MA_TRANS )}} & {lsu_pmu_bus_misaligned}) |
({1{(mhpme_vec[i][9:0] == `MHPME_IBUS_ERROR )}} & {ifu_pmu_bus_error}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DBUS_ERROR )}} & {lsu_pmu_bus_error}) |
({1{(mhpme_vec[i][9:0] == `MHPME_IBUS_STALL )}} & {ifu_pmu_bus_busy}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DBUS_STALL )}} & {lsu_pmu_bus_busy}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INT_DISABLED )}} & {~mstatus[`MSTATUS_MIE]}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INT_STALLED )}} & {~mstatus[`MSTATUS_MIE] & |(mip[3:0] & mie[3:0])}) |
({1{(mhpme_vec[i][9:0] == `MHPME_INST_BITMANIP )}} & {(pmu_i0_itype_qual == BITMANIPU)}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DBUS_LOAD )}} & {tlu_i0_commit_cmt & lsu_pmu_load_external_r}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DBUS_STORE )}} & {tlu_i0_commit_cmt & lsu_pmu_store_external_r}) |
// These count even during sleep
({1{(mhpme_vec[i][9:0] == `MHPME_SLEEP_CYC )}} & {dec_tlu_pmu_fw_halted}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DMA_READ_ALL )}} & {dma_pmu_any_read}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DMA_WRITE_ALL )}} & {dma_pmu_any_write}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DMA_READ_DCCM )}} & {dma_pmu_dccm_read}) |
({1{(mhpme_vec[i][9:0] == `MHPME_DMA_WRITE_DCCM )}} & {dma_pmu_dccm_write})
);
end
rvdff #(1) pmu0inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_r[0]), .dout(mhpmc_inc_r_d1[0]));
rvdff #(1) pmu1inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_r[1]), .dout(mhpmc_inc_r_d1[1]));
rvdff #(1) pmu2inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_r[2]), .dout(mhpmc_inc_r_d1[2]));
rvdff #(1) pmu3inc_ff (.*, .clk(free_clk), .din(mhpmc_inc_r[3]), .dout(mhpmc_inc_r_d1[3]));
rvdff #(1) perfhlt_ff (.*, .clk(free_clk), .din(perfcnt_halted), .dout(perfcnt_halted_d1));
assign perfcnt_halted = ((dec_tlu_dbg_halted & dcsr[`DCSR_STOPC]) | dec_tlu_pmu_fw_halted);
assign perfcnt_during_sleep[3:0] = {4{~(dec_tlu_dbg_halted & dcsr[`DCSR_STOPC])}} & {mhpme_vec[3][9],mhpme_vec[2][9],mhpme_vec[1][9],mhpme_vec[0][9]};
assign dec_tlu_perfcnt0 = mhpmc_inc_r_d1[0] & ~(perfcnt_halted_d1 & ~perfcnt_during_sleep[0]);
assign dec_tlu_perfcnt1 = mhpmc_inc_r_d1[1] & ~(perfcnt_halted_d1 & ~perfcnt_during_sleep[1]);
assign dec_tlu_perfcnt2 = mhpmc_inc_r_d1[2] & ~(perfcnt_halted_d1 & ~perfcnt_during_sleep[2]);
assign dec_tlu_perfcnt3 = mhpmc_inc_r_d1[3] & ~(perfcnt_halted_d1 & ~perfcnt_during_sleep[3]);
// ----------------------------------------------------------------------
// MHPMC3H(RW), MHPMC3(RW)
// [63:32][31:0] : Hardware Performance Monitor Counter 3
`define MHPMC3 12'hB03
`define MHPMC3H 12'hB83
assign mhpmc3_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC3);
assign mhpmc3_wr_en1 = (~perfcnt_halted | perfcnt_during_sleep[0]) & (|(mhpmc_inc_r[0]));
assign mhpmc3_wr_en = mhpmc3_wr_en0 | mhpmc3_wr_en1;
assign mhpmc3_incr[63:0] = {mhpmc3h[31:0],mhpmc3[31:0]} + {63'b0,mhpmc_inc_r[0]};
assign mhpmc3_ns[31:0] = mhpmc3_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc3_incr[31:0];
rvdffe #(32) mhpmc3_ff (.*, .en(mhpmc3_wr_en), .din(mhpmc3_ns[31:0]), .dout(mhpmc3[31:0]));
assign mhpmc3h_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC3H);
assign mhpmc3h_wr_en = mhpmc3h_wr_en0 | mhpmc3_wr_en1;
assign mhpmc3h_ns[31:0] = mhpmc3h_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc3_incr[63:32];
rvdffe #(32) mhpmc3h_ff (.*, .en(mhpmc3h_wr_en), .din(mhpmc3h_ns[31:0]), .dout(mhpmc3h[31:0]));
// ----------------------------------------------------------------------
// MHPMC4H(RW), MHPMC4(RW)
// [63:32][31:0] : Hardware Performance Monitor Counter 4
`define MHPMC4 12'hB04
`define MHPMC4H 12'hB84
assign mhpmc4_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC4);
assign mhpmc4_wr_en1 = (~perfcnt_halted | perfcnt_during_sleep[1]) & (|(mhpmc_inc_r[1]));
assign mhpmc4_wr_en = mhpmc4_wr_en0 | mhpmc4_wr_en1;
assign mhpmc4_incr[63:0] = {mhpmc4h[31:0],mhpmc4[31:0]} + {63'b0,mhpmc_inc_r[1]};
assign mhpmc4_ns[31:0] = mhpmc4_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc4_incr[31:0];
rvdffe #(32) mhpmc4_ff (.*, .en(mhpmc4_wr_en), .din(mhpmc4_ns[31:0]), .dout(mhpmc4[31:0]));
assign mhpmc4h_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC4H);
assign mhpmc4h_wr_en = mhpmc4h_wr_en0 | mhpmc4_wr_en1;
assign mhpmc4h_ns[31:0] = mhpmc4h_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc4_incr[63:32];
rvdffe #(32) mhpmc4h_ff (.*, .en(mhpmc4h_wr_en), .din(mhpmc4h_ns[31:0]), .dout(mhpmc4h[31:0]));
// ----------------------------------------------------------------------
// MHPMC5H(RW), MHPMC5(RW)
// [63:32][31:0] : Hardware Performance Monitor Counter 5
`define MHPMC5 12'hB05
`define MHPMC5H 12'hB85
assign mhpmc5_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC5);
assign mhpmc5_wr_en1 = (~perfcnt_halted | perfcnt_during_sleep[2]) & (|(mhpmc_inc_r[2]));
assign mhpmc5_wr_en = mhpmc5_wr_en0 | mhpmc5_wr_en1;
assign mhpmc5_incr[63:0] = {mhpmc5h[31:0],mhpmc5[31:0]} + {63'b0,mhpmc_inc_r[2]};
assign mhpmc5_ns[31:0] = mhpmc5_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc5_incr[31:0];
rvdffe #(32) mhpmc5_ff (.*, .en(mhpmc5_wr_en), .din(mhpmc5_ns[31:0]), .dout(mhpmc5[31:0]));
assign mhpmc5h_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC5H);
assign mhpmc5h_wr_en = mhpmc5h_wr_en0 | mhpmc5_wr_en1;
assign mhpmc5h_ns[31:0] = mhpmc5h_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc5_incr[63:32];
rvdffe #(32) mhpmc5h_ff (.*, .en(mhpmc5h_wr_en), .din(mhpmc5h_ns[31:0]), .dout(mhpmc5h[31:0]));
// ----------------------------------------------------------------------
// MHPMC6H(RW), MHPMC6(RW)
// [63:32][31:0] : Hardware Performance Monitor Counter 6
`define MHPMC6 12'hB06
`define MHPMC6H 12'hB86
assign mhpmc6_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC6);
assign mhpmc6_wr_en1 = (~perfcnt_halted | perfcnt_during_sleep[3]) & (|(mhpmc_inc_r[3]));
assign mhpmc6_wr_en = mhpmc6_wr_en0 | mhpmc6_wr_en1;
assign mhpmc6_incr[63:0] = {mhpmc6h[31:0],mhpmc6[31:0]} + {63'b0,mhpmc_inc_r[3]};
assign mhpmc6_ns[31:0] = mhpmc6_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc6_incr[31:0];
rvdffe #(32) mhpmc6_ff (.*, .en(mhpmc6_wr_en), .din(mhpmc6_ns[31:0]), .dout(mhpmc6[31:0]));
assign mhpmc6h_wr_en0 = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPMC6H);
assign mhpmc6h_wr_en = mhpmc6h_wr_en0 | mhpmc6_wr_en1;
assign mhpmc6h_ns[31:0] = mhpmc6h_wr_en0 ? dec_csr_wrdata_r[31:0] : mhpmc6_incr[63:32];
rvdffe #(32) mhpmc6h_ff (.*, .en(mhpmc6h_wr_en), .din(mhpmc6h_ns[31:0]), .dout(mhpmc6h[31:0]));
// ----------------------------------------------------------------------
// MHPME3(RW)
// [9:0] : Hardware Performance Monitor Event 3
`define MHPME3 12'h323
// we only have events 0-56, 512-516, HPME* are WARL so saturate otherwise
assign event_saturate_r[9:0] = ((dec_csr_wrdata_r[9:0] > 10'd516) | (|dec_csr_wrdata_r[31:10])) ? 10'd516 : dec_csr_wrdata_r[9:0];
assign wr_mhpme3_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPME3);
rvdffs #(10) mhpme3_ff (.*, .clk(active_clk), .en(wr_mhpme3_r), .din(event_saturate_r[9:0]), .dout(mhpme3[9:0]));
// ----------------------------------------------------------------------
// MHPME4(RW)
// [9:0] : Hardware Performance Monitor Event 4
`define MHPME4 12'h324
assign wr_mhpme4_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPME4);
rvdffs #(10) mhpme4_ff (.*, .clk(active_clk), .en(wr_mhpme4_r), .din(event_saturate_r[9:0]), .dout(mhpme4[9:0]));
// ----------------------------------------------------------------------
// MHPME5(RW)
// [9:0] : Hardware Performance Monitor Event 5
`define MHPME5 12'h325
assign wr_mhpme5_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPME5);
rvdffs #(10) mhpme5_ff (.*, .clk(active_clk), .en(wr_mhpme5_r), .din(event_saturate_r[9:0]), .dout(mhpme5[9:0]));
// ----------------------------------------------------------------------
// MHPME6(RW)
// [9:0] : Hardware Performance Monitor Event 6
`define MHPME6 12'h326
assign wr_mhpme6_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MHPME6);
rvdffs #(10) mhpme6_ff (.*, .clk(active_clk), .en(wr_mhpme6_r), .din(event_saturate_r[9:0]), .dout(mhpme6[9:0]));
//----------------------------------------------------------------------
// Performance Monitor Counters section ends
//----------------------------------------------------------------------
// ----------------------------------------------------------------------
// MCOUNTINHIBIT(RW)
// [31:7] : Reserved, read 0x0
// [6] : HPM6 disable
// [5] : HPM5 disable
// [4] : HPM4 disable
// [3] : HPM3 disable
// [2] : MINSTRET disable
// [1] : reserved, read 0x0
// [0] : MCYCLE disable
`define MCOUNTINHIBIT 12'h320
assign wr_mcountinhibit_r = dec_csr_wen_r_mod & (dec_csr_wraddr_r[11:0] == `MCOUNTINHIBIT);
rvdffs #(6) mcountinhibit_ff (.*, .clk(active_clk), .en(wr_mcountinhibit_r), .din({dec_csr_wrdata_r[6:2], dec_csr_wrdata_r[0]}), .dout({mcountinhibit[6:2], mcountinhibit[0]}));
assign mcountinhibit[1] = 1'b0;
//--------------------------------------------------------------------------------
// trace
//--------------------------------------------------------------------------------
rvoclkhdr trace_cgc ( .en(i0_valid_wb | exc_or_int_valid_r_d1 | interrupt_valid_r_d1 | dec_tlu_i0_valid_wb1 |
dec_tlu_i0_exc_valid_wb1 | dec_tlu_int_valid_wb1 | clk_override), .l1clk(trace_tclk), .* );
rvdff #(8) traceff (.*, .clk(trace_tclk),
.din ({i0_valid_wb,
i0_exception_valid_r_d1 | lsu_i0_exc_r_d1 | (trigger_hit_r_d1 & ~trigger_hit_dmode_r_d1),
exc_cause_wb[4:0],
interrupt_valid_r_d1}),
.dout({dec_tlu_i0_valid_wb1,
dec_tlu_i0_exc_valid_wb1,
dec_tlu_exc_cause_wb1[4:0],
dec_tlu_int_valid_wb1}));
assign dec_tlu_mtval_wb1 = mtval[31:0];
// end trace
//--------------------------------------------------------------------------------
// ----------------------------------------------------------------------
// CSR read mux
// ----------------------------------------------------------------------
// file "csrdecode" is human readable file that has all of the CSR decodes defined and is part of git repo
// modify this file as needed
// to generate all the equations below from "csrdecode" except legal equation:
// 1) coredecode -in csrdecode > corecsrdecode.e
// 2) espresso -Dso -oeqntott corecsrdecode.e | addassign > csrequations
// to generate the legal CSR equation below:
// 1) coredecode -in csrdecode -legal > csrlegal.e
// 2) espresso -Dso -oeqntott csrlegal.e | addassign > csrlegal_equation
// coredecode -in csrdecode > corecsrdecode.e; espresso -Dso -oeqntott corecsrdecode.e | addassign > csrequations; coredecode -in csrdecode -legal > csrlegal.e; espresso -Dso -oeqntott csrlegal.e | addassign > csrlegal_equation
assign csr_misa = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]);
assign csr_mvendorid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign csr_marchid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[7]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mimpid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[3]
&dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign csr_mhartid = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[7]
&dec_csr_rdaddr_d[2]);
assign csr_mstatus = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]);
assign csr_mtvec = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign csr_mip = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[2]);
assign csr_mie = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]);
assign csr_mcyclel = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]);
assign csr_mcycleh = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]);
assign csr_minstretl = (!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_minstreth = (!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mscratch = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mepc = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_mcause = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mscause = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[2]);
assign csr_mtval = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_mrac = (!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]);
assign csr_dmst = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[3]
&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]);
assign csr_mdseac = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]);
assign csr_meihap = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]
&dec_csr_rdaddr_d[3]);
assign csr_meivt = (!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&!dec_csr_rdaddr_d[0]);
assign csr_meipt = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_meicurpl = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[2]);
assign csr_meicidpl = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign csr_dcsr = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[0]);
assign csr_mcgc = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[0]);
assign csr_mfdc = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign csr_dpc = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[0]);
assign csr_mtsel = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mtdata1 = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[0]);
assign csr_mtdata2 = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[1]);
assign csr_mhpmc3 = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[0]);
assign csr_mhpmc4 = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mhpmc5 = (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_mhpmc6 = (!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mhpmc3h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_mhpmc4h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mhpmc5h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_mhpmc6h = (dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mhpme3 = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[0]);
assign csr_mhpme4 = (dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&!dec_csr_rdaddr_d[0]);
assign csr_mhpme5 = (dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]);
assign csr_mhpme6 = (dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]
&!dec_csr_rdaddr_d[0]);
assign csr_mcountinhibit = (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[0]);
assign csr_mpmc = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[1]);
assign csr_mcpc = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]);
assign csr_meicpct = (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mdeau = (!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[7]
&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[3]);
assign csr_micect = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_miccmect = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[0]);
assign csr_mdccmect = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[4]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mfdht = (dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_mfdhs = (dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[2]
&dec_csr_rdaddr_d[0]);
assign csr_dicawics = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&!dec_csr_rdaddr_d[0]);
assign csr_dicad0h = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[3]
&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]);
assign csr_dicad0 = (dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign csr_dicad1 = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]);
assign csr_dicago = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]);
assign presync = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[7]
&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | (
dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]);
assign postsync = (dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[10]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[0]) | (
!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]) | (
dec_csr_rdaddr_d[10]&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]);
assign legal = (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | (
dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[1]
&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]
&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[0]) | (
!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]
&dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]) | (
!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]) | (!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]
&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]
&dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&!dec_csr_rdaddr_d[0]) | (
!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]) | (dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]
&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[1]) | (
dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11]
&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]
&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]&dec_csr_rdaddr_d[1]) | (
!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[2]) | (dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]) | (!dec_csr_rdaddr_d[11]
&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[1]&dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]
&dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]&!dec_csr_rdaddr_d[0]) | (
!dec_csr_rdaddr_d[11]&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&!dec_csr_rdaddr_d[4]&dec_csr_rdaddr_d[3]
&!dec_csr_rdaddr_d[2]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]
&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[2]) | (!dec_csr_rdaddr_d[11]
&dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]
&!dec_csr_rdaddr_d[0]) | (dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]
&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6]
&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[1]) | (!dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&!dec_csr_rdaddr_d[7]&dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[2]) | (
!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[5]
&!dec_csr_rdaddr_d[4]&!dec_csr_rdaddr_d[3]&!dec_csr_rdaddr_d[1]
&!dec_csr_rdaddr_d[0]) | (!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]
&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]
&!dec_csr_rdaddr_d[6]&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[3]) | (
!dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[7]&!dec_csr_rdaddr_d[6]
&dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[4]) | (dec_csr_rdaddr_d[11]
&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]&dec_csr_rdaddr_d[8]
&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]&dec_csr_rdaddr_d[3]) | (
dec_csr_rdaddr_d[11]&!dec_csr_rdaddr_d[10]&dec_csr_rdaddr_d[9]
&dec_csr_rdaddr_d[8]&!dec_csr_rdaddr_d[6]&!dec_csr_rdaddr_d[5]
&dec_csr_rdaddr_d[4]);
assign dec_tlu_presync_d = presync & dec_csr_any_unq_d & ~dec_csr_wen_unq_d;
assign dec_tlu_postsync_d = postsync & dec_csr_any_unq_d;
assign valid_csr = ( legal & (~(csr_dcsr | csr_dpc | csr_dmst | csr_dicawics | csr_dicad0 | csr_dicad0h | csr_dicad1 | csr_dicago) | dbg_tlu_halted_f)
& ~fast_int_meicpct);
assign dec_csr_legal_d = ( dec_csr_any_unq_d &
valid_csr & // of a valid CSR
~(dec_csr_wen_unq_d & (csr_mvendorid | csr_marchid | csr_mimpid | csr_mhartid | csr_mdseac | csr_meihap)) // that's not a write to a RO CSR
);
// CSR read mux
assign dec_csr_rddata_d[31:0] = ( ({32{csr_misa}} & 32'h40001104) |
({32{csr_mvendorid}} & 32'h00000045) |
({32{csr_marchid}} & 32'h00000010) |
({32{csr_mimpid}} & 32'h1) |
({32{csr_mhartid}} & {core_id[31:4], 4'b0}) |
({32{csr_mstatus}} & {19'b0, 2'b11, 3'b0, mstatus[1], 3'b0, mstatus[0], 3'b0}) |
({32{csr_mtvec}} & {mtvec[30:1], 1'b0, mtvec[0]}) |
({32{csr_mip}} & {1'b0, mip[3], 18'b0, mip[2], 3'b0, mip[1], 3'b0, mip[0], 3'b0}) |
({32{csr_mie}} & {1'b0, mie[3], 18'b0, mie[2], 3'b0, mie[1], 3'b0, mie[0], 3'b0}) |
({32{csr_mcyclel}} & mcyclel[31:0]) |
({32{csr_mcycleh}} & mcycleh_inc[31:0]) |
({32{csr_minstretl}} & minstretl_read[31:0]) |
({32{csr_minstreth}} & minstreth_read[31:0]) |
({32{csr_mscratch}} & mscratch[31:0]) |
({32{csr_mepc}} & {mepc[31:1], 1'b0}) |
({32{csr_mcause}} & mcause[31:0]) |
({32{csr_mscause}} & {29'b0, mscause[2:0]}) |
({32{csr_mtval}} & mtval[31:0]) |
({32{csr_mrac}} & mrac[31:0]) |
({32{csr_mdseac}} & mdseac[31:0]) |
({32{csr_meivt}} & {meivt[31:10], 10'b0}) |
({32{csr_meihap}} & {meivt[31:10], meihap[9:2], 2'b0}) |
({32{csr_meicurpl}} & {28'b0, meicurpl[3:0]}) |
({32{csr_meicidpl}} & {28'b0, meicidpl[3:0]}) |
({32{csr_meipt}} & {28'b0, meipt[3:0]}) |
({32{csr_mcgc}} & {23'b0, mcgc[8:0]}) |
({32{csr_mfdc}} & {13'b0, mfdc[18:0]}) |
({32{csr_dcsr}} & {16'h4000, dcsr[15:2], 2'b11}) |
({32{csr_dpc}} & {dpc[31:1], 1'b0}) |
({32{csr_dicad0}} & dicad0[31:0]) |
({32{csr_dicad0h}} & dicad0h[31:0]) |
({32{csr_dicad1}} & dicad1[31:0]) |
({32{csr_dicawics}} & {7'b0, dicawics[16], 2'b0, dicawics[15:14], 3'b0, dicawics[13:0], 3'b0}) |
({32{csr_mtsel}} & {30'b0, mtsel[1:0]}) |
({32{csr_mtdata1}} & {mtdata1_tsel_out[31:0]}) |
({32{csr_mtdata2}} & {mtdata2_tsel_out[31:0]}) |
({32{csr_micect}} & {micect[31:0]}) |
({32{csr_miccmect}} & {miccmect[31:0]}) |
({32{csr_mdccmect}} & {mdccmect[31:0]}) |
({32{csr_mhpmc3}} & mhpmc3[31:0]) |
({32{csr_mhpmc4}} & mhpmc4[31:0]) |
({32{csr_mhpmc5}} & mhpmc5[31:0]) |
({32{csr_mhpmc6}} & mhpmc6[31:0]) |
({32{csr_mhpmc3h}} & mhpmc3h[31:0]) |
({32{csr_mhpmc4h}} & mhpmc4h[31:0]) |
({32{csr_mhpmc5h}} & mhpmc5h[31:0]) |
({32{csr_mhpmc6h}} & mhpmc6h[31:0]) |
({32{csr_mfdht}} & {26'b0, mfdht[5:0]}) |
({32{csr_mfdhs}} & {30'b0, mfdhs[1:0]}) |
({32{csr_mhpme3}} & {22'b0,mhpme3[9:0]}) |
({32{csr_mhpme4}} & {22'b0,mhpme4[9:0]}) |
({32{csr_mhpme5}} & {22'b0,mhpme5[9:0]}) |
({32{csr_mhpme6}} & {22'b0,mhpme6[9:0]}) |
({32{csr_mcountinhibit}} & {25'b0, mcountinhibit[6:0]}) |
({32{csr_mpmc}} & {30'b0, mpmc[1], 1'b0})
);
endmodule // el2_dec_tlu_ctl