// SPDX-License-Identifier: Apache-2.0 // Copyright 2020 Western Digital Corporation or its affiliates. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //******************************************************************************** // $Id$ // // Function: Top level SWERV core file to control the debug mode // Comments: Responsible to put the rest of the core in quiesce mode, // Send the commands/address. sends WrData and Recieve read Data. // And then Resume the core to do the normal mode // Author : //******************************************************************************** module el2_dbg import el2_pkg::*; #( `include "el2_param.vh" )( // outputs to the core for command and data interface output logic [31:0] dbg_cmd_addr, output logic [31:0] dbg_cmd_wrdata, output logic dbg_cmd_valid, output logic dbg_cmd_write, // 1: write command, 0: read_command output logic [1:0] dbg_cmd_type, // 0:gpr 1:csr 2: memory output logic [1:0] dbg_cmd_size, // size of the abstract mem access debug command output logic dbg_core_rst_l, // core reset from dm // inputs back from the core/dec input logic [31:0] core_dbg_rddata, input logic core_dbg_cmd_done, // This will be treated like a valid signal input logic core_dbg_cmd_fail, // Exception during command run // Signals to dma to get a bubble output logic dbg_dma_bubble, // Debug needs a bubble to send a valid input logic dma_dbg_ready, // DMA is ready to accept debug request // interface with the rest of the core to halt/resume handshaking output logic dbg_halt_req, // This is a pulse output logic dbg_resume_req, // Debug sends a resume requests. Pulse input logic dec_tlu_debug_mode, // Core is in debug mode input logic dec_tlu_dbg_halted, // The core has finished the queiscing sequence. Core is halted now input logic dec_tlu_mpc_halted_only, // Only halted due to MPC input logic dec_tlu_resume_ack, // core sends back an ack for the resume (pulse) // inputs from the JTAG input logic dmi_reg_en, // read or write input logic [6:0] dmi_reg_addr, // address of DM register input logic dmi_reg_wr_en, // write instruction input logic [31:0] dmi_reg_wdata, // write data // output output logic [31:0] dmi_reg_rdata, // read data // AXI Write Channels output logic sb_axi_awvalid, input logic sb_axi_awready, output logic [pt.SB_BUS_TAG-1:0] sb_axi_awid, output logic [31:0] sb_axi_awaddr, output logic [3:0] sb_axi_awregion, output logic [7:0] sb_axi_awlen, output logic [2:0] sb_axi_awsize, output logic [1:0] sb_axi_awburst, output logic sb_axi_awlock, output logic [3:0] sb_axi_awcache, output logic [2:0] sb_axi_awprot, output logic [3:0] sb_axi_awqos, output logic sb_axi_wvalid, input logic sb_axi_wready, output logic [63:0] sb_axi_wdata, output logic [7:0] sb_axi_wstrb, output logic sb_axi_wlast, input logic sb_axi_bvalid, output logic sb_axi_bready, input logic [1:0] sb_axi_bresp, // AXI Read Channels output logic sb_axi_arvalid, input logic sb_axi_arready, output logic [pt.SB_BUS_TAG-1:0] sb_axi_arid, output logic [31:0] sb_axi_araddr, output logic [3:0] sb_axi_arregion, output logic [7:0] sb_axi_arlen, output logic [2:0] sb_axi_arsize, output logic [1:0] sb_axi_arburst, output logic sb_axi_arlock, output logic [3:0] sb_axi_arcache, output logic [2:0] sb_axi_arprot, output logic [3:0] sb_axi_arqos, input logic sb_axi_rvalid, output logic sb_axi_rready, input logic [63:0] sb_axi_rdata, input logic [1:0] sb_axi_rresp, input logic dbg_bus_clk_en, // general inputs input logic clk, input logic free_clk, input logic rst_l, // This includes both top rst and debug rst input logic dbg_rst_l, input logic clk_override, input logic scan_mode ); typedef enum logic [3:0] {IDLE=4'h0, HALTING=4'h1, HALTED=4'h2, CORE_CMD_START=4'h3, CORE_CMD_WAIT=4'h4, SB_CMD_START=4'h5, SB_CMD_SEND=4'h6, SB_CMD_RESP=4'h7, CMD_DONE=4'h8, RESUMING=4'h9} state_t; typedef enum logic [3:0] {SBIDLE=4'h0, WAIT_RD=4'h1, WAIT_WR=4'h2, CMD_RD=4'h3, CMD_WR=4'h4, CMD_WR_ADDR=4'h5, CMD_WR_DATA=4'h6, RSP_RD=4'h7, RSP_WR=4'h8, DONE=4'h9} sb_state_t; state_t dbg_state; state_t dbg_nxtstate; logic dbg_state_en; // these are the registers that the debug module implements logic [31:0] dmstatus_reg; // [26:24]-dmerr, [17:16]-resume ack, [9:8]-halted, [3:0]-version logic [31:0] dmcontrol_reg; // dmcontrol register has only 6 bits implemented. 31: haltreq, 30: resumereq, 29: haltreset, 28: ackhavereset, 1: ndmreset, 0: dmactive. logic [31:0] command_reg; logic [31:0] abstractcs_reg; // bits implemted are [12] - busy and [10:8]= command error logic [31:0] haltsum0_reg; logic [31:0] data0_reg; logic [31:0] data1_reg; // data 0 logic [31:0] data0_din; logic data0_reg_wren, data0_reg_wren0, data0_reg_wren1, data0_reg_wren2; // data 1 logic [31:0] data1_din; logic data1_reg_wren, data1_reg_wren0, data1_reg_wren1; // abstractcs logic abstractcs_busy_wren; logic abstractcs_busy_din; logic [2:0] abstractcs_error_din; logic abstractcs_error_sel0, abstractcs_error_sel1, abstractcs_error_sel2, abstractcs_error_sel3, abstractcs_error_sel4, abstractcs_error_sel5, abstractcs_error_sel6; logic dbg_sb_bus_error; // abstractauto logic abstractauto_reg_wren; logic [1:0] abstractauto_reg; // dmstatus logic dmstatus_resumeack_wren; logic dmstatus_resumeack_din; logic dmstatus_haveresetn_wren; logic dmstatus_resumeack; logic dmstatus_unavail; logic dmstatus_running; logic dmstatus_halted; logic dmstatus_havereset, dmstatus_haveresetn; // dmcontrol logic resumereq; logic dmcontrol_wren, dmcontrol_wren_Q; // command logic execute_command_ns, execute_command; logic command_wren, command_regno_wren; logic command_transfer_din; logic command_postexec_din; logic [31:0] command_din; logic [3:0] dbg_cmd_addr_incr; logic [31:0] dbg_cmd_curr_addr; logic [31:0] dbg_cmd_next_addr; // needed to send the read data back for dmi reads logic [31:0] dmi_reg_rdata_din; sb_state_t sb_state; sb_state_t sb_nxtstate; logic sb_state_en; //System bus section logic sbcs_wren; logic sbcs_sbbusy_wren; logic sbcs_sbbusy_din; logic sbcs_sbbusyerror_wren; logic sbcs_sbbusyerror_din; logic sbcs_sberror_wren; logic [2:0] sbcs_sberror_din; logic sbcs_unaligned; logic sbcs_illegal_size; logic [19:15] sbcs_reg_int; // data logic sbdata0_reg_wren0; logic sbdata0_reg_wren1; logic sbdata0_reg_wren; logic [31:0] sbdata0_din; logic sbdata1_reg_wren0; logic sbdata1_reg_wren1; logic sbdata1_reg_wren; logic [31:0] sbdata1_din; logic sbaddress0_reg_wren0; logic sbaddress0_reg_wren1; logic sbaddress0_reg_wren; logic [31:0] sbaddress0_reg_din; logic [3:0] sbaddress0_incr; logic sbreadonaddr_access; logic sbreadondata_access; logic sbdata0wr_access; logic sb_abmem_cmd_done_in, sb_abmem_data_done_in; logic sb_abmem_cmd_done_en, sb_abmem_data_done_en; logic sb_abmem_cmd_done, sb_abmem_data_done; logic [31:0] abmem_addr; logic abmem_addr_in_dccm_region, abmem_addr_in_iccm_region, abmem_addr_in_pic_region; logic abmem_addr_core_local; logic abmem_addr_external; logic sb_cmd_pending, sb_abmem_cmd_pending; logic sb_abmem_cmd_write; logic [2:0] sb_abmem_cmd_size; logic [31:0] sb_abmem_cmd_addr; logic [31:0] sb_abmem_cmd_wdata; logic [2:0] sb_cmd_size; logic [31:0] sb_cmd_addr; logic [63:0] sb_cmd_wdata; logic sb_bus_cmd_read, sb_bus_cmd_write_addr, sb_bus_cmd_write_data; logic sb_bus_rsp_read, sb_bus_rsp_write; logic sb_bus_rsp_error; logic [63:0] sb_bus_rdata; //registers logic [31:0] sbcs_reg; logic [31:0] sbaddress0_reg; logic [31:0] sbdata0_reg; logic [31:0] sbdata1_reg; logic sb_abmem_cmd_arvalid, sb_abmem_cmd_awvalid, sb_abmem_cmd_wvalid; logic sb_abmem_read_pend; logic sb_cmd_awvalid, sb_cmd_wvalid, sb_cmd_arvalid; logic sb_read_pend; logic [31:0] sb_axi_addr; logic [63:0] sb_axi_wrdata; logic [2:0] sb_axi_size; logic dbg_dm_rst_l; logic rst_l_sync; //clken logic dbg_free_clken; logic dbg_free_clk; logic sb_free_clken; logic sb_free_clk; // clocking // used for the abstract commands. assign dbg_free_clken = dmi_reg_en | execute_command | (dbg_state != IDLE) | dbg_state_en | dec_tlu_dbg_halted | dec_tlu_mpc_halted_only | dec_tlu_debug_mode | dbg_halt_req | clk_override; // used for the system bus assign sb_free_clken = dmi_reg_en | execute_command | sb_state_en | (sb_state != SBIDLE) | clk_override; rvoclkhdr dbg_free_cgc (.en(dbg_free_clken), .l1clk(dbg_free_clk), .*); rvoclkhdr sb_free_cgc (.en(sb_free_clken), .l1clk(sb_free_clk), .*); // end clocking section // Reset logic assign dbg_dm_rst_l = dbg_rst_l & (dmcontrol_reg[0] | scan_mode); assign dbg_core_rst_l = ~dmcontrol_reg[1] | scan_mode; // synchronize the rst rvsyncss #(1) rstl_syncff (.din(rst_l), .dout(rst_l_sync), .clk(free_clk), .rst_l(dbg_rst_l)); // system bus register // sbcs[31:29], sbcs - [22]:sbbusyerror, [21]: sbbusy, [20]:sbreadonaddr, [19:17]:sbaccess, [16]:sbautoincrement, [15]:sbreadondata, [14:12]:sberror, sbsize=32, 128=0, 64/32/16/8 are legal assign sbcs_reg[31:29] = 3'b1; assign sbcs_reg[28:23] = '0; assign sbcs_reg[19:15] = {sbcs_reg_int[19], ~sbcs_reg_int[18], sbcs_reg_int[17:15]}; assign sbcs_reg[11:5] = 7'h20; assign sbcs_reg[4:0] = 5'b01111; assign sbcs_wren = (dmi_reg_addr == 7'h38) & dmi_reg_en & dmi_reg_wr_en & (sb_state == SBIDLE); assign sbcs_sbbusyerror_wren = (sbcs_wren & dmi_reg_wdata[22]) | (sbcs_reg[21] & dmi_reg_en & ((dmi_reg_wr_en & (dmi_reg_addr == 7'h39)) | (dmi_reg_addr == 7'h3c) | (dmi_reg_addr == 7'h3d))); assign sbcs_sbbusyerror_din = ~(sbcs_wren & dmi_reg_wdata[22]); // Clear when writing one rvdffs #(1) sbcs_sbbusyerror_reg (.din(sbcs_sbbusyerror_din), .dout(sbcs_reg[22]), .en(sbcs_sbbusyerror_wren), .rst_l(dbg_dm_rst_l), .clk(sb_free_clk)); rvdffs #(1) sbcs_sbbusy_reg (.din(sbcs_sbbusy_din), .dout(sbcs_reg[21]), .en(sbcs_sbbusy_wren), .rst_l(dbg_dm_rst_l), .clk(sb_free_clk)); rvdffs #(1) sbcs_sbreadonaddr_reg (.din(dmi_reg_wdata[20]), .dout(sbcs_reg[20]), .en(sbcs_wren), .rst_l(dbg_dm_rst_l), .clk(sb_free_clk)); rvdffs #(5) sbcs_misc_reg (.din({dmi_reg_wdata[19],~dmi_reg_wdata[18],dmi_reg_wdata[17:15]}), .dout(sbcs_reg_int[19:15]), .en(sbcs_wren), .rst_l(dbg_dm_rst_l), .clk(sb_free_clk)); rvdffs #(3) sbcs_error_reg (.din(sbcs_sberror_din[2:0]), .dout(sbcs_reg[14:12]), .en(sbcs_sberror_wren), .rst_l(dbg_dm_rst_l), .clk(sb_free_clk)); assign sbcs_unaligned = ((sbcs_reg[19:17] == 3'b001) & sbaddress0_reg[0]) | ((sbcs_reg[19:17] == 3'b010) & (|sbaddress0_reg[1:0])) | ((sbcs_reg[19:17] == 3'b011) & (|sbaddress0_reg[2:0])); assign sbcs_illegal_size = sbcs_reg[19]; // Anything bigger than 64 bits is illegal assign sbaddress0_incr[3:0] = ({4{(sbcs_reg[19:17] == 3'h0)}} & 4'b0001) | ({4{(sbcs_reg[19:17] == 3'h1)}} & 4'b0010) | ({4{(sbcs_reg[19:17] == 3'h2)}} & 4'b0100) | ({4{(sbcs_reg[19:17] == 3'h3)}} & 4'b1000); // sbdata assign sbdata0_reg_wren0 = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h3c); // write data only when single read is 0 assign sbdata0_reg_wren1 = (sb_state == RSP_RD) & sb_state_en & ~sbcs_sberror_wren; assign sbdata0_reg_wren = sbdata0_reg_wren0 | sbdata0_reg_wren1; assign sbdata1_reg_wren0 = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h3d); // write data only when single read is 0; assign sbdata1_reg_wren1 = (sb_state == RSP_RD) & sb_state_en & ~sbcs_sberror_wren; assign sbdata1_reg_wren = sbdata1_reg_wren0 | sbdata1_reg_wren1; assign sbdata0_din[31:0] = ({32{sbdata0_reg_wren0}} & dmi_reg_wdata[31:0]) | ({32{sbdata0_reg_wren1}} & sb_bus_rdata[31:0]); assign sbdata1_din[31:0] = ({32{sbdata1_reg_wren0}} & dmi_reg_wdata[31:0]) | ({32{sbdata1_reg_wren1}} & sb_bus_rdata[63:32]); rvdffe #(32) dbg_sbdata0_reg (.*, .din(sbdata0_din[31:0]), .dout(sbdata0_reg[31:0]), .en(sbdata0_reg_wren), .rst_l(dbg_dm_rst_l)); rvdffe #(32) dbg_sbdata1_reg (.*, .din(sbdata1_din[31:0]), .dout(sbdata1_reg[31:0]), .en(sbdata1_reg_wren), .rst_l(dbg_dm_rst_l)); // sbaddress assign sbaddress0_reg_wren0 = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h39); assign sbaddress0_reg_wren = sbaddress0_reg_wren0 | sbaddress0_reg_wren1; assign sbaddress0_reg_din[31:0]= ({32{sbaddress0_reg_wren0}} & dmi_reg_wdata[31:0]) | ({32{sbaddress0_reg_wren1}} & (sbaddress0_reg[31:0] + {28'b0,sbaddress0_incr[3:0]})); rvdffe #(32) dbg_sbaddress0_reg (.*, .din(sbaddress0_reg_din[31:0]), .dout(sbaddress0_reg[31:0]), .en(sbaddress0_reg_wren), .rst_l(dbg_dm_rst_l)); assign sbreadonaddr_access = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h39) & sbcs_reg[20]; // if readonaddr is set the next command will start upon writing of addr0 assign sbreadondata_access = dmi_reg_en & ~dmi_reg_wr_en & (dmi_reg_addr == 7'h3c) & sbcs_reg[15]; // if readondata is set the next command will start upon reading of data0 assign sbdata0wr_access = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h3c); // write to sbdata0 will start write command to system bus // memory mapped registers // dmcontrol register has only 5 bits implemented. 31: haltreq, 30: resumereq, 28: ackhavereset, 1: ndmreset, 0: dmactive. // rest all the bits are zeroed out // dmactive flop is reset based on core rst_l, all other flops use dm_rst_l assign dmcontrol_wren = (dmi_reg_addr == 7'h10) & dmi_reg_en & dmi_reg_wr_en; assign dmcontrol_reg[29] = '0; assign dmcontrol_reg[27:2] = '0; assign resumereq = dmcontrol_reg[30] & ~dmcontrol_reg[31] & dmcontrol_wren_Q; rvdffs #(4) dmcontrolff (.din({dmi_reg_wdata[31:30],dmi_reg_wdata[28],dmi_reg_wdata[1]}), .dout({dmcontrol_reg[31:30], dmcontrol_reg[28], dmcontrol_reg[1]}), .en(dmcontrol_wren), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); rvdffs #(1) dmcontrol_dmactive_ff (.din(dmi_reg_wdata[0]), .dout(dmcontrol_reg[0]), .en(dmcontrol_wren), .rst_l(dbg_rst_l), .clk(dbg_free_clk)); rvdff #(1) dmcontrol_wrenff(.din(dmcontrol_wren), .dout(dmcontrol_wren_Q), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); // dmstatus register bits that are implemented // [19:18]-havereset,[17:16]-resume ack, [9:8]-halted, [3:0]-version // rest all the bits are zeroed out //assign dmstatus_wren = (dmi_reg_addr[31:0] == 32'h11) & dmi_reg_en; assign dmstatus_reg[31:20] = '0; assign dmstatus_reg[19:18] = {2{dmstatus_havereset}}; assign dmstatus_reg[15:14] = '0; assign dmstatus_reg[7] = '1; assign dmstatus_reg[6:4] = '0; assign dmstatus_reg[17:16] = {2{dmstatus_resumeack}}; assign dmstatus_reg[13:12] = {2{dmstatus_unavail}}; assign dmstatus_reg[11:10] = {2{dmstatus_running}}; assign dmstatus_reg[9:8] = {2{dmstatus_halted}}; assign dmstatus_reg[3:0] = 4'h2; assign dmstatus_resumeack_wren = ((dbg_state == RESUMING) & dec_tlu_resume_ack) | (dmstatus_resumeack & resumereq & dmstatus_halted); assign dmstatus_resumeack_din = (dbg_state == RESUMING) & dec_tlu_resume_ack; assign dmstatus_haveresetn_wren = (dmi_reg_addr == 7'h10) & dmi_reg_wdata[28] & dmi_reg_en & dmi_reg_wr_en & dmcontrol_reg[0]; // clear the havereset assign dmstatus_havereset = ~dmstatus_haveresetn; assign dmstatus_unavail = dmcontrol_reg[1] | ~rst_l_sync; assign dmstatus_running = ~(dmstatus_unavail | dmstatus_halted); rvdffs #(1) dmstatus_resumeack_reg (.din(dmstatus_resumeack_din), .dout(dmstatus_resumeack), .en(dmstatus_resumeack_wren), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); rvdff #(1) dmstatus_halted_reg (.din(dec_tlu_dbg_halted & ~dec_tlu_mpc_halted_only), .dout(dmstatus_halted), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); rvdffs #(1) dmstatus_haveresetn_reg (.din(1'b1), .dout(dmstatus_haveresetn), .en(dmstatus_haveresetn_wren), .rst_l(rst_l), .clk(dbg_free_clk)); // haltsum0 register assign haltsum0_reg[31:1] = '0; assign haltsum0_reg[0] = dmstatus_halted; // abstractcs register // bits implemted are [12] - busy and [10:8]= command error assign abstractcs_reg[31:13] = '0; assign abstractcs_reg[11] = '0; assign abstractcs_reg[7:4] = '0; assign abstractcs_reg[3:0] = 4'h2; // One data register assign abstractcs_error_sel0 = abstractcs_reg[12] & ~(|abstractcs_reg[10:8]) & dmi_reg_en & ((dmi_reg_wr_en & ((dmi_reg_addr == 7'h16) | (dmi_reg_addr == 7'h17)) | (dmi_reg_addr == 7'h18)) | (dmi_reg_addr == 7'h4) | (dmi_reg_addr == 7'h5)); assign abstractcs_error_sel1 = execute_command & ~(|abstractcs_reg[10:8]) & ((~((command_reg[31:24] == 8'b0) | (command_reg[31:24] == 8'h2))) | // Illegal command (((command_reg[22:20] == 3'b011) | (command_reg[22])) & (command_reg[31:24] == 8'h2)) | // Illegal abstract memory size (can't be DW or higher) ((command_reg[22:20] != 3'b010) & ((command_reg[31:24] == 8'h0) & command_reg[17])) | // Illegal abstract reg size ((command_reg[31:24] == 8'h0) & command_reg[18])); //postexec for abstract register access assign abstractcs_error_sel2 = ((core_dbg_cmd_done & core_dbg_cmd_fail) | // exception from core (execute_command & (command_reg[31:24] == 8'h0) & // unimplemented regs (((command_reg[15:12] == 4'h1) & (command_reg[11:5] != 0)) | (command_reg[15:13] != 0)))) & ~(|abstractcs_reg[10:8]); assign abstractcs_error_sel3 = execute_command & (dbg_state != HALTED) & ~(|abstractcs_reg[10:8]); assign abstractcs_error_sel4 = dbg_sb_bus_error & dbg_bus_clk_en & ~(|abstractcs_reg[10:8]);// sb bus error for abstract memory command assign abstractcs_error_sel5 = execute_command & (command_reg[31:24] == 8'h2) & ~(|abstractcs_reg[10:8]) & (((command_reg[22:20] == 3'b001) & data1_reg[0]) | ((command_reg[22:20] == 3'b010) & (|data1_reg[1:0]))); //Unaligned address for abstract memory assign abstractcs_error_sel6 = (dmi_reg_addr == 7'h16) & dmi_reg_en & dmi_reg_wr_en; assign abstractcs_error_din[2:0] = abstractcs_error_sel0 ? 3'b001 : // writing command or abstractcs while a command was executing. Or accessing data0 abstractcs_error_sel1 ? 3'b010 : // writing a illegal command type to cmd field of command abstractcs_error_sel2 ? 3'b011 : // exception while running command abstractcs_error_sel3 ? 3'b100 : // writing a comnand when not in the halted state abstractcs_error_sel4 ? 3'b101 : // Bus error abstractcs_error_sel5 ? 3'b111 : // unaligned or illegal size abstract memory command abstractcs_error_sel6 ? (~dmi_reg_wdata[10:8] & abstractcs_reg[10:8]) : //W1C abstractcs_reg[10:8]; //hold rvdffs #(1) dmabstractcs_busy_reg (.din(abstractcs_busy_din), .dout(abstractcs_reg[12]), .en(abstractcs_busy_wren), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); rvdff #(3) dmabstractcs_error_reg (.din(abstractcs_error_din[2:0]), .dout(abstractcs_reg[10:8]), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); // abstract auto reg assign abstractauto_reg_wren = dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h18) & ~abstractcs_reg[12]; rvdffs #(2) dbg_abstractauto_reg (.*, .din(dmi_reg_wdata[1:0]), .dout(abstractauto_reg[1:0]), .en(abstractauto_reg_wren), .rst_l(dbg_dm_rst_l), .clk(dbg_free_clk)); // command register - implemented all the bits in this register // command[16] = 1: write, 0: read assign execute_command_ns = command_wren | (dmi_reg_en & ~abstractcs_reg[12] & (((dmi_reg_addr == 7'h4) & abstractauto_reg[0]) | ((dmi_reg_addr == 7'h5) & abstractauto_reg[1]))); assign command_wren = (dmi_reg_addr == 7'h17) & dmi_reg_en & dmi_reg_wr_en; assign command_regno_wren = command_wren | ((command_reg[31:24] == 8'h0) & command_reg[19] & (dbg_state == CMD_DONE) & ~(|abstractcs_reg[10:8])); // aarpostincrement assign command_postexec_din = (dmi_reg_wdata[31:24] == 8'h0) & dmi_reg_wdata[18]; assign command_transfer_din = (dmi_reg_wdata[31:24] == 8'h0) & dmi_reg_wdata[17]; assign command_din[31:16] = {dmi_reg_wdata[31:24],1'b0,dmi_reg_wdata[22:19],command_postexec_din,command_transfer_din, dmi_reg_wdata[16]}; assign command_din[15:0] = command_wren ? dmi_reg_wdata[15:0] : dbg_cmd_next_addr[15:0]; rvdff #(1) execute_commandff (.*, .din(execute_command_ns), .dout(execute_command), .clk(dbg_free_clk), .rst_l(dbg_dm_rst_l)); rvdffe #(16) dmcommand_reg (.*, .din(command_din[31:16]), .dout(command_reg[31:16]), .en(command_wren), .rst_l(dbg_dm_rst_l)); rvdffe #(16) dmcommand_regno_reg (.*, .din(command_din[15:0]), .dout(command_reg[15:0]), .en(command_regno_wren), .rst_l(dbg_dm_rst_l)); // data0 reg assign data0_reg_wren0 = (dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h4) & (dbg_state == HALTED) & ~abstractcs_reg[12]); assign data0_reg_wren1 = core_dbg_cmd_done & (dbg_state == CORE_CMD_WAIT) & ~command_reg[16]; assign data0_reg_wren = data0_reg_wren0 | data0_reg_wren1 | data0_reg_wren2; assign data0_din[31:0] = ({32{data0_reg_wren0}} & dmi_reg_wdata[31:0]) | ({32{data0_reg_wren1}} & core_dbg_rddata[31:0]) | ({32{data0_reg_wren2}} & sb_bus_rdata[31:0]); rvdffe #(32) dbg_data0_reg (.*, .din(data0_din[31:0]), .dout(data0_reg[31:0]), .en(data0_reg_wren), .rst_l(dbg_dm_rst_l)); // data 1 assign data1_reg_wren0 = (dmi_reg_en & dmi_reg_wr_en & (dmi_reg_addr == 7'h5) & (dbg_state == HALTED) & ~abstractcs_reg[12]); assign data1_reg_wren1 = (dbg_state == CMD_DONE) & (command_reg[31:24] == 8'h2) & command_reg[19] & ~(|abstractcs_reg[10:8]); // aampostincrement assign data1_reg_wren = data1_reg_wren0 | data1_reg_wren1; assign data1_din[31:0] = ({32{data1_reg_wren0}} & dmi_reg_wdata[31:0]) | ({32{data1_reg_wren1}} & dbg_cmd_next_addr[31:0]); rvdffe #(32) dbg_data1_reg (.*, .din(data1_din[31:0]), .dout(data1_reg[31:0]), .en(data1_reg_wren), .rst_l(dbg_dm_rst_l)); rvdffs #(1) sb_abmem_cmd_doneff (.din(sb_abmem_cmd_done_in), .dout(sb_abmem_cmd_done), .en(sb_abmem_cmd_done_en), .clk(dbg_free_clk), .rst_l(dbg_dm_rst_l), .*); rvdffs #(1) sb_abmem_data_doneff (.din(sb_abmem_data_done_in), .dout(sb_abmem_data_done), .en(sb_abmem_data_done_en), .clk(dbg_free_clk), .rst_l(dbg_dm_rst_l), .*); // FSM to control the debug mode entry, command send/recieve, and Resume flow. always_comb begin dbg_nxtstate = IDLE; dbg_state_en = 1'b0; abstractcs_busy_wren = 1'b0; abstractcs_busy_din = 1'b0; dbg_halt_req = dmcontrol_wren_Q & dmcontrol_reg[31]; // single pulse output to the core. Need to drive every time this register is written since core might be halted due to MPC dbg_resume_req = 1'b0; // single pulse output to the core dbg_sb_bus_error = 1'b0; data0_reg_wren2 = 1'b0; sb_abmem_cmd_done_in = 1'b0; sb_abmem_data_done_in = 1'b0; sb_abmem_cmd_done_en = 1'b0; sb_abmem_data_done_en = 1'b0; case (dbg_state) IDLE: begin dbg_nxtstate = (dmstatus_reg[9] | dec_tlu_mpc_halted_only) ? HALTED : HALTING; // initiate the halt command to the core dbg_state_en = dmcontrol_reg[31] | dmstatus_reg[9] | dec_tlu_mpc_halted_only; // when the jtag writes the halt bit in the DM register, OR when the status indicates H dbg_halt_req = dmcontrol_reg[31]; // only when jtag has written the halt_req bit in the control. Removed debug mode qualification during MPC changes end HALTING : begin dbg_nxtstate = HALTED; // Goto HALTED once the core sends an ACK dbg_state_en = dmstatus_reg[9] | dec_tlu_mpc_halted_only; // core indicates halted end HALTED: begin // wait for halted to go away before send to resume. Else start of new command dbg_nxtstate = dmstatus_reg[9] ? (resumereq ? RESUMING : (((command_reg[31:24] == 8'h2) & abmem_addr_external) ? SB_CMD_START : CORE_CMD_START)) : (dmcontrol_reg[31] ? HALTING : IDLE); // This is MPC halted case dbg_state_en = (dmstatus_reg[9] & resumereq) | execute_command | ~(dmstatus_reg[9] | dec_tlu_mpc_halted_only); abstractcs_busy_wren = dbg_state_en & ((dbg_nxtstate == CORE_CMD_START) | (dbg_nxtstate == SB_CMD_START)); // write busy when a new command was written by jtag abstractcs_busy_din = 1'b1; dbg_resume_req = dbg_state_en & (dbg_nxtstate == RESUMING); // single cycle pulse to core if resuming end CORE_CMD_START: begin // Don't execute the command if cmderror or transfer=0 for abstract register access dbg_nxtstate = ((|abstractcs_reg[10:8]) | ((command_reg[31:24] == 8'h0) & ~command_reg[17])) ? CMD_DONE : CORE_CMD_WAIT; // new command sent to the core dbg_state_en = dbg_cmd_valid | (|abstractcs_reg[10:8]) | ((command_reg[31:24] == 8'h0) & ~command_reg[17]); end CORE_CMD_WAIT: begin dbg_nxtstate = CMD_DONE; dbg_state_en = core_dbg_cmd_done; // go to done state for one cycle after completing current command end SB_CMD_START: begin dbg_nxtstate = (|abstractcs_reg[10:8]) ? CMD_DONE : SB_CMD_SEND; dbg_state_en = (dbg_bus_clk_en & ~sb_cmd_pending) | (|abstractcs_reg[10:8]); end SB_CMD_SEND: begin sb_abmem_cmd_done_in = 1'b1; sb_abmem_data_done_in= 1'b1; sb_abmem_cmd_done_en = (sb_bus_cmd_read | sb_bus_cmd_write_addr) & dbg_bus_clk_en; sb_abmem_data_done_en= (sb_bus_cmd_read | sb_bus_cmd_write_data) & dbg_bus_clk_en; dbg_nxtstate = SB_CMD_RESP; dbg_state_en = (sb_abmem_cmd_done | sb_abmem_cmd_done_en) & (sb_abmem_data_done | sb_abmem_data_done_en) & dbg_bus_clk_en; end SB_CMD_RESP: begin dbg_nxtstate = CMD_DONE; dbg_state_en = (sb_bus_rsp_read | sb_bus_rsp_write) & dbg_bus_clk_en; dbg_sb_bus_error = (sb_bus_rsp_read | sb_bus_rsp_write) & sb_bus_rsp_error & dbg_bus_clk_en; data0_reg_wren2 = dbg_state_en & ~sb_abmem_cmd_write & ~dbg_sb_bus_error; end CMD_DONE: begin dbg_nxtstate = HALTED; dbg_state_en = 1'b1; abstractcs_busy_wren = dbg_state_en; // remove the busy bit from the abstracts ( bit 12 ) abstractcs_busy_din = 1'b0; sb_abmem_cmd_done_in = 1'b0; sb_abmem_data_done_in= 1'b0; sb_abmem_cmd_done_en = 1'b1; sb_abmem_data_done_en= 1'b1; end RESUMING : begin dbg_nxtstate = IDLE; dbg_state_en = dmstatus_reg[17]; // resume ack has been updated in the dmstatus register end default : begin dbg_nxtstate = IDLE; dbg_state_en = 1'b0; abstractcs_busy_wren = 1'b0; abstractcs_busy_din = 1'b0; dbg_halt_req = 1'b0; // single pulse output to the core dbg_resume_req = 1'b0; // single pulse output to the core dbg_sb_bus_error = 1'b0; data0_reg_wren2 = 1'b0; sb_abmem_cmd_done_in = 1'b0; sb_abmem_data_done_in = 1'b0; sb_abmem_cmd_done_en = 1'b0; sb_abmem_data_done_en = 1'b0; end endcase end // always_comb begin assign dmi_reg_rdata_din[31:0] = ({32{dmi_reg_addr == 7'h4}} & data0_reg[31:0]) | ({32{dmi_reg_addr == 7'h5}} & data1_reg[31:0]) | ({32{dmi_reg_addr == 7'h10}} & {2'b0,dmcontrol_reg[29],1'b0,dmcontrol_reg[27:0]}) | // Read0 to Write only bits ({32{dmi_reg_addr == 7'h11}} & dmstatus_reg[31:0]) | ({32{dmi_reg_addr == 7'h16}} & abstractcs_reg[31:0]) | ({32{dmi_reg_addr == 7'h17}} & command_reg[31:0]) | ({32{dmi_reg_addr == 7'h18}} & {30'h0,abstractauto_reg[1:0]}) | ({32{dmi_reg_addr == 7'h40}} & haltsum0_reg[31:0]) | ({32{dmi_reg_addr == 7'h38}} & sbcs_reg[31:0]) | ({32{dmi_reg_addr == 7'h39}} & sbaddress0_reg[31:0]) | ({32{dmi_reg_addr == 7'h3c}} & sbdata0_reg[31:0]) | ({32{dmi_reg_addr == 7'h3d}} & sbdata1_reg[31:0]); rvdffs #($bits(state_t)) dbg_state_reg (.din(dbg_nxtstate), .dout({dbg_state}), .en(dbg_state_en), .rst_l(dbg_dm_rst_l & rst_l), .clk(dbg_free_clk)); rvdffe #(32) dmi_rddata_reg (.din(dmi_reg_rdata_din[31:0]), .dout(dmi_reg_rdata[31:0]), .en(dmi_reg_en), .rst_l(dbg_dm_rst_l), .clk(clk), .*); assign abmem_addr[31:0] = data1_reg[31:0]; assign abmem_addr_core_local = (abmem_addr_in_dccm_region | abmem_addr_in_iccm_region | abmem_addr_in_pic_region); assign abmem_addr_external = ~abmem_addr_core_local; assign abmem_addr_in_dccm_region = (abmem_addr[31:28] == pt.DCCM_REGION) & pt.DCCM_ENABLE; assign abmem_addr_in_iccm_region = (abmem_addr[31:28] == pt.ICCM_REGION) & pt.ICCM_ENABLE; assign abmem_addr_in_pic_region = (abmem_addr[31:28] == pt.PIC_REGION); // interface for the core assign dbg_cmd_addr[31:0] = (command_reg[31:24] == 8'h2) ? data1_reg[31:0] : {20'b0, command_reg[11:0]}; assign dbg_cmd_wrdata[31:0] = data0_reg[31:0]; assign dbg_cmd_valid = (dbg_state == CORE_CMD_START) & ~((|abstractcs_reg[10:8]) | ((command_reg[31:24] == 8'h0) & ~command_reg[17]) | ((command_reg[31:24] == 8'h2) & abmem_addr_external)) & dma_dbg_ready; assign dbg_cmd_write = command_reg[16]; assign dbg_cmd_type[1:0] = (command_reg[31:24] == 8'h2) ? 2'b10 : {1'b0, (command_reg[15:12] == 4'b0)}; assign dbg_cmd_size[1:0] = command_reg[21:20]; assign dbg_cmd_addr_incr[3:0] = (command_reg[31:24] == 8'h2) ? (4'h1 << sb_abmem_cmd_size[1:0]) : 4'h1; assign dbg_cmd_curr_addr[31:0] = (command_reg[31:24] == 8'h2) ? data1_reg[31:0] : {16'b0, command_reg[15:0]}; assign dbg_cmd_next_addr[31:0] = dbg_cmd_curr_addr[31:0] + {28'h0,dbg_cmd_addr_incr[3:0]}; // Ask DMA to stop taking bus trxns since debug request is done assign dbg_dma_bubble = ((dbg_state == CORE_CMD_START) & ~(|abstractcs_reg[10:8])) | (dbg_state == CORE_CMD_WAIT); assign sb_cmd_pending = (sb_state == CMD_RD) | (sb_state == CMD_WR) | (sb_state == CMD_WR_ADDR) | (sb_state == CMD_WR_DATA) | (sb_state == RSP_RD) | (sb_state == RSP_WR); assign sb_abmem_cmd_pending = (dbg_state == SB_CMD_START) | (dbg_state == SB_CMD_SEND) | (dbg_state== SB_CMD_RESP); // system bus FSM always_comb begin sb_nxtstate = SBIDLE; sb_state_en = 1'b0; sbcs_sbbusy_wren = 1'b0; sbcs_sbbusy_din = 1'b0; sbcs_sberror_wren = 1'b0; sbcs_sberror_din[2:0] = 3'b0; sbaddress0_reg_wren1 = 1'b0; case (sb_state) SBIDLE: begin sb_nxtstate = sbdata0wr_access ? WAIT_WR : WAIT_RD; sb_state_en = (sbdata0wr_access | sbreadondata_access | sbreadonaddr_access) & ~(|sbcs_reg[14:12]) & ~sbcs_reg[22]; sbcs_sbbusy_wren = sb_state_en; // set the single read bit if it is a singlread command sbcs_sbbusy_din = 1'b1; sbcs_sberror_wren = sbcs_wren & (|dmi_reg_wdata[14:12]); // write to clear the error bits sbcs_sberror_din[2:0] = ~dmi_reg_wdata[14:12] & sbcs_reg[14:12]; end WAIT_RD: begin sb_nxtstate = (sbcs_unaligned | sbcs_illegal_size) ? DONE : CMD_RD; sb_state_en = (dbg_bus_clk_en & ~sb_abmem_cmd_pending) | sbcs_unaligned | sbcs_illegal_size; sbcs_sberror_wren = sbcs_unaligned | sbcs_illegal_size; sbcs_sberror_din[2:0] = sbcs_unaligned ? 3'b011 : 3'b100; end WAIT_WR: begin sb_nxtstate = (sbcs_unaligned | sbcs_illegal_size) ? DONE : CMD_WR; sb_state_en = (dbg_bus_clk_en & ~sb_abmem_cmd_pending) | sbcs_unaligned | sbcs_illegal_size; sbcs_sberror_wren = sbcs_unaligned | sbcs_illegal_size; sbcs_sberror_din[2:0] = sbcs_unaligned ? 3'b011 : 3'b100; end CMD_RD : begin sb_nxtstate = RSP_RD; sb_state_en = sb_bus_cmd_read & dbg_bus_clk_en; end CMD_WR : begin sb_nxtstate = (sb_bus_cmd_write_addr & sb_bus_cmd_write_data) ? RSP_WR : (sb_bus_cmd_write_data ? CMD_WR_ADDR : CMD_WR_DATA); sb_state_en = (sb_bus_cmd_write_addr | sb_bus_cmd_write_data) & dbg_bus_clk_en; end CMD_WR_ADDR : begin sb_nxtstate = RSP_WR; sb_state_en = sb_bus_cmd_write_addr & dbg_bus_clk_en; end CMD_WR_DATA : begin sb_nxtstate = RSP_WR; sb_state_en = sb_bus_cmd_write_data & dbg_bus_clk_en; end RSP_RD: begin sb_nxtstate = DONE; sb_state_en = sb_bus_rsp_read & dbg_bus_clk_en; sbcs_sberror_wren = sb_state_en & sb_bus_rsp_error; sbcs_sberror_din[2:0] = 3'b010; end RSP_WR: begin sb_nxtstate = DONE; sb_state_en = sb_bus_rsp_write & dbg_bus_clk_en; sbcs_sberror_wren = sb_state_en & sb_bus_rsp_error; sbcs_sberror_din[2:0] = 3'b010; end DONE: begin sb_nxtstate = SBIDLE; sb_state_en = 1'b1; sbcs_sbbusy_wren = 1'b1; // reset the single read sbcs_sbbusy_din = 1'b0; sbaddress0_reg_wren1 = sbcs_reg[16] & (sbcs_reg[14:12] == 3'b0); // auto increment was set and no error. Update to new address after completing the current command end default : begin sb_nxtstate = SBIDLE; sb_state_en = 1'b0; sbcs_sbbusy_wren = 1'b0; sbcs_sbbusy_din = 1'b0; sbcs_sberror_wren = 1'b0; sbcs_sberror_din[2:0] = 3'b0; sbaddress0_reg_wren1 = 1'b0; end endcase end // always_comb begin rvdffs #($bits(sb_state_t)) sb_state_reg (.din(sb_nxtstate), .dout({sb_state}), .en(sb_state_en), .rst_l(dbg_dm_rst_l), .clk(sb_free_clk)); assign sb_abmem_cmd_write = command_reg[16]; assign sb_abmem_cmd_size[2:0] = {1'b0, command_reg[21:20]}; assign sb_abmem_cmd_addr[31:0] = abmem_addr[31:0]; assign sb_abmem_cmd_wdata[31:0] = data0_reg[31:0]; assign sb_cmd_size[2:0] = sbcs_reg[19:17]; assign sb_cmd_wdata[63:0] = {sbdata1_reg[31:0], sbdata0_reg[31:0]}; assign sb_cmd_addr[31:0] = sbaddress0_reg[31:0]; assign sb_abmem_cmd_awvalid = (dbg_state == SB_CMD_SEND) & sb_abmem_cmd_write & ~sb_abmem_cmd_done; assign sb_abmem_cmd_wvalid = (dbg_state == SB_CMD_SEND) & sb_abmem_cmd_write & ~sb_abmem_data_done; assign sb_abmem_cmd_arvalid = (dbg_state == SB_CMD_SEND) & ~sb_abmem_cmd_write & ~sb_abmem_cmd_done & ~sb_abmem_data_done; assign sb_abmem_read_pend = (dbg_state == SB_CMD_RESP) & ~sb_abmem_cmd_write; assign sb_cmd_awvalid = ((sb_state == CMD_WR) | (sb_state == CMD_WR_ADDR)); assign sb_cmd_wvalid = ((sb_state == CMD_WR) | (sb_state == CMD_WR_DATA)); assign sb_cmd_arvalid = (sb_state == CMD_RD); assign sb_read_pend = (sb_state == RSP_RD); assign sb_axi_size[2:0] = (sb_abmem_cmd_awvalid | sb_abmem_cmd_wvalid | sb_abmem_cmd_arvalid | sb_abmem_read_pend) ? sb_abmem_cmd_size[2:0] : sb_cmd_size[2:0]; assign sb_axi_addr[31:0] = (sb_abmem_cmd_awvalid | sb_abmem_cmd_wvalid | sb_abmem_cmd_arvalid | sb_abmem_read_pend) ? sb_abmem_cmd_addr[31:0] : sb_cmd_addr[31:0]; assign sb_axi_wrdata[63:0] = (sb_abmem_cmd_awvalid | sb_abmem_cmd_wvalid) ? {2{sb_abmem_cmd_wdata[31:0]}} : sb_cmd_wdata[63:0]; // Generic bus response signals assign sb_bus_cmd_read = sb_axi_arvalid & sb_axi_arready; assign sb_bus_cmd_write_addr = sb_axi_awvalid & sb_axi_awready; assign sb_bus_cmd_write_data = sb_axi_wvalid & sb_axi_wready; assign sb_bus_rsp_read = sb_axi_rvalid & sb_axi_rready; assign sb_bus_rsp_write = sb_axi_bvalid & sb_axi_bready; assign sb_bus_rsp_error = (sb_bus_rsp_read & (|(sb_axi_rresp[1:0]))) | (sb_bus_rsp_write & (|(sb_axi_bresp[1:0]))); // AXI Request signals assign sb_axi_awvalid = sb_abmem_cmd_awvalid | sb_cmd_awvalid; assign sb_axi_awaddr[31:0] = sb_axi_addr[31:0]; assign sb_axi_awid[pt.SB_BUS_TAG-1:0] = '0; assign sb_axi_awsize[2:0] = sb_axi_size[2:0]; assign sb_axi_awprot[2:0] = 3'b001; assign sb_axi_awcache[3:0] = 4'b1111; assign sb_axi_awregion[3:0] = sb_axi_addr[31:28]; assign sb_axi_awlen[7:0] = '0; assign sb_axi_awburst[1:0] = 2'b01; assign sb_axi_awqos[3:0] = '0; assign sb_axi_awlock = '0; assign sb_axi_wvalid = sb_abmem_cmd_wvalid | sb_cmd_wvalid; assign sb_axi_wdata[63:0] = ({64{(sb_axi_size[2:0] == 3'h0)}} & {8{sb_axi_wrdata[7:0]}}) | ({64{(sb_axi_size[2:0] == 3'h1)}} & {4{sb_axi_wrdata[15:0]}}) | ({64{(sb_axi_size[2:0] == 3'h2)}} & {2{sb_axi_wrdata[31:0]}}) | ({64{(sb_axi_size[2:0] == 3'h3)}} & {sb_axi_wrdata[63:0]}); assign sb_axi_wstrb[7:0] = ({8{(sb_axi_size[2:0] == 3'h0)}} & (8'h1 << sb_axi_addr[2:0])) | ({8{(sb_axi_size[2:0] == 3'h1)}} & (8'h3 << {sb_axi_addr[2:1],1'b0})) | ({8{(sb_axi_size[2:0] == 3'h2)}} & (8'hf << {sb_axi_addr[2],2'b0})) | ({8{(sb_axi_size[2:0] == 3'h3)}} & 8'hff); assign sb_axi_wlast = '1; assign sb_axi_arvalid = sb_abmem_cmd_arvalid | sb_cmd_arvalid; assign sb_axi_araddr[31:0] = sb_axi_addr[31:0]; assign sb_axi_arid[pt.SB_BUS_TAG-1:0] = '0; assign sb_axi_arsize[2:0] = sb_axi_size[2:0]; assign sb_axi_arprot[2:0] = 3'b001; assign sb_axi_arcache[3:0] = 4'b0; assign sb_axi_arregion[3:0] = sb_axi_addr[31:28]; assign sb_axi_arlen[7:0] = '0; assign sb_axi_arburst[1:0] = 2'b01; assign sb_axi_arqos[3:0] = '0; assign sb_axi_arlock = '0; // AXI Response signals assign sb_axi_bready = 1'b1; assign sb_axi_rready = 1'b1; assign sb_bus_rdata[63:0] = ({64{sb_axi_size == 3'h0}} & ((sb_axi_rdata[63:0] >> 8*sb_axi_addr[2:0]) & 64'hff)) | ({64{sb_axi_size == 3'h1}} & ((sb_axi_rdata[63:0] >> 16*sb_axi_addr[2:1]) & 64'hffff)) | ({64{sb_axi_size == 3'h2}} & ((sb_axi_rdata[63:0] >> 32*sb_axi_addr[2]) & 64'hffff_ffff)) | ({64{sb_axi_size == 3'h3}} & sb_axi_rdata[63:0]); `ifdef RV_ASSERT_ON // assertion. // when the resume_ack is asserted then the dec_tlu_dbg_halted should be 0 dm_check_resume_and_halted: assert property (@(posedge clk) disable iff(~rst_l) (~dec_tlu_resume_ack | ~dec_tlu_dbg_halted)); assert_b2b_haltreq: assert property (@(posedge clk) disable iff (~(rst_l)) (##1 dbg_halt_req |=> ~dbg_halt_req)); // One cycle delay to fix weird issue around reset assert_halt_resume_onehot: assert #0 ($onehot0({dbg_halt_req, dbg_resume_req})); `endif endmodule