Western Digital.

RISC-V SweRV™ EL2
Programmer's Reference Manual

Revision 1.2

March 29, 2020

Copyright © 2020 Western Digital Corporation or its affiliates
Licensed under Apache-2.0

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

SPDX-License-ldentifier: Apache-2.0
Copyright © 2020 Western Digital Corporation or its affiliates.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS I1S" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 ii

http://www.apache.org/licenses/LICENSE-2.0

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Document Revision History

Revision

Date

Contents

1.0

Jan 23, 2020

Initial revision

11

Mar 4, 2020

¢ Added note that mscause values are subject to change (Section 2.8.5)

e Added note that uninitialized DCCM may cause loads to get incorrect data (Section
3.4)

e Added Debug Module reset description (Section 13.3.2)
e Updated port list (Table 14-1):
¢ Added dbg rst 1 signal
¢ Added footnote clarifying trace port signals
¢ Fixed width of trace rv_i interrupt ip bus
o Added ‘Compliance Test Suite Failures’ chapter (Chapter 16)

1.2

Mar 29, 2020

¢ Fixed note how writing illegal value to mrac register is handled by hardware
(Section 2.8.1)

e Removed note that mscause values are subject to change (Section 2.8.5)

e Updated mscause values (Table 2-10)

¢ Added Internal Timers chapter and references throughout document (Chapter 4)
e Incremented mimpid register value from ‘1’ to ‘2’ (Table 11-1)

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 iii

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Table of Contents

1 SWERV EL2 COIE OVEIVIEWeiiiitiieiiiiiee et e sttt e e et e e sttt e ettt e e st e e s st e e e s b et e e e ab et e e anne e e e e s be e e e sr e e e e snnn e e e ansreeennnes 1
O O LU (=T PP PR PPPR 1
A O] (= @1o] 1 1] o1 [PP EEPT TP 1
1.3 FUNCHONAI BIOCKS.......ciiuiiiiiiiiiiee ittt ettt b ekt b et bt b et bt e be e e ket e bt e sbe e e br e e nineenene s 2

TR 70 o (TP UP PP 2

1.4 Standard Extensions

2 Memory Map

A R Yo [0 | (=TS o (=T o (o] PRSP UPPPRN 4
2.2 ACCESS PrOPEITIESeeeiii ettt ettt e e et e e et e e e R et e ek R et e e e R et e e s R n e e e e Rt e e e r e e e nnr e e e e anr e e e nan 4
ARG T Y 1=T 0 o o] oA I 1= PP P PP OPPPPRPPRRIN 4
P2 T R Ofo | (=3 oo | O O T T TSSO P PP PP PP UPPRTPRPIN 4
2.3.2 ACCESSEA VIA SYSEM BUSeeiieiiiiiieeiiiieeeitiie e ettt e st e e st eee e s st e e e satteeeaateeeeasteeeeaseeeesneeeeesnbaeeesanneeeeannees 4
PG TR T /= T o] o] 1o T (=] 4 (o 1 SO 5
2.4 MeMOIY TYPE ACCESS PrOPEITIESveiiiiieieeiiitite e ittt e e ettt e e sttt e e sttt e e s eteeeeastteeeeaneteeesnaeeeaasbeeeeanseeeesanseeesanteeeesnns 5
2.5 MEMOIY ACCESS OFUEIING ...eeeiititeiititee ittt e e ettt e et e st e e et et e e e s ee e e e s b et e ek b et e e asbe e e e s nae e e e asbb e e e aabeeeesnnreeeeanbreeenan 5
251 Load-to-Load and Store-t0-Store OFAEIINGccvriiiiiriieiiieee ettt e et e s 5
252 (o T=To A (o] (=N @ (o [=T oo O T PO PP O PP PPPPPTPP 5
253 =T 0 Tod oo PP PP PP PO PP PPPPPTPPN 6
2.5 4 IMPreCiSE DAtA BUS EFTOIS.ciiiiiiiiieiiiie e eittie et e e et e sttt e e e sttt e e sttt e e s st e e e ssbee e e sttt e e sneeeeeanbbeeesanneeeennnes 6
P I Y 1= o o o] YA = (0] (=Tox 1T] o FO PP PPP U POPPPPPPPRTIN 6

2.7 Exception Handling

27.1 Imprecise Bus Error Non-Maskable Interrupt

2.7.2 Correctable Error LOCAl INTEITUPL ..ottt e e ettt e e e e e e st e e e e e e s nbnreeeaeeeean 7
2.7.3 Rules for Core-LoCal MEMOIY ACCESSES.......uuuiiiiiiiiiiiiieeiiieee e st e st e st e e et e e st e s e e s sb e e s anne e e s annees 7
2.7.4 Core-Local / D-BUS ACCESS PrediClioNcuviiiiiiiie ittt 8
275 UNMEAPPET AGUIESSES ...ttt ettt e bt s et e ettt e e et et e e e b e e e e e ek b et e e et et e e s bb e e e e anbr e e e annneeesnneee s 8
2.7.6 MISAIIGNEA ACCESSESeeieiiieie ittt ettt e et e e e bt e et et e e s b e e e ek bt e e aa b et e e e bb e e e e anbr e e e nanneeesnneee s 9
2.7.7 UNCOITECTADIE ECC EITOIS .. .uiiiiiiiii ittt ettt e e s e s e e e st e nenes 10
2.7.8 Correctable ECC/PANLY EITOIS.... .o ittt e e e et e e e e e e e bb e e e e e e s e ananeeeeeas 11
2.8 CONMIOI/SEAUS REGISIEIS ...ttt e ettt e e e oo e e bbbttt e e e e e e s aa bbbt e e e e e s e annbbbeeeaeeeaannnbneeeaeeeaannnnes 12
28.1 Region Access CoNtrol REGISLEr (IMIAC).......ciiiuuriieiie ettt e ettt e e e e e et e e e e e e s aebaeeeeaaeaean 12
28.2 Memory Synchronization Trigger Register (AMSL)........oooiiiiiiiiiieeeiie e 13
283 D-Bus First Error Address Capture RegiSter (MASEAC)........cciiurriiiiiiieriiiiee ittt 13
2.8.4 D-Bus Error Address Unlock RegisSter (MABAU)cocuuiiiiiiiieiiiiie ettt 14
2.8.,5 Machine Secondary Cause RegiSter (MSCAUSE)cciuurtiiiurieiiiiieeaitieee et e e stre e e st e s sire e e s nibeeeeabneeenaes 14
A B Y 1= 0 o] YA e (o [ST S Y = T o ST PUTT R UUPPPPPUPTN: 17

2.10 Behavior of Loads to Side-Effect Addresses
2.11 e (= LYY (TP OPRSRRPIN

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 iv

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

2.12 SPECUIALIVE BUS ACCESSESeeeeiiiiieiiteie e ittt e ettt e et e st e e et et e s s et e e s bt e e e bee e e e aab et e e sabn e e e e anne e e e nanneeennreee s 18
2121 10 ES] 10 ox o] S TP PPPPRPT 18
2.12.2 DAL .o 18

2.13 DIMA SIAVE POMT.....eiitiiititeitet ettt ettt ettt b e bbbt s bt e b bt s b bt e b bt e e ket e bt e e ket e be e e e b et e bt e e as 18
2.13.1 AACCESS ...ttt et e e e e e 18
2.13.2 WIite AlIGNMENT RUIES e e e e e e e e st e e e e e s e et e e e e e e s eeaaereeeas 18
2.13.3 (0 18113V o] S T=T AV, (o] TP UR PP PPPPRPR 18
2.134 Ordering Of COre and DMA ACCESSEScceiiiiiiiiieie et ee e e e e e e ettt e e e e e e s etaeteaaeeaaastaeeeeaeeasansnseeeeaaaeaan 19

2.14 RS S (o Fo = TaTo AN =Tl (o] PSR 19

2.15 Non-Maskable Interrupt (NMI) Signal and VECIOTuviiiiiiiiiiiieeie et 19

2.16 SOTIWANE INTEITUDES ...ttt e ekt e e st e e s e e e e s e et e e sn et e e s ann e e e s anne e e e nnnneeennnneeenn 19

I |V =T 4 g To T YA =ty (o] g (0] (= Tox 110) P STPPR 21
I A € 1T 1= o= T B 1ol] o] (o I PRSP 21

00 00t R - 1 7/ PP STSRPPTRRN
3.1.2 Error Correcting Code (ECC)

3.2 Selecting the Proper Error Prot@CHON LEVEL........cccuiiiiiiiie ettt 22

3.3 MEMOIY HIBIAICRY ...ttt et e e e bt e e st e e e s bt e e ebb e e e s nanr e e e s nneee s 23

3.4 Error Detection and HanGING.......coouiiioiiiiee ettt et e st e e 23

3.5 Core Error Counter/ThreShold REQISTEISvviiiiiiiieiitiee ettt e e s 25
3.5.1 I-Cache Error Counter/Threshold Register (IMICECL)........coiiuuiiiiiiiie e e e 26
3.5.2 ICCM Correctable Error Counter/Threshold Register (MiCCMEC).........coveuiiiiiiiireiiiiee e 26
3,53 DCCM Correctable Error Counter/Threshold Register (MACCMECL)........coovuuviiiiiiiiiiiiiiiiieieeeiiieeeee e 27

N [0 1€=T 0 T= LI 10 =T € PP PPPR 28
4.1 FRAIUIES. ...ttt ettt e oottt e oo e e e et e e e e e et e e e e e e et e e e e e e e e e e e e e e e e n e rreeeeee s 28
o 0 1= ox] o] 1o o TP PP PP R PPPPR 28
4.3 Internal TIMer LOCAI INTEITUDLSeeiiiiiiieiitie ettt ettt e e bt e e e e e s b e e e e et e e e enre e e s nnnes 28
4.4 CONIOI/STAIUS REGISTEIS ... eeeiiiiiiie ettt e et e et e e s b e e e ekt et e e aab e e e e s nb e e e e asb e e e e anbneeennnes 29

441 Internal Timer Counter 0/ 1 Register (MItCNTO/L).......coiiiuiiiiiiee et e e 29
442 Internal Timer Bound 0 / 1 Register (Mith0/L1)ccoiiiiiiiiieiie e 29
443 Internal Timer Control 0 / 1 Register (mitctl0/1)

5 Power Management and Multi-Core Debug CONIOLoiiiiiiiiiiiiie e e e e e
5.1 FBAIUIES ... 31
5.2 COre CONIOl INEEITACESeeiiiiiiie ettt et et e e ettt e e s et e e s sb e e e ebbr e e e nnbn e e e anbneee s 31

521 POWET MaNAGEIMENL........coiiiiiiiie i 31
5.2.2 MUIt-COre DEDUQG CONLIOLcoiiiiiieiiiie et a e e et e e st e e snae e e 31

5.3 POWET SEALES ...oiiiiiiiiiei oottt et e e et e e e e e e et e e e e e e et e e e e e e e e e e e e e e nnrn 31

5.4 POWET CONIIONeiiiiiieii ittt ettt e e e e e e st e e ettt e e et e e e s R e et e et et e e amre e e e ssne e e e asne e e e nanneeennreee s 35
54.1 [D1=T o0 Lo 1Y [oTo L= TP UU TR PPRPP 35
5.4.2 Core Power and Multi-Core Debug Control and Status Signalsccoeeeiiiiiiiiiieieee e 36
5.4.3 [D1=T o0 o IS ot =Y o F= 14 o TP UUT R TUOPPPRPP 42

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 s

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

5.4.4 COre WaKe-UpP EVENTSooiiiiiiiiiiiie ettt ettt e e s b e e ettt e e s e e e s s ne e e e annneeennns 43
5.45 Core Firmware-INitiated HAIt............oooiiiiiiiee e e e e 43
5.4.6 DMA Operations WhHiIle HAILEA ...ttt e e e e ettt e e e e e e s e e eeaae e an 43
5.4.7 External Interrupts While Haltedoooeiiiiiii et e e e e e eabrre e e e e 43
5.5 CONIOI/SIAtUS REQISIEIS ...ttt e e e e e ettt e e e e e e e s baa et e eaeessasbreeeaaesessassaaeeaaesaannnres 44
55.1 Power Management Control RegIStEr (IMPMIC)uiiiiiiiiiiiiiei e e e e e s e e e e s eeabrreeaeeeean 44
5.5.2 Core Pause Control REGISIEr (IMCPC)uuiriiieeeeiiiiiiiee ettt e e e e e e e e e e st e e e e e e s et baa e e e e e e s e nnnnraeeeas 44
553 Forced Debug Halt Threshold Register (MFANT)ooooiiiiiiiii e 45
5.5.4 Forced Debug Halt Status Register (MANS)ooviiiiiiie e 45
(ST o (=T F= U 1 (=] £ 10T o€ PP UPRPR a7
B.1 FRAIUIES.ottt e e oo e e e e e e e e e e e e — e et e e e e e n e et e e e e e e e e e e e e e e e a i neeaeeeaaannne 47
(S22 =TT To [@] 1T o 1o o PRSP 47
6.2.1 Unit, Signal, and ReQiStEr NAMINGcuutitiiiiieiiiiee e et e e seee e ee e e sttt e e s enteeeesteeeeasnteeeeaseeeessreeeasneeeeeanns 47
6.2.2 AdAreSS Map NAIMNGceiieiieiiie it e ettt e e et e e s sttt e e s taeeeaatteeeaanteeeesnseeeeaasteeeeanteeesanseeeeansneeennns
6.3 Overview of Major Functional Units
6.3.1 EXIEIrNAI INTEITUDE SOUICEeeiiiiitiee ettt ettt e e st e e e bt e e s e e e e s bb e e e anne e e e nnnes 47
6.3.2 GALEWAYeeieeeieee e ettt ettt e oot e e e e e e e e e et e e e e e e e e et e et e e et e e e e e e e e e e e e e e n e eeas 47
6.3.3 Pl GO e 48
6.3.4 a1 (=T (U] o B 1=V = OO U PP UPTP PRI 48
[0 = (O =] Yo [I = Vo [4 o PRSP 48
(SRS B T=To) VAo 1 @] o 1] - L1 o) o PRSP 51
6.5.1 INITALIZATION ... e e e 51
6.5.2 yCTo (U1 F= T @) o T=T = 1o o TP RPT R TUOTPPPPPP 51
6.6 Support for Vectored EXErNAl INTEITUPLS.uviiiiiiie ittt e e st s e e e nneee s 52
6.6.1 FaSt INTEITUPE REAITECT ..ottt e e bt e s e e et e e s e e e 53
(SR A (01 0=T1 40T o1 A @1 P o 1T o Vo IR ST T PP OPPPPPPPP 54
(oS I [0 10=T1 40T o A N [=21 1] T T PP TP T PP OPPPPPTPP 54
6.9 PErfOrMANCE TANGELSeeiiiiiiiiiiei ettt e e oottt e e e e e bbb ettt e e e e e aabbb et e e e e e aannbbe et e e eeeaanbbbeeeaeeeaannnens 55
6.10 [07e] 01T [0 =1 o 11 12T PP T OOPPPPPPP 55
6.10.1 RUIBS ...ttt et e st e e ettt e e e
6.10.2 Build Arguments
6.10.3 IMPACt ON GENETALEA COUEec ittt et e e st e e et e e e nne e e e s nneee s 55
6.11 PIC CONrOI/SLAtUS REGISIEISeiiiiieieiitiee ettt et e e s b e e ettt e e aabe e e e e bbe e s anbr e e s nanees 56
6.11.1 PIC Configuration Register (MPICCTQ)cueiruriiiiiiiei ittt e s 56
6.11.2 External Interrupt Priority Level Registers (MeiplS).......ccoouiiiiiiiiiiiiiiieiiiee et 57
6.11.3 External Interrupt Pending RegisSters (MEIPX)uuiiiuriieiiiiieiieie ettt 57
6.11.4 External Interrupt Enable RegiSters (MEIES).........uuiiii i e e 58
6.11.5 External Interrupt Priority Threshold Register (Meipt)uueeeiiiiiiiiiiee e 58
6.11.6 External Interrupt Vector Table RegiSter (MEIVL)ooi i 58
6.11.7 External Interrupt Handler Address Pointer Register (meihap)c..eeeeiiiiiiiii e 59

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 Vi

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

6.11.8 External Interrupt Claim 1D / Priority Level Capture Trigger Register (meicpet)cccovcvvveivveveeiinneenn. 59
6.11.9 External Interrupt Claim ID’s Priority Level Register (MeiCidpl).......cceveiviiiiiniieiiiee e 60
6.11.10 External Interrupt Current Priority Level Register (MeiCUrpl)ccuueeiiiieiiiiiiiiee e 60
6.11.11 External Interrupt Gateway Configuration Registers (MeigwctrlS)cccoevvvviieeiieiiiiiiieee e, 61
6.11.12 External Interrupt Gateway Clear Registers (MeIgWCIrS)cooviiiiiiiiiie e 61
6.12 | (O O3] Ao [0 (=T 1Y = o TSP EUPR 61
6.13 PIC Memory-mapped Register AAAreSS Mapcoccuviiiiie ittt e e e s e s e e e e s e enaeaeee s 62
6.14 Interrupt Enable/Disable Code SAMPIESccuviiiiiiie e 63
6.14.1 EXamPIe INTEITUPT FIOWSttt et e e ettt e e e e e ettt e e e e e e e sant b e e e e e e e eannneeneeas 63
6.14.2 EXAMPIE INTEITUPE MAICTOSveee ettt ettt st e st e e e e e s st e e s e e e nneee s 63
A S=Tq (ol gt Eo g Tor= Y [o] 11 (o]] o FU OO UPPPR TP 65
A T =T 18] 113 PP P U PR PU PR 65
A A ©70 a1 1 (0] AS] r= L0 S =T o 1S3 (=] = PRSP 65
7.2.1 Standard RISC-V Registers
AR T ©10 11 31 (= =S O O PP TP PURRP
7.4 Count-IMPAaCtiNG CONUITIONS.......eiiiiiiiieiieie ettt s et e st e e e e bt e s s e e e e asb e e e sanbr e e e saneeeesbreeeas 65
S T =AY =T o £ TP UPP R POPPPPPRPPRO: 66
I O Tod o = o] 11 (o] T OO TSP U PSP PPPPRPPI 69
S T R C T | (U (= T TP TP TP PPPPPPPRPPRO: 69
S T 110] (I 1= Yol o] 1T PRSP 69
S R @7 o] o L= o (U1 o1 oo RSP PTRR 69
8.2.2 ENabling/Disabling [m-CaACKNEcoooiiiiiiei e e e e e e e e e e e e e an 69
8.2.3 DIGQGNOSTIC ACCESS ...eeieeeeeiiittt ettt ettt e e oo ettt e e e e e e a bbb e et e e e e e e ab b b et e e e e e e e anebbe e e e e e e e aanbbbeeeeaeeanan 69
8.3 USE CASES ...iiiiiiieiiiiittee et e ettt e e e e e et e e e e e e et e e e e e R e et e e e e e e e et e e e e e e e e e e eeeaennnn 69
T B 1 =To] oV o | @] o 1= = L1 o] H T T PSP TP T PP OUPPPRPPI 70
8.4.1 Read a Chunk of an I-cache Cache LINEc.eiiiiiiiiiiiee et 70
8.4.2 Write a Chunk of an I-cache Cache LINEoouuiiiiiiiiiiieie et 70
8.4.3 Read or Write @ Full [-cache Cache LiNEc.ooiiiiiiiiii e 70
8.4.4 Read a Tag and Status Information of an I-cache Cache Line ..o 70

8.4.5 Write a Tag and Status Information of an I-cache Cache Line

8.5 |-Cache Control/StatuS REGISTEIScc.uieiiiieiiiiite ettt e ettt e e e e ettt e e e e e s abbe et e e e e e e e nnnbbeeeeaeeeaannens
8.5.1 I-Cache Array/Way/Index Selection Register (QICAWICS).........coiuiieiriiiieiiiiiee et 71
8.5.2 |-Cache Array Data 0 RegiSter (diCAAD)uueiiuiiieiiiie ettt ettt e e e e e sibreeeaaes 72
8.5.3 I-Cache Array Data 0 High Register (diCadORN)ccuuiiiiiiiiiiiiie e 73
8.5.4 |-Cache Array Data 1 RegiSter (AICAAL)uuteiirieeeiiiie ettt e e e e s st e e e nne 73
8.5.5 |-Cache Array GO ReQISIEr (AICAG0). utierureieiitiie ettt e ettt et e e s e e e sibreeenaes 74

1S B o 1 =Y =T o] (= o] o1 (o] ST PPP RPN 76

9.1 CONMIOI/SEAtUS REGISIEIS ... ieeeiiie ettt ettt e ettt e e e e e e s bbbttt e e e e e aa bbb et e e e e e e annbbbeeeaaeeeannbneeeaeeeaannnnes 76
9.1.1 Feature Disable Control Register (MFOAC)ooueeeiiiieee ettt e e e ee e e e 76
9.1.2 Clock Gating Control REGISLEr (IMCGOC)uvrereteeeiiiiteieeee ettt e e e e e ettt e e e e e e s bt be e e e e e e e s asbbseeeaeeesannneeeeeas 77

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 vii

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

10 Standard RISC-V CSRs with Core-Specific AdaptationNS..........oocvviiiiiieiiiiie e 79
10.1.1 Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers.........cccccceeiviiiinneenn. 79
10.1.2 Machine Cause REGISIEr (MCAUSE)uueiieeeeiiiiieiieee e e e ettt e e ae e e s e eeeeeaaaaesaaneereeeaaesaasnnereaeaaeeaannnneneeas 80
10.1.3 Machine Hardware Thread ID Register (mhartid).............cccouveriiiiiiiiiiiiee e 81

11 (0351 2 QAN [0 [1= TSN 1Y =T o J SRR PPRPP 82

11.1 SEANAAIT RISC-V CSRS ...ttt ettt et e et e e et e e e bttt e be e et e e re e e 82
11.2 NON-StANAAITd RISC-V CSRScciiiiitiieiiieit ettt ettt ettt sb ettt e st e et sin e e ntn e naneenaneas 83
12 L1 =Ty B o] = o] (1= PRSP 85
13 (O3 o Tod Q= T o I {=T T PP PP PPPR 86
131 FRATUIES ...t e e oot e e e e e e et et e e e e e e et e e e e e e e e e e e e e e e e et e e e e e nnnnee s 86
13.2 (04 oo (] o O EPU PR PPPRPPPR 86
13.2.1 o 101 = TR @ o<1 =i T I PR RR 86
13.2.2 System BuS-t0-COre ClOCK RALIOS.........cuuiieiiiiie ettt e et e e et e e et e e e enee e e e ennes 86

13.2.3 Asynchronous Signals
13.3 RS ..t n e

13.3.1 COre COMPIEX RESEE (ST ..eeeiiiiieeiiiie ettt e e et bt e s e e s b e e e e anbeeeeaae 89
13.3.2 Debug Module ReSEt (ADG_ISEI) ...eveiiiieeiiie e 90
13.3.3 Debugger Initiating Reset via JTAG INEITACEccoouiiiiiiiiie e 20
13.3.4 Core Complex Reset t0 DEDUG MOUEcociiiiiiiiiiiieiiee ettt 20
14 SWERV EL2 COre COMPIEX POt LIST......uiiiiiiiieiiiiie ettt ettt e et e e e sttt e e s e e e anbeeeeeneeeeennnes 91
15 SWERV EL2 COre BUild ArQUMENTSeiiiiiiiiee it eiiie et eiee e e sttt e e et e e e smtte e e s saeeeeansteeeeanseeeesnteeeesnnaeeeesnnes 100
151 Memory Protection BUild AFQUMENTScooiuiiiiieiie ettt e e et e e e e e e s aneb e e ee e e e e annaeee 100
15.1.1 Memory Protection Build Argument RUIESouuiiiiiiiiiieee et 100
15.1.2 Memory Protection BUild ArQUIMENTScciiriiiiiiiie ettt 100
15.2 Core Memory-Related BUild ArgUMENTS.........coiiiiiiiiiie e 100
15.2.1 Core Memories and Memory-Mapped Register Blocks Alignment RUIES............ccccevviiiiiiiieeciiieeen, 100
15.2.2 Memory-Related BUild ATQUIMENTSueiiiiiiieiiiii ettt nee e s 100
16 SweRV EL2 Compliance Test SUILE FailUIESuuiiiiiiiiiiiiiie et e e e e e 102
16.1 [-MISALIGN LD ST 0.ttt ettt ettt s st st s e e s st s s s e s et e e e e s s e e e e e s neeeennennnee
16.2 [-MISALIGN _IMP =01ttt ettt ettt st s e e et s et s et e e et e s e e s e e snnneeeneennes
16.3 I-FENCE.I-01 and fence i
16.4 o] (=T 1o To 1| AT PP O PP PP OPPPPR PRI
17 SWERV EL2 EFTATA ...ttt ettt oottt e e e e ettt e e e e e et e et e e e e e e tbr e e e e e e e e a e nnreeeeeeean 104
17.1 Back-to-back Write Transactions Not Supported on AHB-LIte BUSccccvieiiiiiiiiiiieeiiice e 104

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 viii

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

List of Figures

Figure 1-1 SWERV EL2 COrE COMPIEX...ciiiitiiiiiteeeiaitite sttt stt et e sttt et e e s e e e st bt e e asb et e e s sne e e e s s re e e s annn e e e anneeesasneeeennnes 1
Figure 1-2 SWERV EL2 COre PIPEIINEccooiiiieiiiiie ittt ettt e e e st e s e e st e e s s e e e 2
Figure 3-1 Conceptual Block Diagram — ECC in @ MEMOTY SYSEMuviiiieiiiiiiiiieeee e e secitie e e e e esiee e e e e e e s eivanaeeaa e 22
Figure 5-1 SWERV EL2 COre ACHVILY STALEScciiiiiiiiiie e eiiiiie e ettt e e e e e et e e e e e e et e e e e e s e s et b e e e e e e e s ssaasaraeeeaeeaan 32
Figure 5-2 SweRV EL2 Power and Multi-Core Debug Control and Status Signalsccccceeeviiiiiiiieee e, 36
Figure 5-3 SweRV EL2 Power Control and Status Interface Timing Diagrams............ccoovvuviiieeeiiiiiiiiiiee e

Figure 5-4 SweRV EL2 Multi-Core Debug Control and Status Interface Timing Diagrams

Figure 5-5 SweRV EL2 Breakpoint Indication Timing DIgramsScccocurieiiirieiniiee e sieee e e 42
FIQUre 6-1 PIC BIOCK DIAGIAIMN.ceiiieiiiiieiei e e ettt e e e e ettt e e e e e e s aebee e eae e e s e s eeeeeeeaaeaaannseeeeeaeeeeannsseeeaaeeeaannsnneeaaaaanan 49
Figure 6-2 Gateway for Asynchronous, Level-triggered INterrupt SOUICES........ccoiiiiiiiiiiieiiiiee st e e 50
Figure 6-3 Conceptual Block Diagram of @ Configurable GatEWAaYcoccueeeiiiiieeiiiieesiieee e siie e s e eeeeeseeee e 50
[l To U= G R o)1] oI L= | (o] SR RRRTPR 50
Figure 6-5 Vectored EXIErNAl INTEITUDPESviiiiiiie i itiee ettt e et e e sttt e e e st e e e sttt e e s sseeeeeasteeeesseeeessmneeeeanteeeennns 53
Figure 6-6 Concept of INtErruUPt ChaiNINGcoiuiiiiiiiie e s e st e e e st e e e ebee e e e snbeeeeantneeeanes 54
Figure 13-1 Conceptual Clock, Clock-Enable, and Data Timing RelationShip..........ccovciiiiiiiieiniiiieeiice e 86

Figure 13-2 1:1 System Bus-to-Core Clock Ratio
Figure 13-3 1:2 System Bus-to-Core Clock Ratio
Figure 13-4 1:3 System Bus-to-Core Clock Ratio
Figure 13-5 1:4 System Bus-to-Core Clock Ratio
Figure 13-6 1:5 System Bus-to-Core Clock Ratio
Figure 13-7 1:6 System Bus-to-Core Clock Ratio
Figure 13-8 1:7 System Bus-to-Core Clock Ratio

Figure 13-9 1:8 System Bus-to-Core Clock Ratio
Figure 13-10 Conceptual Clock and Reset Timing RelationShipcoccuviiiiiiiiiiii e 89

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 ¢

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

List of Tables

Table 1-1 SweRV EL2’s RISC-V Standard EXIENSIONScccuviiiiiiiiiiiiiie ettt e e e s 3
Table 2-1 Access Properties for @aCh MemOIY TYPEueiiiii et e e et e e e e e e e e e e e e e e e nnreeeeeas 5
Table 2-2 Handling of UNMapped AGAIESSESciiiiiiiiiiiieie e e ettt e e et e e e e e ettt e e e e s e s et e e e e e e e e s easabareeaeeeseannseaeeeas 8
Table 2-3 Handling Of MiSAlIgNEA ACCESSESuuviiiiiiiiiiiiiee e e e e eeet et e e e e e et e e e e e e s st e e e e e e e e s st b aaeeaeeesaastbareeaeeesaannsereees 9
Table 2-4 Handling of UNCorrectable ECC EITOISuuiiiiie it e ettt e e et e e e e e s ettt e e e e e e s e earar e e e e e e s enanssaeees 10
Table 2-5 Handling of Correctable ECC/PAILY EFTOISccciiiiiiiiiiie ettt e et e e e e e e s e e e e e e e s e naaraeee s
Table 2-6 Region Access Control Register (mrac, at CSR 0x7C0)

Table 2-7 Memory Synchronization Trigger Register (dmst, at CSR OX7C4)ooiiiuiiiiiieee e 13
Table 2-8 D-Bus First Error Address Capture Register (mdseac, at CSR OXFCO)ccovivriiiiiiiieiiiiee e 14
Table 2-9 D-Bus Error Address Unlock Register (mdeau, at CSR OXBCO)cocuviiiiiiieiiiiieeiiieee e 14
Table 2-10 Machine Secondary Cause Register (mscause, at CSR OX7FF)cccuvviiiiiiiiiiiie e 15
Table 2-11 SweRV EL2 Memory Address Map (EXAMPIE)eeieiuuiieiiiiie ettt ettt s e et eesnte e e nnnes 17
Table 2-12 Summary Of NMI mcCause VAIUESc.oouuiiiiiiiieiiie ettt et e e e ettt e e st e e e ente e e e snte e e e nnneas 19
Table 3-1 Memory Hierarchy Components and ProteCHONc.ueiiiuiiieiiiiieeiiiee et 23
Table 3-2 Error Detection, ReCOVEry, and LOGGINGcuueeeiiiiieiiiiiee ittt ettt s e e s snbee e e s e e s nnees 24
Table 3-3 |-Cache Error Counter/Threshold Register (micect, at CSR OX7F0)c.ccvveiiiiiieiiiiiieiiiee et 26
Table 3-4 ICCM Correctable Error Counter/Threshold Register (miccmect, at CSR OX7F1)......c.ccooveeeeiiiieeiiieeennnne. 27
Table 3-5 DCCM Correctable Error Counter/Threshold Register (mdccmect, at CSR OX7F2)coocveeiviieeeiiineennnee. 27
Table 4-1 Internal Timer Counter 0/ 1 Register (mitcnt0/1, at CSR 0X7D2 / OX7D5) ...cccevvieeeiiiiieeiiieee e e 29
Table 4-2 Internal Timer Bound 0 / 1 Register (mitb0/1, at CSR OX7D3 / OX7DB6)ceeeeeeiiiiiiiiiieieeeiiiiiieee e
Table 4-3 Internal Timer Control 0 / 1 Register (mitctl0/1, at CSR 0x7D4 / 0x7D7)

Table 5-1 DeDUQ RESUME REGUESESc.uieiiiitieeeetii ettt ettt e et e e et e e s ab et e e aa bt e e et e e e e s s e e e e et b e e e asbe e e s nnnes 33
TaDIE 5-2 COrE ACHVITY SEALES.....eiiiiiiiieitiie ettt et e e a e e e e bt e e s ab et e e ah bt e e ettt e e s bb e e e e anbr e e e abreeennnes 34
Table 5-3 SweRV EL2 Power Control and Status SIGNAIScocceiiiiiiiieiiiie e 36
Table 5-4 SweRV EL2 Multi-Core Debug Control and Status SigNalS ... 39
Table 5-5 Power Management Control Register (Mpmc, at CSR OX7CB)ccueeriiiiuiiiiiieieiiiiiieee e 44
Table 5-6 Core Pause Control Register (McpcC, at CSR OX7C2)cueiiiiiiiiiiiieie ettt e e e 45
Table 5-7 Forced Debug Halt Threshold Register (mfdht, at CSR OX7CE)ccccoiiiiiiiiiiiieiiiiiieee e 45
Table 5-8 Forced Debug Halt Status Register (mfdhs, at CSR OX7CR)c.vvviiiiiiiieiieie e 46
Table 6-1 PIC Configuration Register (mpiccfg, at PIC_base_addr+0x3000)cceeeirurieeririeenniieeenireeeseeeee e 57
Table 6-2 External Interrupt Priority Level Register S=1..255 (meiplS, at PIC_base_addr+S*4)ccccevvvvivennnnen. 57
Table 6-3 External Interrupt Pending Register X=0..7 (meipX, at PIC_base_addr+0x1000+X*4)...........cccceervvvrernnnnn. 57
Table 6-4 External Interrupt Enable Register S=1..255 (meieS, at PIC_base_addr+0x2000+S*4)........cccccceevvnurvnnenn. 58
Table 6-5 External Interrupt Priority Threshold Register (meipt, at CSR OXBCO)........couiiiiiiiiiiiiiieeiiiiiieeee e 58
Table 6-6 External Interrupt Vector Table Register (meivt, at CSR OXBC8)cooiiiiiiiiiiiiiiiiiiiiee e
Table 6-7 External Interrupt Handler Address Pointer Register (meihap, at CSR 0xFC8)

Table 6-8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct, at CSR 0xBCA)................. 60
Table 6-9 External Interrupt Claim ID’s Priority Level Register (meicidpl, at CSR OXBCB)ccovvvieiiiiiieeiiiieenee, 60

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 X

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Table 6-10 External Interrupt Current Priority Level Register (meicurpl, at CSR OXBCC)cccovveviieeeiiirieeeniieeenne 60
Table 6-11 External Interrupt Gateway Configuration Register S=1..255 (meigwctrlS, at

PIC_base_addr+OXA0004S*)eeeie ettt e ettt e e e e e tte et e e e e e e st beeeeeaaaaaaaseeeeeeeaaeaa e nnebeeeaeeeaaanntbeeeaaeeeaanraeeeaaaaaaan 61
Table 6-12 External Interrupt Gateway Clear Register S=1..255 (meigwclrS, at PIC_base_addr+0x5000+S*4)........ 61
Table 6-13 PIC Non-standard RISC-V CSR AdAreSS Map.......cccuuviiiieiiiiiiiiiiee e ettt e e st e e e e e e s e snare e e e e e e e asnnraeees 61
Table 6-14 PIC Memory-mapped Register AAreSS Map......ccociiiiiiiie ittt et e e e s e st e e e e e s e s aaraeeeas 62
Table 7-1 List Of COUNADIE EVENTScccuiiiiiiiiiiitie et ettt e s s e enne e 66
Table 8-1 |-Cache Array/Way/Index Selection Register (dicawics, at CSR OX7C8)ccccviieririieinireeeiiiee e 71
Table 8-2 |-Cache Array Data 0 Register (dicad0, at CSR OX7C9)cuuvieiiiiiieiiiiie et 72
Table 8-3 I-Cache Array Data 0 High Register (dicadOh, at CSR OX7CC)ueiiieiiiiiiiiiieae e eiiiiieee e 73
Table 8-4 |-Cache Array Data 1 Register (dicadl, at CSR OX7CA) ...coouuiiiiiiiieeiiit et 74
Table 8-5 I-Cache Array Go Register (dicago, at CSR OX7CB).......cciiiiiieiiiiieeeiiii ettt e et e s e 75
Table 9-1 Feature Disable Control Register (mfdc, at CSR OX7F9)oviiiiiiiiiiiiie et 76
Table 9-2 Clock Gating Control Register (Mcgc, at CSR OX7TF8)cciiuiiieiiiiieeiiiie et stie et e e ste e e snaee e ennes 77
Table 10-1 Machine Interrupt Enable Register (mie, at CSR OX304)ciiiiiiiieiiiieeeiiiee e stiee e eitee e et e e sneee e 79
Table 10-2 Machine Interrupt Pending Register (mip, at CSR OX344)ccooouiiiiiiiiieiiiee e 79
Table 10-3 Machine Cause Register (Mcause, at CSR OX342)........uiiiuiiieiiieeeniiie ettt 80
Table 10-4 Machine Hardware Thread ID Register (mhartid, at CSR OXFL4)cooiiiiiiiiiiieeiiiee e 81
Table 11-1 SweRV EL2 Core-Specific Standard RISC-V Machine Information CSRS.........cccccccvveeiiiiiiiiieee e, 82
Table 11-2 SweRV EL2 Standard RISC-V CSR AdAreSS MapPccoeiiuiiieiiiiieeiiieieenieeeesiieeestteeesssaeeessneieeesnnseeesannes 82
Table 11-3 SweRV EL2 Non-Standard RISC-V CSR AdAreSS Map.......cccoiuiieaiiiiieiiiieeesiieeeeiieeessieeeeeseeeessneeeessnnes 83
Table 12-1 SweRV EL2 Platform-specific and Standard RISC-V Interrupt PrioritieS.cccveeeiiieiiniiiiiiceee e 85
Table 13-1 Core Complex ASYNCHIONOUS SIGNAIS..........uuiiiiiiiiiiiii et e e e e e e e s ae s 89
Table 14-1 Core COMPIEX SIGNAUSvviiiiiiieiit ettt e et e e e s et e e aa bt e e et e et e e asbe e e e et b e e e snteeesnnnes 91

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 Xi

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

Reference Documents

3/29/2020

Item # | Document Revision Used Comment
1 The RISC-V Instruction Set Manual | 20190305-Base-Ratification
Volume I: User-Level ISA
2 The RISC-V Instruction Set Manual | 20190405-Priv-MSU-
Volume II: Privileged Architecture Ratification
2 The RISC-V Instruction Set Manual | 1.11-draft Last spec version with PLIC
(PLIC) | volume II: Privileged Architecture December 1, 2018 chapter
3 RISC-V External Debug Support 0.13.2 Spec ratified

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

Xii

https://github.com/riscv/riscv-isa-manual/releases/download/IMFDQC-Ratification-20190305/riscv-spec-imfdqc-ratification-20190305.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/IMFDQC-Ratification-20190305/riscv-spec-imfdqc-ratification-20190305.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-MSU-Ratification-20190405/riscv-privileged-msu-ratification-20190405.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-MSU-Ratification-20190405/riscv-privileged-msu-ratification-20190405.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20181201-5449851/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20181201-5449851/riscv-privileged.pdf
https://riscv.org/specifications/debug-specification/

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Abbreviations
Abbreviation | Description
AHB Advanced High-performance Bus (by ARM®)
AMBA Advanced Microcontroller Bus Architecture (by ARM)
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface (by ARM)
CCM Closely Coupled Memory (= TCM)
CPU Central Processing Unit
CSR Control and Status Register
DCCM Data Closely Coupled Memory (= DTCM)
DEC DECoder unit (part of core)
DMA Direct Memory Access
DTCM Data Tightly Coupled Memory (= DCCM)
ECC Error Correcting Code
EXU EXecution Unit (part of core)
ICCM Instruction Closely Coupled Memory (= ITCM)
IFU Instruction Fetch Unit
ITCM Instruction Tightly Coupled Memory (= ICCM)
JTAG Joint Test Action Group
LSU Load/Store Unit (part of core)
NMI Non-Maskable Interrupt
PIC Programmable Interrupt Controller
PLIC Platform-Level Interrupt Controller
POR Power-On Reset
RAM Random Access Memory
RAS Return Address Stack
ROM Read-Only Memory
SECDED Single-bit Error Correction/Double-bit Error Detection
SEDDED Single-bit Error Detection/Double-bit Error Detection
SoC System on Chip
TBD To Be Determined
TCM Tightly Coupled Memory (= CCM)
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 Xiii

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

1 SweRV EL2 Core Overview

This chapter provides a high-level overview of the SweRV EL2 core and core complex. SweRV EL2 is a machine-
mode (M-mode) only, 32-bit CPU small core which supports RISC-V’s integer (l), compressed instruction (C),
multiplication and division (M) as well as instruction-fetch fence and CSR instructions (Z) extensions, (i.e.,
RV32IMCZicsr_Zifencei). The core contains a 4-stage, scalar, in-order pipeline.

1.1 Features

The SweRV EL2 core complex’s feature set includes:

RV32IMCZicsr_Zifencei-compliant RISC-V core with branch predictor
Optional instruction and data closely-coupled memories with ECC protection (load-to-use latency of 1 cycle
for smaller and 2 cycles for larger memories)

e Optional 2- or 4-way set-associative instruction cache with parity or ECC protection (32- or 64-byte line size)
Optional programmable interrupt controller supporting up to 255 external interrupts
Four system bus interfaces for instruction fetch, data accesses, debug accesses, and external DMA
accesses to closely-coupled memories (configurable as 64-bit AX14 or AHB-Lite)

e Core debug unit compliant with the RISC-V Debug specification [3]
600MHz target frequency (for 16nm technology node)

1.2 Core Complex

Figure 1-1 depicts the core complex and its functional blocks which are described further in Section 1.3.

SweRV EL2 Core Complex
DCCM

ICCM

SweRV EL2 Core — RV32IMC I-Cache

Master

64-bit AXl4 64-bit AX14 64-bit AXl4 64-bit AX14
or or or or
AHB-Lite AHB-Lite AHB-Lite AHB-Lite

Figure 1-1 SweRV EL2 Core Complex

Debug JTAG

IFU Bus Debug Bus B DMA Slave
Master Master Port

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 1 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

1.3 Functional Blocks

The SweRV EL2 core complex’s functional blocks are described in the following sections in more detail.

1.3.1 Core

Figure 1-2 depicts the scalar 4-stage core with one execution pipeline, one load/store pipeline, one multiplier pipeline,
and one out-of-pipeline divider. There are two stall points in the pipeline: ‘Fetch’ and ‘Decode’. The diagram also
shows how SweRV EH1’s logic stages have been shifted up and merged into 4 stages named Fetch (F), Decode (D),
Execute/Memory (X/M), and Retire (R). Also shown is additional logic such as a new branch adder in the D stage.
The branch mispredict penalty is either 1 or 2 cycles in SweRV EL2.

The merged F stage performs the program counter calculation and the I-cache/ICCM memory access in parallel. The
load pipeline has been moved up so that the DC1 memory address generation (AGU) logic is now combined with
align and decode logic to enable a DCCM memory access to start at the beginning of the M stage. The design
supports a load-to-use of 1 cycle for smaller memories and a load-to-use of 2 cycles for larger memories. For 1-cycle
load-to-use, the memory is accessed and the load data aligned and formatted for the register file and forwarding
paths, all in the single-cycle M stage. For 2-cycle load-to-use, almost the entire M stage is allocated to the memory
access, and the DC3/DC4 logic combined into the R stage is used to perform the load align and formatting for the
register file and forwarding paths. EX3 and EX4/WB are combined into the R stage and primarily used for commit
and writeback to update the architectural registers.

Stage

Fetch 1 Stall Point

Stall Point
BR Adder

1

Divide

Multi-
cycle
Out-of-
Pipe

Commit

Writeback

Figure 1-2 SweRV EL2 Core Pipeline

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 2 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

1.4 Standard Extensions
The SweRV EL2 core implements the following RISC-V standard extensions:

Table 1-1 SweRV EL2’s RISC-V Standard Extensions

Extension Description References

M Integer multiplication and division Chapter 7 in [1]
C Compressed instructions Chapter 16 in [1]
Zicsr Control and status register (CSR) instructions | Chapter 9 in [1]
Zifencei Instruction-fetch fence Chapter 3in [1]

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

3/29/2020

3 0of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

2 Memory Map

This chapter describes the memory map as well as the various memories and their properties of the SweRV EL2
core.

2.1 Address Regions

The 32-bit address space is subdivided into sixteen fixed-sized, contiguous 256MB regions. Each region has a set of
access control bits associated with it (see Section 2.8.1).

2.2 Access Properties

Each region has two access properties which can be independently controlled. They are:

e Cacheable: Indicates if this region is allowed to be cached or not.

e Side effect: Indicates if read/write accesses to this region may have side effects (i.e., non-idempotent
accesses which may potentially have side effects on any read/write access; typical for I/O, speculative or
redundant accesses must be avoided) or have no side effects (i.e., idempotent accesses which have no side
effects even if the same access is performed multiple times; typical for memory). Note that stores with
potential side effects (i.e., to non-idempotent addresses) cannot be combined with other stores in the core’s
write buffer.

2.3 Memory Types

There are two different classes of memory types mapped into the core’s 32-bit address range, core local and system
bus attached.

2.3.1 Core Local

23.1.1 ICCMand DCCM

Two dedicated memories, one for instruction and the other for data, are tightly coupled to the core. These memories
provide low-latency access and SECDED ECC protection. Their respective sizes (4, 8, 16, 32, 48%, 64, 128, 256, or
512KB) are set as arguments at build time of the core.

2.3.1.2 Local Memory-mapped Control/Status Registers

To provide control for regular operation, the core requires a number of memory-mapped control/status registers. For
example, some external interrupt functions are controlled and serviced with accesses to various registers while the
system is running.

2.3.2 Accessed via System Bus

2321 System ROMs

The SoC may host ROMs which are mapped to the core’s memory address range and accessed via the system bus.
Both instruction and data accesses are supported to system ROMs.

2.3.22 System SRAMs

The SoC hosts a variety of SRAMs which are mapped to the core’s memory address range and accessed via the
system bus.

2.3.2.3 System Memory-mapped I/O

The SoC hosts a variety of I/O device interfaces which are mapped to the core’s memory address range and
accessed via the system bus.

1 DCCM only

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 4 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

2.3.3 Mapping Restrictions

Core-local memories and system bus-attached memories must be mapped to different regions. Mapping both
classes of memory types to the same region is not allowed.

Furthermore, it is recommended that all core-local memories are mapped to the same region.

2.4 Memory Type Access Properties

Table 2-1 specifies the access properties of each memory type. During system boot, firmware must initialize the
properties of each region based on the memory type present in that region.

Note that some memory-mapped I/O and control/status registers may have no side effects (i.e., are idempotent), but
characterizing all these registers as having potentially side effects (i.e., are non-idempotent) is safe.

Table 2-1 Access Properties for each Memory Type

Memory Type Cacheable Side Effect
Core Local

ICCM No No
DCCM No No
Memory-mapped control/status registers No Yes

Accessed via System Bus

ROMs Yes No
SRAMSs Yes No
I/0s No Yes
Memory-mapped control/status registers No Yes

Note: ‘Cacheable = Yes’ and ‘Side Effect = Yes' is an illegal combination.

2.5 Memory Access Ordering

Loads and stores to system bus-attached memory (i.e., accesses with no side effects, idempotent) and devices (i.e.,
accesses with potential side effects, non-idempotent) pass through a unified read/write buffer. The buffer is
implemented as a FIFO.

2.5.1 Load-to-Load and Store-to-Store Ordering
All loads are sent to the system bus interface in program order. Also, all stores are sent to the system bus interface

in program order.

2.5.2 Load/Store Ordering

25.2.1 Accesses with Potential Side Effects (i.e., Non-ldempotent)

When a load with potential side effects (i.e., non-idempotent) enters the read buffer, the entire write buffer is emptied,
i.e., both stores with no side effects (i.e., idempotent) and with potential side effects (i.e., non-idempotent) are drained
out. Loads with potential side effects (i.e., non-idempotent) are sent out to the system bus with their exact size.

Stores with potential side effects (i.e., non-idempotent) are neither coalesced nor forwarded to a load.

2.5.2.2 Accesses with No Side Effects (i.e., Idempotent)

Loads with no side effects (i.e., idempotent) are always issued as double-words and check the contents of the write
buffer:

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 5 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

1. Full address match (all load bytes present in the write buffer): Data is forwarded from the write buffer. The
load won'’t go out to the system bus.

2. Partial address match (some of the load bytes are in the write buffer): The entire write buffer is emptied,
then the load request goes to the system bus.

3. No match (none of the bytes are in the write buffer): The load is presented to the system bus interface
without waiting for the stores to drain.

2.5.2.3 Ordering of Store — Load with No Side Effects (i.e., Idempotent)
A fence instruction is required to order an older store before a younger load with no side effects (i.e., idempotent).

Note: All memory-mapped register writes must be followed by a fence instruction to enforce ordering and
synchronization.

2.5.3 Fencing

2531 Instructions

The fence. i instruction operates on the instruction memory and/or I-cache. This instruction causes a flush, a flash
invalidation of the I-cache, and a refetch of the next program counter (RFNPC). The refetch is guaranteed to miss
the I-cache. Note that since the fence. i instruction is used to synchronize the instruction and data streams, it also
includes the functionality of the fence instruction (see Section 2.5.3.2).

25.3.2 Data

The fence instruction is implemented conservatively in SweRV EL2 to keep the implementation simple. It always
performs the most conservative fencing, independent of the instruction’s arguments. The fence instruction is pre-
synced to make sure that there are no instructions in the LSU pipe. It stalls until the LSU indicates that the read
buffer has been cleared as well as the store and write buffers have been fully drained (i.e., are empty). The fence
instruction is only committed after all LSU buffers are idle and all outstanding bus transactions are completed.

2.5.4 Imprecise Data Bus Errors

All store errors as well as non-blocking load errors on the system bus are imprecise. The address of the first
occurring imprecise data system bus error is logged and a non-maskable interrupt (NMI) is flagged for the first
reported error only. For stores, if there are other stores in the write buffer behind the store which had the error, these
stores are sent out on the system bus and any error responses are ignored. Similarly, for non-blocking loads, any
error responses on subsequent loads sent out on the system bus are ignored. NMiIs are fatal, architectural state is
lost, and the core needs to be reset. The reset also unlocks the first error address capture register again.

Note: It is possible to unlock the first error address capture register with a write to an unlock register as well (see
Section 2.8.4 for more details), but this may result in unexpected behavior.

2.6 Memory Protection

To eliminate issuing speculative accesses to the IFU and LSU bus interfaces, SweRV EL2 provides a rudimentary
memory protection mechanism for instruction and data accesses outside of the ICCM and DCCM memory regions.
Separate core build arguments for instructions and data are provided to enable and configure up to 8 address
windows each.

An instruction fetch to a non-ICCM region must fall within the address range of at least one instruction access window
for the access to be forwarded to the IFU bus interface. If at least one instruction access window is enabled, non-
speculative fetch requests which are not within the address range of any enabled instruction access window cause a
precise instruction access fault exception. If none of the 8 instruction access windows is enabled, the memory
protection mechanism for instruction accesses is turned off. For the ICCM region, accesses within the ICCM’s
address range are allowed. However, any access not within the ICCM’s address range results in a precise instruction
access fault exception.

Similarly, a load/store access to a non-DCCM or non-PIC memory-mapped control register region must fall within the
address range of at least one data access window for the access to be forwarded to the LSU bus interface. If at least
one data access window is enabled, non-speculative load/store requests which are not within the address range of
any enabled data access window cause a precise load/store address misaligned or access fault exception. If none of
the 8 data access windows is enabled, the memory protection mechanism for data accesses is turned off. For the
DCCM and PIC memory-mapped control register region(s), accesses within the DCCM’s or the PIC memory-mapped

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 6 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

control register’s address range are allowed. However, any access not within the DCCM’s or PIC memory-mapped
control register’s address range results in a precise load/store address misaligned or access fault exception.

The configuration parameters for each of the 8 instruction and 8 data access windows are:

e Enable/disable instruction/data access window 0..7,
e abase address of the window (which must be 64B-aligned), and
e a mask specifying the size of the window (which must be an integer-multiple of 64 bytes minus 1).

See Section 15.1 for more information.

2.7 Exception Handling

Capturing the faulting effective address causing an exception helps assist firmware in handling the exception and/or
provides additional information for firmware debugging. For precise exceptions, the faulting effective address is
captured in the standard RISC-V mtval register (see Section 3.1.17 in [2]). For imprecise exceptions, the address of
the first occurrence of the error is captured in a platform-specific error address capture register (see Section 2.8.3).

2.7.1 Imprecise Bus Error Non-Maskable Interrupt

Store bus errors are fatal and cause a hon-maskable interrupt (NMI). The store bus error NMI has an mcause value
of 0xF000_0000.

Likewise, non-blocking load bus errors are fatal and cause a non-maskable interrupt (NMI). The non-blocking load
bus error NMI has an mcause value of 0xFOO0_0001.

Note: The address of the first store or non-blocking load error on the D-bus is captured in the mdseac register (see
Section 2.8.3). The register is unlocked either by resetting the core after the NMI has been handled or by a write to
the mdeau register (see Section 2.8.4). While the mdseac register is locked, subsequent D-bus errors are gated (i.e.,
they do not cause another NMI), but NMI requests originating external to the core are still honored.

Note: If store and non-blocking load bus errors are reported in the same clock cycle (i.e., the LSU’s write and read
buffers simultaneous indicate a bus error), the non-blocking load bus error has higher priority.

2.7.2 Correctable Error Local Interrupt

I-cache parity/ECC errors, ICCM correctable ECC errors, and DCCM correctable ECC errors are counted in separate
correctable error counters (see Sections 3.5.1, 3.5.2, and 3.5.3, respectively). Each counter also has its separate
programmable error threshold. If any of these counters has reached its threshold, a correctable error local interrupt is
signaled. Firmware should determine which of the counters has reached the threshold and reset that counter.

A local-to-the-core interrupt for correctable errors has pending (mceip) and enable (mceie) bits in bit position 30 of the
standard RISC-V mip (see Table 10-2) and mie (see Table 10-1) registers, respectively. The priority is lower than the
RISC-V External interrupt, but higher than the RISC-V Software and Timer interrupts (see Table 12-1). The
correctable error local interrupt has an mcause value of 0x8000_001E (see Table 10-3).

2.7.3 Rules for Core-Local Memory Accesses
The rules for instruction fetch and load/store accesses to core-local memories are:

1. Aninstruction fetch access to a region

a. containing one or more ICCM sub-region(s) causes an exception if
i. the access is not completely within the ICCM sub-region, or
ii. the boundary of an ICCM to a non-ICCM sub-region and vice versa is crossed,
even if the region contains a DCCM/PIC memory-mapped control register sub-region.

b. not containing an ICCM sub-region goes out to the system bus, even if the region contains a
DCCM/PIC memory-mapped control register sub-region.
2. Aload/store access to a region

a. containing one or more DCCM/PIC memory-mapped control register sub-region(s) causes an
exception if
i. the access is not completely within the DCCM/PIC memory-mapped control register sub-
region, or

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 7 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

ii. the boundary of
1. aDCCM to a non-DCCM sub-region and vice versa, or
2. a PIC memory-mapped control register sub-region
is crossed,
even if the region contains an ICCM sub-region.

b. not containing a DCCM/PIC memory-mapped control register sub-region goes out to the system
bus, even if the region contains an ICCM sub-region.

2.7.4 Core-Local / D-Bus Access Prediction

In SweRV EL2, a prediction is made early in the pipeline if the access is to a core-local address (i.e., DCCM or PIC
memory-mapped register) or to the D-bus (i.e., a memory or register address of the SoC). The prediction is based on
the base address (i.e., value of register rs1) of the load/store instruction. Later in the pipeline, the actual address is
calculated also taking the offset into account (i.e., value of register rs1 + offset). A mismatch of the predicted and the
actual destination (i.e., a core-local or a D-bus access) results in a load/store access fault exception.

2.7.5 Unmapped Addresses

Table 2-2 Handling of Unmapped Addresses

Access | Core/Bus Side Effect | Action Comments
" Core N/A Instruction access fault exception*® | precise exception
Fetc
Bus N/A Instruction access fault exception? | (€.9., address out-of-range)

Precise exception

Core No Load access fault exception*®
(e.g., address out-of-range)
Load No « Imprecise, fatal
Bus Non-blocking load bus error NMI P ' ,
Yes (see Section 2.7.1) e Capture store address in core bus

interface

Store/AMOS® access fault

Core No exception** Precise exception
Store No e Imprecise, fatal
BUS Store bus_error NMI Cant ‘ dd) b
Ves (see Section 2.7.1) » Capture store address in core bus
interface
DMA
Read
Bus N/A DMA slave bus error Send error response to master
DMA
Write

Note: It is recommended to provide address gaps between different memories to ensure unmapped address
exceptions are flagged if memory boundaries are inadvertently crossed.

2 If any byte of an instruction is from an unmapped address, an instruction access fault precise exception is flagged.

3 Exception also flagged for fetches to the DCCM address range if located in the same region, or if located in different regions and
no SoC address is a match.

4 Exception also flagged for PIC load/store not word-sized or address not word-aligned.

5 Exception also flagged for loads/stores to the ICCM address range if located in the same region, or if located in different regions
and no SoC address is a match.

5 AMO refers to the RISC-V “A” (atomics) extension, which is not implemented in SweRV EL2.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 8 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

2.7.6 Misaligned Accesses

General notes:

e The core performs a misalignment check during the address calculation.

3/29/2020

e Accesses across region boundaries always cause a misaligned exception.

e Splitting a load/store from/to an address with no side effects (i.e., idempotent) is not of concern for SweRV
EL2.

Table 2-3 Handling of Misaligned Accesses

Access | Core/Bus Side Region | Action Comments
Effect | Cross
Core N/A
Fetch N/A Not possible’
Bus N/A
Core No Load split into multiple DCCM Split performed by core
read accesses
Load No Load Sp!'t into multiple bus Split performed by core
transactions
Bus d add isaligned
No Load address misaligne . .
Yes exception Precise exception
Core No Store split into multiple DCCM Split performed by core
write accesses
Store split into multiple bus .
Store No transactions Split performed by core
Bus
Store/AMO address misaligned . .
Yes . Precise exception
exception
Fetch N/A Not possible’
Load Load address misaligned Precise exception
N/A N/A Yes exception P
Store/AMO address misaligned . .
Store . Precise exception
exception
DMA
Read
Bus N/A N/A DMA slave bus error Send error response to master
DMA
Write®

" Accesses to the I-cache or ICCM initiated by fetches never cross 16B boundaries. I-cache fills are always aligned to 64B.
Misaligned accesses are therefore not possible.

8 This case is in violation with the write alignment rules specified in Section 2.13.2.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

9 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

2.7.7 Uncorrectable ECC Errors

Table 2-4 Handling of Uncorrectable ECC Errors

3/29/2020

Access | Core/Bus Side Effect | Action Comments
Core N/A . . Precise exception (i.e., for oldest
Fetch Instruction access fault exception . TN
Bus N/A instruction in pipeline only)
No . Precise exception (i.e., for non-
Core Load access fault exception ; o
Yes speculative load only)
Load No _ e Imprecise, fatal
Non-blocking load bus error NMI)
Bus (see Section 2.7.1) e Capture store address in core bus
Yes interface
No i ion (i)
Core Store/AMO access fault exception Precise gxcepﬂon (i.e., for non
Yes speculative store only)
Store No e Imprecise, fatal
Store bus error NMI .
Bus (see Section 2.7.1) e Capture store address in core bus
Yes interface
DMA
Read Bus N/A DMA slave bus error Send error response to master

Note: DMA write accesses to the ICCM or DCCM always overwrite entire 32-bit words and their corresponding ECC
bits. Therefore, ECC bits are never checked and errors not detected on DMA writes.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

10 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

2.7.8 Correctable ECC/Parity Errors

Table 2-5 Handling of Correctable ECC/Parity Errors

3/29/2020

Access | Core/Bus Side Effect | Action Comments
For I-cache accesses:
¢ Increment correctable |-cache
error counter in core
« If I-cache error threshold reached, | ¢ For all fetches from I-cache (i.e.,
signal correctable error local out of pipeline, independent of
interrupt (see Section 3.5.1) actual instruction execution)
« Invalidate all cache lines of set » For I-cache with tag/instruction
ECC protection, single- and
o Perform RFPC flush double-bit errors are recoverable
¢ Flush core pipeline
¢ Refetch cache line from SoC
memory
Core N/A For ICCM accesses:
e Increment correctable ICCM error
counter in core
Fetch « If ICCM error threshold reached, ¢ For all fetches from ICCM (i.e.,
signal correctable error local out of pipeline, independent of
interrupt (see Section 3.5.2) actual instruction execution)
e Perform REPC flush e ICCM errors trigger an RFPC
o (ReFetch PC) flush since in-line
¢ Flush core pipeline correction would require an
¢ Write corrected data back to additional cycle
ICCM
¢ Refetch instruction(s) from
ICCM
e Increment correctable error
counter in SoC Errors in SoC memories are
BUS N/A o If error threshold reached, signal corrected at memory boundary and
external interrupt autonomously written back to
e Write corrected data back to SoC memory array
memory
No ¢ Increment correctable DCCM
error counter in core . lati
e For non-speculative accesses
e |[f DCCM error threshold reached, only P
Core signal correctable error local Lo
Yes interrupt (see Section 3.5.3) e DCCM errors are in-line corrected
and written back to DCCM
¢ Write corrected data back to
Load DCCM
No ¢ Increment correctable error
counter in SoC Errors in SoC memories are
BUS o If error threshold reached, signal corrected at memory boundary and
Yes external interrupt autonomously written back to
« Write corrected data back to SoC | Memory array
memory

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

11 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Access | Core/Bus Side Effect | Action Comments
No e Increment correctable DCCM
error counter in core)
e For non-speculative accesses
e |[f DCCM error threshold reached, only
Core signal correctable error local L
Yes interrupt (see Section 3.5.3) . DCCM_errors are in-line corrected
] and written back to DCCM
e Write corrected data back to
Store DCCM
No e Increment correctable error
counter in SoC Errors in SoC memories are
Bus e If error threshold reached, signal corrected at memory boundary and
Yes external interrupt autonomously written back to
« Write corrected data back to Soc | Meémory array
memory
For ICCM accesses:
e Increment correctable ICCM error
counter in core
DMA read access errors to ICCM
o If ICCM error threshold reached, are in-line corrected and written
signal correctable error local back to ICCM
interrupt (see Section 3.5.2)
e Write corrected data back to
Read Bus N/A
For DCCM accesses:
e Increment correctable DCCM
error counter in core
DMA read access errors to DCCM
o If DCCM error threshold reached, | 5re in-line corrected and written
signal correctable error local back to DCCM
interrupt (see Section 3.5.3)
e Write corrected data back to
DCCM

Note: Counted errors could be from different, unknown memory locations.

Note: DMA write accesses to the ICCM or DCCM always overwrite entire 32-bit words and their corresponding ECC
bits. Therefore, ECC bits are never checked and errors not detected on DMA writes.

2.8 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

Region Access Control Register (mrac) (see Section 2.8.1)

Memory Synchronization Trigger Register (dmst) (see Section 2.8.2)

D-Bus First Error Address Capture Register (mdseac) (see Section 2.8.3)
D-Bus Error Address Unlock Register (mdeau) (see Section 2.8.4)
Machine Secondary Cause Register (mscause) (see Section 2.8.5)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

2.8.1 Region Access Control Register (mrac)

A single region access control register is sufficient to provide independent control for 16 address regions.

Note: To guarantee that updates to the mrac register are in effect, if a region being updated is in the load/store
space, a fence instruction is required. Likewise, if a region being updated is in the instruction space, a fence. i
instruction (which flushes the I-cache) is required.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

12 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Note: The sideeffect access control bits are ignored by the core for load/store accesses to addresses mapped to
core-local memories (i.e., DCCM and ICCM) and PIC memory-mapped control registers as well as for all instruction
fetch accesses. The cacheable access control bits are ignored for instruction fetch accesses from addresses
mapped to the ICCM, but not for any other addresses.

Note: The combination ‘11’ (i.e., side effect and cacheable) is illegal. Writing ‘11’ is mapped by hardware to the legal
value ‘10’ (i.e., side effect and non-cacheable).

This register is mapped to the non-standard read/write CSR address space.

Table 2-6 Region Access Control Register (mrac, at CSR 0x7C0)

Field Bits Description Access | Reset

Y = 0..15 (= Region)

sideeffectY | Y*2+1 | Side effect indication for region Y: R/W 0
0: No side effects (idempotent)
1: Side effects possible (non-idempotent)

cacheableY | Y*2 Caching control for region Y: R/W 0
0: Caching not allowed
1: Caching allowed

2.8.2 Memory Synchronization Trigger Register (dmst)

The dmst register provides triggers to force the synchronization of memory accesses. Specifically, it allows a
debugger to initiate operations that are equivalent to the fence. i (see Section 2.5.3.1) and fence (see Section
2.5.3.2) instructions.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

The fence_i and fence fields of the dmst register have W1RO0 (Write 1, Read 0) behavior, as also indicated in the
‘Access’ column.

This register is mapped to the non-standard read/write CSR address space.

Table 2-7 Memory Synchronization Trigger Register (dmst, at CSR 0x7C4)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
fence 1 Trigger operation equivalent to fence instruction RO/W1 | O
fence_i 0 Trigger operation equivalent to fence. i instruction RO/W1 | O

2.8.3 D-Bus First Error Address Capture Register (mdseac)

The address of the first occurrence of a store or non-blocking load error on the D-bus is captured in the mdseac
register. Latching the address also locks the register. While the mdseac register is locked, subsequent D-bus errors
are gated (i.e., they do not cause another NMI), but NMI requests originating external to the core are still honored.
The mdseac register is unlocked by either a core reset (which is the safer option) or by writing to the mdeau register
(see Section 2.8.4).

Note: The NMI handler may use the value stored in the mcause register to differentiate between a D-bus store error,
a D-bus non-blocking load error, and a core-external event triggering an NMI.

Note: Capturing an address of a store or non-blocking load D-bus error in the mdseac register is independent of the
actual taking of an NMI due to the bus error. For example, if a request on the NMI pin arrives just prior to the

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 13 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

detection of a store or non-blocking load error on the D-bus, the address of the bus error may still be logged in the
mdseac register.

This register is mapped to the non-standard read-only CSR address space.

Table 2-8 D-Bus First Error Address Capture Register (mdseac, at CSR 0xFCO0)

Field Bits Description Access | Reset

erraddr 31:0 Address of first occurrence of D-bus store or non-blocking load error R 0

2.8.4 D-Bus Error Address Unlock Register (mdeau)

Writing to the mdeau register unlocks the mdseac register (see Section 2.8.3) after a D-bus error address has been
captured. This write access also reenables the signaling of an NMI for a subsequent D-bus error.

Note: Nested NMIs might destroy core state and, therefore, receiving an NMI should still be considered fatal. Issuing
a core reset is a safer option to deal with a D-bus error.

The mdeau register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

This register is mapped to the non-standard read/write CSR address space.

Table 2-9 D-Bus Error Address Unlock Register (mdeau, at CSR 0xBCO0)

Field Bits Description Access | Reset

Reserved | 31:0 Reserved RO/WA | O

2.8.5 Machine Secondary Cause Register (mscause)

The mscause register, in conjunction with the standard RISC-V mcause register (see Section 10.1.2), allows the
determination of the exact cause of a trap for cases where multiple, different conditions share a single trap code. The
standard RISC-V mcause register provides the trap code and the mscause register provides supporting information
about the trap to disambiguate different sources. Table 2-10 lists SweRV EL2’s standard exceptions/interrupts (with
white background), platform-specific local interrupts (with light gray background), and NMI causes (with dark gray
background).

The mscause register has WLRL (Write Legal value, Read Legal value) behavior.

Implementation Note: SweRV EL2 implements only the 4 least-significant bits of the mscause register (i.e.,
mscause[3:0]). Writes to all higher bits are ignored, reads return 0 for those bits.

This register is mapped to the non-standard read/write CSR address space.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 14 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

Table 2-10 Machine Secondary Cause Register (mscause, at CSR 0x7FF)

3/29/2020

mcause mscause mscause .
meause Description (Rel. Priority)?® Description SeronE)
Exceptions
0x9 (2) I-side fetch precise bus error | 2.7.5 and 3.4
ox1 (3) I-side ICCM double-bit ECC 277 and 3.4
error
Ox1 Instruction access fault i _ 10
0x2 (0) I-side core-local'® unmapped 275 and 3.4
address error
0x3 (1) I-side access out of MPU 26
range
0x2 lllegal instruction 0x0 None
ebreak
0x2
(not to Debug Mode)
0x3 Breakpoint
ox1 Trigger hit'?
(not to Debug Mode)
D-side load across region
0x2 (0) boundary
0x4 Load address misaligned — — 2.7.6
ox1 (1) D-side size-misaligned load
to non-idempotent address
D-side core-local*? load
0x2 (0) unmapped address error 27.5and 3.4
D-side DCCM load double-bit
0x1 (4) ECC error 2.7.7and 3.4
0x5 Load access fault 0x3 (1) D-side load access out of 2.6
MPU range
0X5 (2) D-side load region prediction 274
error
_aj 13
0x6 (3) D-side PIC*® load access 275
error
0x2 (0) bD-S|d§ store across region
Store/AMO address Ounaary
0x6 isalianed 2.7.6
misaligne 0x1 (1) D-side size-misaligned store
to non-idempotent address
® Relative priority of load/store exceptions (0: highest priority).
10 Fetch access not within ICCM address range.
1 Trigger hit can also be observed in bit 20 of mtdatax register.
12 | oad/store access not within DCCM or PIC memory-mapped register address ranges.
13 PIC load/store not word-sized or address not word-aligned.
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 15 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

mcause mscause mscause .
mcause Description (Rel. Priority)? Description SeronE)
D-side core-local*? store
0x2 (0) unmapped address error 27.5and 3.4
D-side DCCM store double-
0x1 (4) bit ECC error 2.7.7and 3.4
0x7 Store/AMO access fault 0x3 (1) II\D/IPS{(Jj ?:r:g;e access out of 2.6
05 (2) Er-rsolge store region prediction 274
- 13
0x6 (3) eDrrs(:?e PIC*S store access 275
Environment call from M-
0xB mode 0x0 None
0x8000_0003 Machine software interrupt Machine software 2.16
0x8000_0007 Machine timer!4 interrupt Machine timer
0x8000_000B Machine external interrupt External interrupt 6
0x8000_001C _Machlne internal imer 4 local 0x0 Internal timer 1 local interrupt
interrupt
4.3
Machine internal timer O local . .
0x8000_001D interrupt Internal timer O local interrupt
0x8000 001E Mach_lne correctable error _Correctable error local 279
- local interrupt interrupt

Note: All other values are reserved.

14 Core external timer

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 16 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

2.9 Memory Address Map

Table 2-11 summarizes an example of the SweRV EL2 memory address map, including regions as well as start and

end addresses for the various memory types.

Table 2-11 SweRV EL2 Memory Address Map (Example)

Region | Start Address | End Address Memory Type
0x0000_0000 0x0003_FFFF Reserved
0x0004_0000 0x0005_FFFF ICCM (region: 0, offset: 0x4000, size: 128KB)
0x0 0x0006_0000 0x0007_FFFF | Reserved
0x0008_0000 0x0009_FFFF DCCM (region: 0, offset: 0x8000, size: 128KB)
0X000A_0000 | OXOFFF_FFFF | Reserved
Ox1 0x1000_0000 Ox1FFF_FFFF | System memory-mapped CSRs
0x2 0x2000_0000 O0x2FFF_FFFF
0x3 0x3000_0000 Ox3FFF_FFFF
Ox4 | 0x4000_0000 | Ox4FFF_FFFF
0x5 0x5000_0000 OX5FFF_FFFF
0x6 0x6000_0000 OX6FFF_FFFF
0x7 | 0x7000_0000 OX7FFF_FFFF
0x8 0x8000_0000 Ox8FFF_FFFF System SRAMS,
system ROMs, and
0x9 0x9000_0000 Ox9FFF_FFFF system memory-mapped /O device interfaces
OxA 0xA000_0000 OXAFFF_FFFF
0xB 0xB000_0000 OxBFFF_FFFF
0xC 0xC000_0000 OXCFFF_FFFF
0xD 0xD000_0000 OXDFFF_FFFF
OxE 0xE000_0000 OXEFFF_FFFF
OxF | OXFO00_0000 | OXFFFF_FFFF

2.10 Behavior of Loads to Side-Effect Addresses

Loads with potential side-effects won't stall the pipeline and may be committed before the data is returned from the
system bus. Other loads and stores in the pipeline continue to be executed unless an instruction uses data from a
pending side-effect load. Stalling the instruction control flow until a side-effect load has completed may be
accomplished by either issuing a fence instruction or by generating a dependency on the load's data.

2.11 Partial Writes

Rules for partial writes handling are:

e Core-local addresses: The core performs a read-modify-write operation and updates ECC to core-local
memories (i.e., I- and DCCMs).

e SoC addresses: The core indicates the valid bytes for each bus write transaction. The addressed SoC
memory or device performs a read-modify-write operation and updates its ECC.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 17 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

2.12 Speculative Bus Accesses

Deep core pipelines require a certain degree of speculation to maximize performance. The sections below describe
instruction and data speculation in the SweRV EL2 core.

Note that speculative accesses to memory addresses with side effects may be entirely avoided by adding the build-
argument-selected and -configured memory protection mechanism described in Section 2.6.

2.12.1 Instructions

Instruction cache misses on SweRV EL2 are speculative in nature. The core may issue speculatively fetch accesses
on the IFU bus interface for an instruction cache miss in the following cases:

due to an earlier exception or interrupt,

due to an earlier branch mispredict,

due to an incorrect branch prediction, and

due to an incorrect Return Address Stack (RAS) prediction.

Issuing speculative accesses on the IFU bus interface is benign as long as the platform is able to handle accesses to
unimplemented memory and to prevent accesses to SoC components with read side effects by returning random
data and/or a bus error condition. The decision of which addresses are unimplemented and which addresses with
potential side effects need to be protected is left to the platform.

Instruction fetch speculation can be limited, though not entirely avoided, by turning off the core’s branch predictor
including the return address stack. Writing a ‘1’ to the bpd bit in the mfdc register (see Table 9-1) disables branch
prediction including RAS.

2.12.2 Data

The SweRV EL2 core does not issue any speculative data accesses on the LSU bus interface.

2.13 DMA Slave Port

The Direct Memory Access (DMA) slave port is used for read/write accesses to core-local memories initiated by
external masters. For example, external masters could be DMA controllers or other CPU cores located in the SoC.

2.13.1 Access

The DMA slave port allows read/write access to the core’s ICCM and DCCM. However, the PIC memory-mapped
control registers are not accessible via the DMA port.

2.13.2 Write Alignment Rules

For writes to the ICCM and DCCM through the DMA slave port, accesses must be 32- or 64-bit aligned, and 32 bits
(word) or 64 bits (double-word), respectively, wide to avoid read-modify-write operations for ECC generation.

More specifically, DMA write accesses to the ICCM or DCCM must have a 32- or 64-bit access size and be aligned to
their respective size. The only write byte enable values allowed for AX14 are OxOF, OxFO, and OxFF.

2.13.3 Quality of Service

Accesses to the ICCM and DCCM by the core have higher priority if the DMA FIFO is not full. However, to avoid
starvation, the DMA slave port's DMA controller may periodically request a stall to get access to the pipe if a DMA
request is continuously blocked.

The dqc field in the mfdc register (see Table 9-1) specifies the maximum number of clock cycles a DMA access
request waits at the head of the DMA FIFO before requesting a bubble to access the pipe. For example, if dqcis 0, a
DMA access requests a bubble immediately (i.e., in the same cycle); if dqc is 7 (the default value), a waiting DMA
access requests a bubble on the 8" cycle. For a DMA access to the ICCM, it may take up to 3 additional cycles®®

15 More cycles may be needed in the uncommon case of the pipe currently handling a correctable ECC error for a core fetch
request, which needs to be finished first.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 18 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

before the access is granted. Similarly, for a DMA access to the DCCM, it may take up to 4 additional cycles before
the access is granted.

2.13.4 Ordering of Core and DMA Accesses

Accesses to the DCCM or ICCM by the core and the DMA slave port are asynchronous events relative to one
another. There are no ordering guarantees between the core and the DMA slave port accessing the same or
different addresses.

2.14 Reset Signal and Vector

The core provides a 31-bit wide input bus at its periphery for a reset vector. The SoC must provide the reset vector
onthe rst vec[31:1] bus, which could be hardwired or from a register. The rst_1 input signal is active-low,
asynchronously asserted, and synchronously deasserted (see also Section 13.3). When the core is reset, it fetches
the first instruction to be executed from the address provided on the reset vector bus. Note that the applied reset
vector must be pointing to the ICCM, if enabled, or a valid memory address, which is within an enabled instruction
access window if the memory protection mechanism (see Section 2.6) is used.

Note: The core’s 31 general-purpose registers (x1 - x31) are cleared on reset.

2.15 Non-Maskable Interrupt (NMI) Signal and Vector

The core provides a 31-bit wide input bus at its periphery for a non-maskable interrupt (NMI) vector. The SoC must
provide the NMI vector on the nmi_vec[31:1] bus, either hardwired or sourced from a register.

Note: NMI is entirely separate from the other interrupts and not affected by the selection of Direct vs Vectored mode.

The SoC may trigger an NMI by asserting the low-to-high edge-triggered, asynchronous nmi_int input signal. This
signal must be asserted for at least two full core clock cycles to guarantee it is detected by the core since shorter
pulses might be dropped by the synchronizer circuit. Furthermore, the nmi_int signal must be deasserted for a
minimum of two full core clock cycles and then reasserted to signal the next NMI request to the core. If the SoC does
not use the pin-asserted NMI feature, it must hardwire the nmi_int input signal to 0.

In addition to NMls triggered by the SoC, a core-internal NMI request is signaled when a D-bus store or non-blocking
load error has been detected.

When the core receives either an SoC-triggered or a core-internal NMI request, it fetches the next instruction to be
executed from the address provided on the NMI vector bus. The reason for the NMI request is reported in the
mcause register according to Table 2-12.

Table 2-12 Summary of NMI mcause Values

Value

Description Section
mcause[31:0]
0x0000_0000 NMI pin assertion (nmi_int input signal) see above
0xFO000_0000 Machine D-bus store error NMI
271

0xF000_0001 Machine D-bus non-blocking load error NMI

0xF000_1000 Machine Fast Interrupt double-bit ECC error NMI

0xF000_1001 Machine Fast Interrupt DCCM region access error NMI 6.6.1

0xF000_1002 Machine Fast Interrupt non-DCCM region NMI

2.16 Software Interrupts

The SweRV EL2 core provides a software-interrupt input signal for its hart (see soft_int in Table 14-1). The
soft_int signal is an active-high, level-sensitive, asynchronous input signal which feeds the msip (machine

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 19 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

software-interrupt pending) bit of the standard RISC-V mip register (see Table 10-2). When the msie (machine
software-interrupt enable) bit of the standard RISC-V mie register (see Table 10-1) is set, a machine software
interrupt occurs if the msip bit of the mip register is asserted.

The SoC must implement Machine Software Interrupt (MSI) memory-mapped I/O registers. These registers provide
interrupt control bits which are directly connected to the respective soft _int pins of each core. Writing to the
corresponding bit of one of these registers enables remote harts to trigger machine-mode interprocessor interrupts.

Each hart can read its own mhartid register (see Section 10.1.3) to determine the memory address of the
associated memory-mapped MSI register within the platform. In this manner, an interrupt service routine can reset
the corresponding memory-mapped MSI register bit before returning from a software interrupt.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 20 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

3 Memory Error Protection
3.1 General Description

3.1.1 Parity

Parity is a simple and relatively cheap protection scheme generally used when the corrupted data can be restored
from some other location in the system. A single parity check bit typically covers several data bits. Two parity
schemes are used: even and odd parity. The total number of ‘1’ bits are counted in the protected data word,
including the parity bit. For even parity, the data is deemed to be correct if the total count is an even number.
Similarly, for odd parity if the total count is an odd humber. Note that double-bit errors cannot be detected.

3.1.2 Error Correcting Code (ECC)

A robust memory hierarchy design often includes ECC functions to detect and, if possible, correct corrupted data.
The ECC functions described are made possible by Hamming code, a relatively simple yet powerful ECC code. It
involves storing and transmitting data with multiple check bits (parity) and decoding the associated check bits when
retrieving or receiving data to detect and correct errors.

The ECC feature can be implemented with Hamming based SECDED (Single-bit Error Correction and Double-bit
Error Detection) algorithm. The design can use the (39, 32) code — 32 data bits and 7 parity bits depicted in Figure
6-1 below. In other words, the Hamming code word width is 39 bits, comprised of 32 data bits and 7 check bits. The
minimum number of check bits needed for correcting a single-bit error in a 32-bit word is six. The extra check bit
expands the function to detect double-bit errors as well.

ECC codes may also be used for error detection only if other means exist to correct the data. For example, the I-
cache stores exact copies of cache lines which are also residing in SoC memory. Instead of correcting corrupted
data fetched from the I-cache, erroneous cache lines may also be invalidated in the I-cache and refetched from SoC
memory. A SEDDED (Single-bit Error Detection and Double-bit Error Detection) code is sufficient in that case and
provides even better protection than a SECDED code since double-bit errors are corrected as well but requires fewer
bits to protect each codeword. Note that flushing and refetching is the industry standard mechanism for recovering
from I-cache errors, though commonly still referred to as ‘SECDED’.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 21 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

32-Bit Data In

32-Bit Data

ECC Code
Generator

7-Bit ECC 32-Bit Data

Address

ECC Out Data Out

ECC Error Detection and Correction

Double-Bit Single-Bit 32-Bit
Error Error Corrected
Data Out

Figure 3-1 Conceptual Block Diagram — ECC in a Memory System

3.2 Selecting the Proper Error Protection Level

Choosing a protection level that is too weak might lead to loss of data or silent data corrupted, choosing a level that is
too strong incurs additional chip die area (i.e., cost) and power dissipation. Supporting multiple protection schemes
for the same design increases the design and verification effort.

Sources of errors can be divided into two major categories:

e Hard errors (e.g., stuck-at bits), and
e Soft errors (e.g., weak bits, cosmic-induced soft errors)

Selecting an adequate error protection level — e.g., none, parity, or ECC -- depends on the probability of an error to
occur, which depends on several factors:

e Technology node
e SRAM structure size
e SRAM cell design
e Type of stored information
o E.g., instructions in I-cache can be refetched, but
o data might be lost if not adequately protected
Stored information being used again after corruption

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 22 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Typically, a FIT (Failure In Time) rate analysis is done to determine the proper protection level of each memory in a
system. This analysis is based on FIT rate information for a given process and SRAM cell design which are typically
available from chip manufacturer.

Also important is the SRAM array design. The SRAM layout can have an impact on if an error is correctable or not.
For example, a single cosmic-induced soft error event may destroy the content of multiple bit cells in an array. If the
destroyed hits are covered by the same codeword, the data cannot be corrected or possibly even detected.
Therefore, the bits of each codeword should be physically spread in the array as far apart as feasibly possible. In a
properly laid out SRAM array, multiple corrupted bits may result in several single-bit errors of different codewords
which are correctable.

3.3 Memory Hierarchy
Table 3-1 summarizes the components of the SweRV EL2 memory hierarchy and their respective protection scheme.

Table 3-1 Memory Hierarchy Components and Protection

Memory Type Abbreviation Protection Reason/Justification
Instruction Cache I-cache Parity or e Instructions can be refetched if
SEDDED error is detected
ECC!6 (data
and tag)

Instruction Closely-Coupled Memory ICCM « Large SRAM arrays

Data Closely-CoupIed Memory DCCM SECDED ECC e Data could be modified and is On|y
valid copy

Core-complex-external Memories SoC memories

3.4 Error Detection and Handling

Table 3-2 summarizes the detection of errors, the recovery steps taken, and the logging of error events for each of
the SweRV EL2 memories.

Note: Memories with parity or ECC protection must be initialized with correct parity or ECC. Otherwise, a read
access to an uninitialized memory may report an error. The method of initialization depends on the organization and
capabilities of the memory. Initialization might be performed by a memory self-test or depend on firmware to
overwrite the entire memory range (e.g., via DMA accesses).

Note: If the DCCM is uninitialized, a load following a store to the same DCCM address may get incorrect data. If
firmware initializes the DCCM, aligned word-sized stores should be used (because they don’t check ECC), followed
by a fence, before any load instructions to DCCM addresses are executed.

16 Some highly reliable/available applications (e.g., automotive) might want to use an ECC-protected I-cache, instead of parity
protection. Therefore, SEDDED ECC protection is optionally provided in SweRV EL2 as well, selectable as a core build argument.
Note that the I-cache area increases significantly if ECC protection is used.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 23 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Table 3-2 Error Detection, Recovery, and Logging
Recovery Logging
Memory Type | Detection Single-bit Error | Double-bit Single-bit Error | Double-bit
Error Error

I-cache e Each 64-bit For parity:
chunk of - - -
instructions e For |nstruct[on Undetected e Increment |- No action
protected with and tag parity cache
4 parity bits errors, correctable .

(one per 16 mvahda}te all error counter
consecutive cache lines of « If error counter
bits) or 7 ECC set has reached
bits ¢ Refetch cache threshold,
e Each cache line from SoC signal
line tag memory correctable
protected with error local
1 parity bit or 5 Interrupt
ECC bits (see Section
. . 3.5.1)
e Parity/ECC bits
checked in For ECC:
pipeline -))
¢ For instruction and tag single- and | e Increment I-cache correctable
double ECC errors, invalidate all error counter?’
cache lines of set « If error counter has reached
¢ Refetch cache line from SoC threshold, signal correctable error
memory?8 local interrupt
(see Section 3.5.1)

ICCM e Each 32-hit For fetches!®: Fatal error®® e Increment?*® For fetches?:
chunk « Write corrected | (Uncorrectable) ICCM single- Instruction
protected with data/ECC back bit error access fault
7 ECC bits to ICCM counter exception

e ECC checked e Refetch o If error counter
in pipeline instruction has reached
from ICCM18 threshold,
signal
For DMA reads: correctable For DMA reads:
« Correct error error local Send error
in-line Interrupt response on

e Write corrected
data/ECC back
to ICCM

(see Section
3.5.2)

DMA slave bus
to master

71t is unlikely, but possible that multiple I-cache parity/ECC errors are detected on a cache line in a single cycle, however, the |-
cache single-bit error counter is incremented only by one.

18 A RFPC (ReFetch PC) flush is performed since in-line correction would create timing issues and require an additional clock cycle
as well as a different architecture.

19 All single-bit errors detected on fetches are corrected, written back to the ICCM, and counted, independent of actual instruction

execution.

2 For oldest instruction in pipeline only.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

24 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Recovery Logging
Memory Type | Detection Single-bit Error | Double-bit Single-bit Error | Double-bit
Error Error
DCCM e Each 32-bit e Correct error Fatal error?? e Increment?! For loads??:
chunk _ in-line (uncorrectable) DCCM single- | Load access
protected with | o \write2t bit error fault exception
7 ECC bits corrected counter
For stores??;
e ECC checked data/ECC back e If error counter
in pipeline to DCCM has reached Store/AMO
threshold, access fault
signal exception
correctable]
error local For DMA reads:
interrupt Send error

(see Section
3.5.3)

response on
DMA slave bus
to master

SoC memories

ECC checked at
SoC memory
boundary

e Correct error

e Send corrected
data on bus

¢ Write corrected
data/ECC back
to SRAM array

e Fatal error
(uncorrectable)

e Data sent on
bus with error
indication

e Core must
ignore sent
data

Increment SoC
single-bit error

counter local to
memory

If error counter
has reached
threshold,
signal external
interrupt

For fetches:

Instruction
access fault
exception

For loads:

Non-blocking
load bus error
NMI

(see Section
2.7.1)

For stores:
Store bus error
NMI

(see Section
2.7.1)

General comments:

e No address information of each individual correctable error is captured.
e Stuck-at faults:
Stuck-at bits would cause the correctable error threshold to be reached relatively quickly but are
only reported if interrupts are enabled.
Use MBIST to determine exact location of the bad bit.
Because ICCM single-bit errors on fetches are not in-line corrected, SweRV EL2’s ICCM

implements two row’s worth of redundant memory which is transparently managed in hardware.
These extra rows help to avoid that a stuck-at bit may hang the core.

(¢]

3.5 Core Error Counter/Threshold Registers

A summary of platform-specific core error counter/threshold control/status registers in CSR space:

e |-Cache Error Counter/Threshold Register (micect) (see Section 3.5.1)

e ICCM Correctable Error Counter/Threshold Register (miccmect) (see Section 3.5.2)

21 For load/store accesses, the corrected data is written back to the DCCM and counted only if the load/store instruction retires (i.e.,
access is non-speculative and has no exception).

2 For non-speculative accesses only.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

25 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

e DCCM Correctable Error Counter/Threshold Register (mdccmect) (see Section 3.5.3)

All read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

3.5.1 I-Cache Error Counter/Threshold Register (micect)

The micect register holds the I-cache error counter and its threshold. The count field of the micect register is
incremented, if a parity/ECC error is detected on any of the cache line tags of the set or the instructions fetched from
the I-cache. The thresh field of the micect register holds a pointer to a bit position of the count field. If the selected
bit of the count field transitions from ‘0’ to ‘1°, the threshold is reached, and a correctable error local interrupt (see
Section 2.7.2) is signaled.

Hardware increments the count field on a detected error. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending until the counter overflows
(i.e., as long as the count value is equal to or greater than the threshold value (= 2t""esh)). When firmware resets the
counter, the correctable error local interrupt condition is cleared.

This register is mapped to the non-standard read/write CSR address space.

Table 3-3 I-Cache Error Counter/Threshold Register (micect, at CSR 0x7FO0)

Field Bits Description Access | Reset

thresh 31:27 | I-cache parity/ECC error threshold: R/W 0
0..26: Value i selects count][i] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented if I-cache parity/ECC error(s) detected. R/W 0

If count[thresh] transitions from ’0’ to ‘1’, signal correctable error local
interrupt (see Section 2.7.2).

3.5.2 ICCM Correctable Error Counter/Threshold Register (miccmect)

The miccmect register holds the ICCM correctable error counter and its threshold. The count field of the miccmect
register is incremented, if a correctable ECC error is detected on either an instruction fetch or a DMA read from the
ICCM. The thresh field of the mi ccmect register holds a pointer to a bit position of the count field. If the selected bit
of the count field transitions from ‘0’ to ‘1’, the threshold is reached, and a correctable error local interrupt (see
Section 2.7.2) is signaled.

Hardware increments the count field on a detected single-bit error. Firmware can non-destructively read the current
count and thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending until the counter overflows
(i.e., as long as the count value is equal to or greater than the threshold value (= 2tesh)). When firmware resets the
counter, the correctable error local interrupt condition is cleared.

Note: DMA accesses while in power management Sleep (pmu/fw-halt) or debug halt (db-halt) state may encounter
ICCM single-bit errors. Correctable errors are counted in the miccmect error counter irrespective of the core's
power state.

Note: In the unlikely case of a persistent single-bit error in the ICCM on a location needed for execution of the
beginning of the ICCM correctable error local interrupt handler and the counter threshold is set to lower than 16
errors, forward progress may not be guaranteed.

This register is mapped to the non-standard read/write CSR address space.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 26 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Table 3-4 ICCM Correctable Error Counter/Threshold Register (miccmect, at CSR 0x7F1)

Field Bits Description Access | Reset

thresh 31:27 | ICCM correctable ECC error threshold: R/W 0
0..26: Value i selects count][i] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented for each detected ICCM correctable ECC error. R/W 0

If count[thresh] transitions from ’0’ to ‘1’, signal correctable error local
interrupt (see Section 2.7.2).

3.5.3 DCCM Correctable Error Counter/Threshold Register (mdccmect)

The mdccmect register holds the DCCM correctable error counter and its threshold. The count field of the
mdccmect register is incremented, if a correctable ECC error is detected on either a retired load/store instruction or a
DMA read access to the DCCM. The thresh field of the mdccmect register holds a pointer to a bit position of the
count field. If the selected bit of the count field transitions from ‘0’ to ‘1, the threshold is reached, and a correctable
error local interrupt (see Section 2.7.2) is signaled.

Hardware increments the count field on a detected single-bit error for a retired load or store instruction (i.e., a non-
speculative access with no exception) or a DMA read. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending until the counter overflows
(i.e., as long as the count value is equal to or greater than the threshold value (= 2t"esh)), When firmware resets the
counter, the correctable error local interrupt condition is cleared.

Note: DMA accesses while in power management Sleep (pmu/fw-halt) or debug halt (db-halt) state may encounter
DCCM single-bit errors. Correctable errors are counted in the mdccmect error counter irrespective of the core's
power state.

This register is mapped to the non-standard read/write CSR address space.

Table 3-5 DCCM Correctable Error Counter/Threshold Register (mdccmect, at CSR 0x7F2)

Field Bits Description Access | Reset

thresh 31:27 | DCCM correctable ECC error threshold: R/W 0
0..26: Value i selects count][i] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented for each detected DCCM correctable ECC error. R/W 0

If count[thresh] transitions from '0’ to ‘1’, signal correctable error local
interrupt (see Section 2.7.2).

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 27 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

4 |Internal Timers

This chapter describes the internal timer feature of the SweRV EL2 core.

4.1 Features

The SweRV EL2’s internal time features are:

e Two independently controlled 32-bit timers
o Dedicated counter
o Dedicated bound
o Dedicated control to enable/disable incrementing generally, during power management Sleep, and
while executing PAUSE
o Enable/disable local interrupts (in standard RISC-V mie register)
e Cascade mode to form a single 64-bit timer

4.2 Description

The SweRV EL2 core implements two internal timers. The mitcnt0 and mitcntl registers (see Section 4.4.1) are
32-bit unsigned counters. Each counter also has a corresponding 32-bit unsigned bound register (i.e., mitb0 and
mitbl, see Section 4.4.2) and control register (i.e., mitct10 and mitctl11, see Section 4.4.3).

All registers are cleared at reset unless otherwise noted. After reset, the counters start incrementing the next clock
cycle if the increment conditions are met. All registers can be read as well as written at any time. The mitcnt0/1
and mitb0/1 registers may be written to any 32-bit value. If the conditions to increment are met, the corresponding
counter mitcnt0/1 increments every clock cycle.

Cascade mode (see Section 4.4.3) links the two counters together. The mitcnt1 register is only incremented when
the conditions to increment mitcntl are met and the mitcntO register is greater than or equal to the bound in its
mitb0 register.

For each timer, a local interrupt (see Section 4.3) is triggered when that counter is at or above its bound. When a
counter is at or above its bound, it gets cleared the next clock cycle (i.e., the interrupt condition is not sticky).

Note: If the core is in Debug Mode and being single-stepped, it may take multiple clock cycles to execute a single
instruction. If the conditions to increment are met, the counter increments for every clock cycle it takes to execute a
single instruction. Therefore, every executed single-stepped instruction in Debug Mode may result in multiple counter
increments.

Note: If the core is in the Debug Mode’s Halted (i.e., db-halt) state, an internal timer interrupt won’t transition the core
back to the Active (i.e., Running) state.

4.3 Internal Timer Local Interrupts

Local-to-the-core interrupts for internal timer 0 and 1 have pending?® (mitip0/1) and enable (mitie0/1) bits in bit
positions 29 (for internal timer 0) and 28 (for internal timer 1) of the standard RISC-V mip (see Table 10-2) and mie
(see Table 10-1) registers, respectively. The priority is lower than the RISC-V External, Software, and Timer
interrupts (see Table 12-1). The internal timer 0 and 1 local interrupts have an mcause value of 0x8000_001D (for
internal timer 0) and 0x8000_001C (for internal timer 1) (see Table 10-3).

Note: If both internal timer interrupts occur in the same cycle, internal timer O’s interrupt has higher priority than
internal timer 1’s interrupt.

Note: A common interrupt service routine may be used for both interrupts. The mcause register value differentiates
the two local interrupts.

2 Since internal timer interrupts are not latched (i.e., not “sticky”) and these local interrupts are only signaled for one core clock
cycle, it is unlikely that they are detected by firmware in the mip register.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 28 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

4.4 Control/Status Registers

A summary of platform-specific internal timer control/status registers in CSR space:

e Internal Timer Counter O / 1 Register (mitcnt0/1) (see Section 4.4.1)
e Internal Timer Bound 0 / 1 Register (mitb0/1) (see Section 4.4.2)
e Internal Timer Control 0/ 1 Register (mitctl0/1) (see Section 4.4.3)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

4.4.1 Internal Timer Counter 0/ 1 Register (mitcnt0/1)

The mitcnt0 and mitcntl registers are the counters of the internal timer 0 and 1, respectively.

The conditions to increment a counter are:

e The enable bit in the corresponding mitct10/1 registeris ‘1’,

e ifthe core is in Sleep (i.e., pmu/fw-halt) state, the halt_en bit in the corresponding mitct10/1 registeris ‘1’
e if the core is paused, the pause_en bit in the corresponding mitct10/1 registeris ‘1’, and

e the core is not in Debug Mode, except while executing a single-stepped instruction.

A counter is cleared if its value is greater than or equal to its corresponding mi tb0/1 register.

These registers are mapped to the non-standard read/write CSR address space.

Table 4-1 Internal Timer Counter 0/ 1 Register (mitcnt0/1, at CSR 0x7D2 / Ox7D5)

Field Bits Description Access | Reset

count 31:0 Counter R/W 0

4.4.2 Internal Timer Bound 0/ 1 Register (mitb0/1)
The mitb0 and mitb1l registers hold the upper bounds of the internal timer 0 and 1, respectively.

These registers are mapped to the non-standard read/write CSR address space.

Table 4-2 Internal Timer Bound 0/ 1 Register (mitb0/1, at CSR 0x7D3 / 0x7D6)

Field Bits Description Access | Reset

bound 31:0 Bound R/W OXFFFF_FFFF

4.4.3 Internal Timer Control 0/ 1 Register (mitctl0/1)
Themitctl0 and mitctl1 registers provide the control bits of the internal timer 0 and 1, respectively.

Note: When in cascade mode, it is highly recommended to program the enable, halt_en, and pause_en control bits of
the mitctll register the same as the mitct10 register.

These registers are mapped to the non-standard read/write CSR address space.

Table 4-3 Internal Timer Control 0/ 1 Register (mitctl0/1, at CSR 0x7D4 / 0x7D7)

Field Bits Description Access | Reset

Reserved 31:4 Reserved R 0

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 29 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

3/29/2020

Field Bits

Description

Access

Reset

cascade 3

(mitctll
only)

Cascade mode:

0: Disable cascading (i.e., both internal timers operate independently)
(default)

1: Enable cascading (i.e., internal timer 0 and 1 are combined into a
single 64-hit timer)

R/W

pause_en 2

Enable/disable incrementing timer counter while executing PAUSE:
0: Disable incrementing (default)
1: Enable incrementing

Note: If ‘1’ and the core is pausing (see Section 5.5.2), an internal timer
interrupt terminates PAUSE and regular execution is resumed.

R/W

halt_en 1

Enable/disable incrementing timer counter while in Sleep (i.e., pmu/fw-
halt) state:

0: Disable incrementing (default)
1: Enable incrementing
Note: If ‘1’ and the core is in Sleep (i.e., pmu/fw-halt) state, an internal

timer interrupt transitions the core back to the Active (i.e., Running)
state and regular execution is resumed.

R/W

enable 0

Enable/disable incrementing timer counter:
0: Disable incrementing
1: Enable incrementing (default)

R/W

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

30 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

5 Power Management and Multi-Core Debug Control

This chapter specifies the power management and multi-core debug control functionality provided or supported by the
SweRV EL2 core. Also documented in this chapter is how debug may interfere with core power management.

5.1 Features

SweRV EL2 supports and provides the following power management and multi-core debug control features:

Support for three system-level power states: Active (CO0), Sleep (C3), Power Off (C6)
Firmware-initiated halt to enter sleep state

Fine-grain clock gating in active state

Enhanced clock gating in sleep state

Halt/run control interface to/from SoC Power Management Unit (PMU)

Signal indicating that core is halted

Halt/run control interface to/from SoC debug Multi-Processor Controller (MPC) to enable cross-triggering in
multi-core chips

Timeout-based mechanism to force Debug Halt state by terminating hung bus transactions
e Signals indicating that core is in Debug Mode and core hit a breakpoint

e PAUSE feature to help avoid firmware spinning

5.2 Core Control Interfaces

SweRV EL2 provides two control interfaces, one for power management and one for multi-core debug control, which
enable the core to be controlled by other SoC blocks.

5.2.1 Power Management

The power management interface enables an SoC-based Power Management Unit (PMU) to:

e Halt (i.e., enter low-power sleep state) or restart (i.e., resume execution) the core, and
e get an indication when the core has gracefully entered the sleep state.

The power management interface signals are described in Table 5-3.

5.2.2 Multi-Core Debug Control
The multi-core debug control interface enables an SoC-based Multi-Processor Controller (MPC) to:

Control the reset state of the core (i.e., either start executing or enter Debug Mode),

halt (i.e., enter Debug Mode) or restart (i.e., resume execution) the core,

get an indication when the core is in Debug Mode, and

cross-trigger other cores when this core has entered Debug Mode due to a software or a hardware
breakpoint.

The multi-core debug control interface signals are described in Table 5-4.

5.3 Power States

From a system’s perspective, the core may be placed in one of three power states: Active (C0), Sleep (C3), and
Power Off (C6). Active and Sleep states require hardware support from the core, but in the Power Off state the core
is power-gated so no special hardware support is needed.

Figure 5-1 depicts and Table 5-2 describes the core activity states as well as the events to transition between them.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 31 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

o Without Single Step action, stay in Running
¢ With Single Step action, execute one
instruction then return to Halted (db-halt)

cpu_halt status = low debug mode_status = high cpu_halt status = low

(see “Debug Resume
Requests” table below)

Debug Mode

(Core Debug Halt Request or
Core Debug Single Step or
Core Debug Breakpoint w/Halt or
Core Debug Trigger w/Halt or
MPC Debug Halt Request)
&

Halted
(db-halt)
Active (CO)

Running
Active (CO)

Core

(PMU Run Request or Debug Halt

Core Quiesced highest-priority ext. interrupt or Request
software interrupt or or
timer interrupt or MPC
internal timer interrupt or Debug Halt
Nﬂ\f') Request
No Core Debug Halt Request
& Core
No MPC Debug Halt Request Debug Halt
Halted Request
(pmu/fw-halt) or
S| c3 No MPC
(PMU Halt Request or FW-initiated Halt) eep (C3) Reset Run
& Request
No Core Debug Halt Action
& PMU

No MPC Debug Halt Request Halt Rg(fquest
&

) cpu halt status = high
Core Quiesced - - - No Core Debug

Halt Request

No PMU Halt Request
&
No Core Debug Halt Request
&

MPC Reset Run Request

Figure 5-1 SweRV EL2 Core Activity States

Note: ‘Core Quiesced’ implies that no new instructions are executed and all outstanding core-initiated bus
transactions are completed (i.e., the read buffer and the write buffer are empty, and all outstanding I-cache misses
are finished). Note that the store queue and the DMA FIFO might not be empty due to on-going DMA transactions.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 32 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Table 5-1 Debug Resume Requests

Core-Internal State

Halted Halted Comments

Debug Debug MPC MPC)
(This (Next
Resume Halt Halt Run Cycle) Cycle)
0 0 0 0 0 0 No request for Debug Mode entry
No action required from core
0 0 0 1 ; T .
(requires coordination outside of core)
Waiting for MPC Run
0 0 1 0 1 L (core remains in ‘db-halt’ state)
0 0 1 1 1 0 MPC Run Ack
Waiting for Debug Resume
0 1 0 0 1 1 (core remains in ‘db-halt’ state)
0 1 0 1 No action required from core

(requires coordination outside of core)

Waiting for both MPC Run and
0 1 1 0 1 1 Debug Resume
(core remains in ‘db-halt’ state)

Waiting for Debug Resume

0 1 1 1 1 1 (core remains in ‘db-halt’ state)
No action required from core
1 0 0 0 ; T .
(requires coordination outside of core)
No action required from core
1 0 0 1 ; L .
(requires coordination outside of core)
No action required from core
1 0 1 0 . T .
(requires coordination outside of core)
No action required from core
1 0 1 1 ; T .
(requires coordination outside of core)
1 1 0 0 1 0 Debug Resume Ack
No action required from core
1 1 0 1 : L .
(requires coordination outside of core)
Waiting for MPC Run
1 1 1 0 1 1 (core remains in ‘db-halt’ state)
1 1 1 1 1 0 Debug Resume Ack and MPC Run Ack

Note: While in ‘db-halt’ state, hardware ignores Debug Resume requests if the corresponding ‘Debug Halt’ state is
not ‘1’. Likewise, hardware ignores MPC Debug Run requests if the corresponding ‘MPC Halt’ state is not ‘1°.

Note: The core-internal state bits are cleared upon exiting Debug Mode.

Note: In the period between an MPC Debug Halt request and an MPC Debug Run request, core debug single-step
actions are ignored.

Note: Even if the core is already in Debug Mode due to a previous MPC Debug Halt request, a core debugger must
initiate a debug halt (i.e., Core Debug Halt request) before it may start issuing other debug commands. However, if
Debug Mode was entered due to a core debug breakpoint, a Core Debug Halt request is not required.

Note: An MPC Debug Halt request may only be signaled when the core is either not in Debug Mode or is already in
Debug Mode due to a previous Core Debug Halt request or a debug breakpoint or trigger. Also, an MPC Debug Run
request may only be signaled when the core is in Debug Mode due to either a previous MPC Debug Halt request, a

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 33 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

3/29/2020

previous Core Debug Halt request, or a debug breakpoint or trigger. Issuing more than one MPC Debug Halt
requests in succession or more than one MPC Debug Run requests in succession is a protocol violation.

Table 5-2 Core Activity States

Active (CO0)

Sleep (C3)

Running

Halted

db-halt

pmu/fw-halt

State
Description

Core operating normally

Core halted in Debug Mode

Core halted by PMU halt
request or by core firmware-
initiated halt

Power Savings

Fine-grain clock gating
integrated in core minimizes
power consumption during
regular operation

Fine-grain clock gating

Enhanced clock gating in
addition to fine-grain clock
gating

DMA Access

DMA accesses allowed

State Indication

e cpu_halt statusis low

e debug mode_status is
low (except for Core Debug
Resume request with
Single Step action)

e cpu_halt statusis low

e debug mode_status is

high

e cpu_halt status is high

e debug _mode_status s
low

Internal Timer
Counters

mitcent0/1 incremented
every core clock cycle

(also during execution of
instructions while single-
stepping in Debug Mode)

mitcnt0/1 notincremented

Depends on halt_en bit in
mitctl0/1 registers:
0: mitcnt0/1 not
incremented
1:mitent0/1 incremented
every core clock cycle

Machine Cycle
Performance-
Monitoring
Counter

mcycle incremented every
core clock cycle

Depends on stopcount bit in
dcsr (Debug Control and
Status Register) register:
0: mcycle incremented
every core clock cycle

1: mcycle not incremented

mcycle not incremented

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

34 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

5.4 Power Control

The priority order of simultaneous halt requests is as follows:

1. Any core debug halt action:
a. Core debug halt request
b. Core debug single step
c. Core debug breakpoint
d. Core debug trigger

or MPC debug halt request
2. PMU halt request or core firmware-initiated halt

If the PMU sends a halt request while the core is in Debug Mode, the core disregards the halt request. If the PMU’s
halt request is still pending when the core exits Debug Mode, the request is honored at that time. Similarly, core
firmware can’t initiate a halt while in Debug Mode. However, it is not possible for a core firmware-initiated halt
request to be pending when the core exits Debug Mode.

Important Note: There are two separate sources of debug operations: the core itself which conforms to the standard
RISC-V Debug specification [3], and the Multi-Processor Controller (MPC) IP block which provides multi-core debug
capabilities. These two sources may interfere with each other and need to be carefully coordinated on a higher level
outside the core. Unintended behavior might occur if simultaneous debug operations from these two sources are not
synchronized (e.g., MPC requesting a resume during the execution of an abstract command initiated by the debugger
attached to the JTAG port).

5.4.1 Debug Mode
Debug Mode must be able to seize control of the core. Therefore, debug has higher priority than power control.
Debug Mode is entered under any of the following conditions:

Core debug halt request

Core debug single step

Core debug breakpoint with halt action
Core debug trigger with halt action
Multi-core debug halt request (from MPC)

Debug Mode is exited with:

e Core debug resume request with no single step action
e Multi-core debug run request (from MPC)

The state ‘db-halt’ is the only halt state allowed while in Debug Mode.

5.4.1.1 Single Stepping
A few notes about executing single-stepped instructions:

e Executing instructions which attempt to exit Debug Mode are ignored (e.g., writing to the mpmc register
requesting to halt the core does not transition the core to the pmu/fw-halt state).
e Accesses to D-mode registers are illegal, even though the core is in Debug Mode.

5.4.1.2 Forced Debug Halt

Upon receiving a debug halt request (i.e., either a Core Debug or MPC Debug Halt request, or a breakpoint or trigger
to Debug Mode), the core is typically quiesced before the Debug Halt (db-halt) state is entered. However, LSU or IFU
bus transactions may not complete due to SoC or other issues outside the core which may stop the core from
executing. This may prevent the core from entering the Debug Halt state after a debug halt request has been
received. To enable a debugger taking control of the core, ongoing LSU and IFU bus transactions may be terminated
after a programmable timeout period (see Section 5.5.3) has passed, forcing the core into the Debug Halt state.

Once the debugger has control of the core, it may read a status register (see Section 5.5.4) to inquire if LSU or IFU
bus transactions have been terminated and data might have been lost.

Note: This feature is targeted at allowing a debugger to take control of a hung core. Therefore, the timeout period
should be set high enough to cover any reasonable delay incurred by any access to SoC memory locations and
devices. This should include potential additional delays due to congestion in the interconnect and other possible

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 35 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

temporary conditions. If the timeout period is long enough for all outstanding transactions to gracefully finish,
program execution may be resumed after debugging has been performed. However, if any outstanding transactions
are prematurely forced to terminate, successfully resuming program execution after debug should not be expected
because the data of terminated transactions may have been lost and possibly even a reset of the SoC might be
necessary to bring the system back into a consistent state.

5.4.2 Core Power and Multi-Core Debug Control and Status Signals

Figure 5-2 depicts the power and multi-core debug control and status signals which connect the SweRV EL2 core to
the PMU and MPC IPs. Signals from the PMU and MPC to the core are asynchronous and must be synchronized to
the core clock domain. Similarly, signals from the core are asynchronous to the PMU and MPC clock domains and
must be synchronized to the PMU’s or MPC's clock, respectively.

Note: The synchronizer of the cpu_run_req signal may not be clock-gated. Otherwise, the core may not be woken
up again via the PMU interface.

PMU Power Control MPC Debug Control
Signals Signals
mpc_debug_halt_req . op_ i
mpc_debug_halt_ac
cpu_halt_req l‘ cp_h flag._r
cpu_halt_ack
mpc_debug_run_req . op.restat
SweRV EL2 mpc_debug_run_ack
cpu_run_req e P cp_r_flag_r
k
mp T Complex mpc_reset_run_req
— — — ctrl_cp_start
cpu_halt_status
debug_mode_status > co halted
debug_brkpt_status > o bricr

Figure 5-2 SweRV EL2 Power and Multi-Core Debug Control and Status Signals

5.4.2.1 Power Control and Status Signals

There are three types of signals between the Power Management Unit and the SweRV EL2 core, as described in
Table 5-3. All signals are active-high.

Table 5-3 SweRV EL2 Power Control and Status Signals

Signal(s) Description
cpu_halt regand Full handshake to request the core to halt.
cpu_halt ack The PMU requests the core to halt (i.e., enter pmu/fw-halt) by asserting the

cpu_halt req signal. The core is quiesced before halting. The core then asserts the
cpu_halt ack signal. When the PMU detects the asserted cpu halt ack signal, it
deasserts the cpu_halt regsignal. Finally, when the core detects the deasserted
cpu_halt regsignal, it deasserts the cpou halt ack signal.

Note: cpu_halt reqg must be tied to ‘0’ if PMU interface is not used.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 36 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Signal(s)

Description

cpu_run_reqgand
cpu_run_ack

Full handshake to request the core to run.

The PMU requests the core to run by asserting the cpu_run_req signal. The core
exits the halt state and starts execution again. The core then asserts the
cpu_run_ack signal. When the PMU detects the asserted cpu run_ack signal, it
deasserts the cpu_run_reqg signal. Finally, when the core detects the deasserted
cpu_run_req signal, it deasserts the cpu_run_ack signal.

Note: cpu_run req must be tied to ‘0’ if PMU interface is not used.

cpu_halt status

Indication from the core to the PMU that the core has been gracefully halted.

Note: Power control protocol violations (e.g., simultaneously sending a run and a halt request) may lead to

unexpected behavior.

Note: If the core is already in the activity state being requested (i.e., the core is already either in the pmu/fw-halt state
and cpu_halt reqis asserted, or in the Running state and cpu_run_req is asserted), an acknowledgement may
not be signaled (i.e., the cou_halt ackor cpu run_ack signal, respectively, may not be asserted). In general,
requesting a state the core is already in should be avoided, and recovering from this condition needs to be handled at

the SoC level.

Figure 5-3 depicts conceptual timing diagrams of a halt and a run request. Note that entering Debug Mode is an
asynchronous event relative to power control commands sent by the PMU. Debug Mode has higher priority and can
interrupt and override PMU requests.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 37 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

PMU Halt Request:

cpu_halt_req ,/ \\
cpu_halt_ack // N
cpu_halt_status //
cpu_run_req
cpu_run_ack
quiesce core >

PMU Run Request:

cpu_halt_req

cpu_halt_ack

cpu_halt_status \\
cpu_run_req // \\
cpu_run_ack // \\
start execution

Figure 5-3 SweRV EL2 Power Control and Status Interface Timing Diagrams

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 38 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

5.4.2.2 Multi-Core Debug Control and Status Signals

There are five types of signals between the Multi-Processor Controller and the SweRV EL2 core, as described in
Table 5-4. All signals are active-high.

Table 5-4 SweRV EL2 Multi-Core Debug Control and Status Signals

Signal(s)

Description

mpc_debug halt req
and
mpc_debug halt ack

Full handshake to request the core to debug halt.

The MPC requests the core to halt (i.e., enter ‘db-halt’) by asserting the
mpc_debug halt regsignal. The core is quiesced before halting. The core then
asserts the mpc_debug_halt ack signal. When the MPC detects the asserted
mpc_debug_halt ack signal, it deasserts the mpc_debug halt req signal.
Finally, when the core detects the deasserted mpc_debug_halt req signal, it
deasserts the mpc _debug halt ack signal.

For as long as the mpc_debug_halt req signal is asserted, the core must assert and
hold the mpc_debug_halt ack signal whether it was already in ‘db-halt’ or just
transitioned into ‘db-halt’ state.

Note: The cause field of the core’s Debug Control and Status Register (dcsr) is set to
3 (i.e., the same value as a debugger-requested entry to Debug Mode due to a Core
Debug Halt request). Similarly, the Debug PC (dpc) is updated with the address of the
next instruction to be executed at the time that Debug Mode was entered.

Note: Signaling more than one MPC Debug Halt request in succession is a protocol
violation.

Note: mpc_debug_halt reg must be tied to ‘0’ if MPC interface is not used.

mpc_debug run req
and
mpc_debug run ack

Full handshake to request the core to run.

The MPC requests the core to run by asserting the mpc_debug run_req signal. The
core exits the halt state and starts execution again. The core then asserts the
mpc_debug run_ack signal. When the MPC detects the asserted
mpc_debug_run_ack signal, it deasserts the mpc_debug_run_regsignal. Finally,
when the core detects the deasserted mpc_debug run_req signal, it deasserts the
mpc_debug_run_ack signal.

For as long as the mpc_debug_run_req signal is asserted, the core must assert and
hold the mpc_debug_run_ack signal whether it was already in ‘Running’ or after
transitioning into ‘Running’ state.

Note: The core remains in the ‘db-halt’ state if a core debug request is also still active.

Note: Signaling more than one MPC Debug Run request in succession is a protocol
violation.

Note: mpc_debug_run_reqg must be tied to ‘0’ if MPC interface is not used.

mpc_reset_run_req

Core start state control out of reset:
1: Normal Mode (‘Running’ or ‘pmu/fw-halt’ state)
0: Debug Mode halted (‘db-halt’ state)

Note: The core complex does not implement a synchronizer for this signal because the
timing of the first clock is critical. It must be synchronized to the core clock domain
outside the core in the SoC.

Note: mpc reset run req must be tied to ‘1" if MPC interface is not used.

debug mode status

Indication from the core to the MPC that the core is currently in Debug Mode.

debug brkpt status

Indication from the core to the MPC that a software (i.e., ebreak instruction) or
hardware (i.e., trigger hit) breakpoint has been triggered in the core. The breakpoint
signal is only asserted for breakpoints and triggers with debug halt action. The signal is
deasserted on exiting Debug Mode.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 39 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Note: Multi-core debug control protocol violations (e.g., simultaneously sending a run and a halt request) may lead to
unexpected behavior.

Note: If the core is either not in the db-halt state (i.e., debug mode status indication is not asserted) or is already
in the db-halt state due to a previous Core Debug Halt request or a debug breakpoint or trigger (i.e.,
debug_mode_status indication is already asserted), asserting the mpc_debug_halt req signal is allowed and
acknowledged with the assertion of the mpc_debug _halt ack signal. Also, asserting the mpc debug run req
signal is only allowed if the core is in the db-halt state (i.e., debug mode status indication is asserted), but the
core asserts the mpc_debug run_ack signal only after the cpu_run_req signal on the PMU interface has been
asserted as well, if a PMU Halt request was still pending.

Note: If the MPC is requesting the core to enter Debug Mode out of reset by activating the mpc_reset run req
signal, the mpc_debug run_ req signal may not be asserted until the core is out of reset and has entered Debug
Mode. Violating this rule may lead to unexpected core behavior.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 40 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Figure 5-4 depicts conceptual timing diagrams of a halt and a run request.

MPC Halt Request:

mpc_debug_halt_req / N\

mpc_debug_halt_ack // N\

1
debug_mode_status 7

mpc_debug_run_req

mpc_debug_run_ack

L

quiesce core

Dif core not already quiesced and in Debug Mode due to earlier Core Debug Halt request (i.e., in active core debug session)

MPC Run Request:

mpc_debug_halt_req

mpc_debug_halt_ack

debug_mode_status \\
mpc_debug_run_req // \\
mpc_debug_run_ack // \\
. D=| >
wait for | start
Core Debug execution
Resume
request?

2 if in active core debug session

Figure 5-4 SweRV EL2 Multi-Core Debug Control and Status Interface Timing Diagrams

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 41 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Figure 5-5 depicts conceptual timing diagrams of the breakpoint indication.

Breakpoint Signal Assertion:

debug_brkpt_status /

debug_mode_status®

quiesce core

Dif core not already quiesced and in Debug Mode due to earlier Core Debug Halt request (i.e., in active core debug session)

Breakpoint Signal Deassertion:

debug_brkpt_status \

debug_mode_status \

Figure 5-5 SweRV EL2 Breakpoint Indication Timing Diagrams

5.4.3 Debug Scenarios

The following mixed core debug and MPC debug scenarios are supported by the core:

5431
1.

Scenario 1: Core Halt » MPC Halt ©» MPC Run = Core Resume

Core debugger asserts a Debug Halt request which results in the core transitioning into Debug Halt state
(db-halt).

In the system, another processor hits a breakpoint. The MPC signals a Debug Halt request to all processors
to halt.

Core acknowledges this Debug Halt request as it is already in Debug Halt state (db-halt).

MPC signals a Debug Run request, but core is in the middle of a core debugger operation (e.g., an Abstract
Command-based access) which requires it to remain in Debug Halt state.

Core completes debugger operation and waits for Core Debug Resume request from the core debugger.
When core debugger sends a Debug Resume request, the core then transitions to the Running state and
deasserts the debug mode status signal.

Finally, core acknowledges MPC Debug Run request.

Scenario 2: Core Halt » MPC Halt = Core Resume - MPC Run

Core debugger asserts a Debug Halt request which results in the core transitioning into Debug Halt state
(db-halt).

In the system, another processor hits a breakpoint. The MPC signals Debug Halt request to all processors
to halt.

Core acknowledges this Debug Halt request as it is already in Debug Halt state (db-halt).

Core debugger completes its operations and sends a Debug Resume request to the core.

Core remains in Halted state as MPC has not yet asserted its Debug Run request. The
debug_mode_status signal remains asserted.

When MPC signals a Debug Run request, the core then transitions to the Running state and deasserts the
debug mode_ status signal.

Finally, core acknowledges MPC Debug Run request.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 42 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

5.4.3.3 Scenario 3: MPC Halt = Core Halt » Core Resume = MPC Run

MPC asserts a Debug Halt request which results in the core transitioning into Debug Halt state (db-halt).
Core acknowledges this Debug Halt request.

Core debugger signals a Debug Halt request to the core. Core is already in Debug Halt state (db-halt).
Core debugger completes its operations and sends a Debug Resume request to the core.

Core remains in Halted state as MPC has not yet asserted its Debug Run request. The
debug_mode_status signal remains asserted.

When MPC signals a Debug Run request, the core then transitions to the Running state and deasserts the
debug mode status signal.

6. Finally, core acknowledges MPC Debug Run request.

SN S

o

5434 Scenario 4: MPC Halt > Core Halt > MPC Run - Core Resume

MPC asserts a Debug Halt request which results in the core transitioning into Debug Halt state (db-halt).
Core acknowledges this Debug Halt request.

Core debugger signals a Debug Halt request to the core. Core is already in Debug Halt state (db-halt).
MPC signals a Debug Run request, but core debugger operations are still in progress. Core remains in
Halted state. The debug mode status signal remains asserted.

5. Core debugger completes operations and signals a Debug Resume request to the core.

6. The core then transitions to the Running state and deasserts the debug_mode_status signal.

7. Finally, core acknowledges MPC Debug Run request.

PowbdPE

5435 Summary

For the core to exit out of Debug Halt state (db-halt) in cases where it has received debug halt requests from both
core debugger and MPC, it must receive debug run requests from both the core debugger as well as the MPC,
irrespective of the order in which debug halt requests came from both sources. Until then, the core remains halted
and the debug mode status signal remains asserted.

5.4.4 Core Wake-Up Events
When not in Debug Mode (i.e., the core is in pmu/fw-halt state), the core is woken up on several events:

e PMU run request

Highest-priority external interrupt (mhwakeup signal from PIC) and core interrupts are enabled
Software interrupt

Timer interrupt

Internal timer interrupt

Non-maskable interrupt (NMI) (nmi_int signal)

The PIC is part of the core logic and the mhwakeup signal is connected directly inside the core. The internal timers
are part of the core and internally connected as well. The standard RISC-V software and timer interrupt as well as
NMI signals are external to the core and originate in the SoC. If desired, these signals can be routed through the
PMU and further qualified there.

5.4.5 Core Firmware-Initiated Halt
The firmware running on the core may also initiate a halt by writing a ‘1’ to the halt field of the mpmc register (see
Section 5.5.1). The core is quiesced before indicating that it has gracefully halted.

5.4.6 DMA Operations While Halted
When the core is halted in the ‘pmu/fw-halt’ or the ‘db-halt’ state, DMA operations are supported.

5.4.7 External Interrupts While Halted

All non-highest-priority external interrupts are temporarily ignored while halted. Only external interrupts which activate
the mhwakeup signal (see Section 6.5.2, Steps 13 and 14) are honored, if the core is enabled to service external
interrupts (i.e., the mie bit of the mstatus and the meie bit of the mie standard RISC-V registers are both set,
otherwise the core remains in the ‘pmu/fw-halt’ state). External interrupts which are still pending and have a
sufficiently high priority to be signaled to the core are serviced once the core is back in the Running state.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 43 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

5.5 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

Power Management Control Register (mpmc) (see Section 5.5.1)
Core Pause Control Register (mcpc) (see Section 5.5.2)

Forced Debug Halt Threshold Register (mfdht) (see Section 5.5.3)
Forced Debug Halt Status Register (mfdhs) (see Section 5.5.4)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

5.5.1 Power Management Control Register (mpmc)

The mpmc register provides core power management control functionality. It allows the firmware running on the core
to initiate a transition to the Halted (pmu/fw-halt) state. While entering the Halted state, interrupts may optionally be
enabled atomically.

The halt field of the mpmc register has W1RO0 (Write 1, Read 0) behavior, as also indicated in the ‘Access’ column.

Note: Writing a ‘1’ to the haltie field of the mpmc register without also setting the halt field has no immediate effect on
the mie bit of the mstatus register. However, the haltie field of the mpmc register is updated accordingly.

Note: Once the mie bit of the mstatus register is set via the haltie field of the mpmc register, it remains set until other
operations clear it. Exiting the Halted (pmu/fw-halt) state does not clear the mie bit of the mstatus register set by
entering the Halted state.

Note: In Debug Mode, writing (i.e., setting or clearing) haltie has no effect on the mstatus register's mie bit since the
core does not transition to the Halted (pmu/fw-halt) state.

This register is mapped to the non-standard read/write CSR address space.

Table 5-5 Power Management Control Register (mpmc, at CSR 0x7C6)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
haltie 1 Control interrupt enable (i.e., mie bit of mstatus register) when R/W 1

transitioning to Halted (pmu/fw-halt) state by setting halt bit below:
0: Don't change mie bit of mstatus register
1: Set mie bit of mstatus register (i.e., atomically enable interrupts)

halt 0 Initiate core halt (i.e., transition to Halted (pmu/fw-halt) state) RO/W1 | O
Note: Write ignored if in Debug Mode

5.5.2 Core Pause Control Register (mcpc)

The mcpc register supports functions to temporarily stop the core from executing instructions. This helps to save
core power since busy-waiting loops can be avoided in the firmware.

PAUSE stops the core from executing instructions for a specified number?* of clock ticks or until an interrupt is
received.

Note: PAUSE is a long-latency, interruptible instruction and does not change the core’s activity state (i.e., the core
remains in the Running state). Therefore, even though this function may reduce core power, it is not part of core
power management.

24 The field width provided by the mcpc register allows to pause execution for about 4 seconds at a 1 GHz core clock.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 44 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Note: PAUSE has a skid of several cycles. Therefore, instruction execution might not be stopped for precisely the
number of cycles specified in the pause field of the mcpc register. However, this is acceptable for the intended use
case of this function.

Note: Depending on the pause_en bit of the mitct10/1 registers, the internal timers might be incremented while
executing PAUSE. If an internal timer interrupt is signaled, PAUSE is terminated and normal execution resumes.

Note: If the PMU sends a halt request while PAUSE is still executing, the core enters the Halted (pmu/fw-halt) state
and the pause clock counter stops until the core is back in the Running state.

Note: WFI is another candidate for a function that stops the core temporarily. Currently, the WFI instruction is
implemented as NOP, which is a fully RISC-V-compliant option.

The pause field of the mcpc register has WARO (Write Any value, Read 0) behavior, as also indicated in the ‘Access’
column.

This register is mapped to the non-standard read/write CSR address space.

Table 5-6 Core Pause Control Register (mcpc, at CSR 0x7C2)

Field Bits Description Access | Reset

pause 31:0 Pause execution for number of core clock cycles specified RO/W 0

Note: pause is decremented by 1 for each core clock cycle. Execution
continues either when pause is 0 or any interrupt is received.

5.5.3 Forced Debug Halt Threshold Register (mfdht)

The mfdht register hosts the enable bit of the forced debug halt mechanism as well as the power-of-two exponent of
the timeout threshold. When enabled, if a debug halt request is received and LSU and/or IFU bus transactions are
pending, an internal timeout counter starts incrementing with each core clock and keeps incrementing until the Debug
Halt (db-halt) state is entered. If all ongoing bus transactions complete within the timeout period and the core is
quiesced, the Debug Halt state is entered as usual. However, if the timeout counter value is equal to or greater than
the threshold value (= 2™esh core clocks), all in-progress LSU and IFU bus transactions are terminated and the Debug
Halt state is entered (i.e., the core may be forced to the Debug Halt state before it is fully quiesced). In addition,
when entering the Debug Halt state in either case, the mfdhs register (see Section 5.5.4 below) latches the status if
any LSU or IFU bus transactions have been prematurely terminated.

Note: The internal timeout counter is cleared at reset as well as when the Debug Halt (db-halt) state is exited.

Note: The 5-bit threshold (thresh field) allows a timeout period of up to 23! core clock cycles (i.e., about 2.1 seconds
at a 1GHz core clock frequency).

This register is mapped to the non-standard read/write CSR address space.

Table 5-7 Forced Debug Halt Threshold Register (mfdht, at CSR 0x7CE)

Field Bits Description Access | Reset
Reserved 31:6 Reserved R 0
thresh 5:1 Power-of-two exponent of timeout threshold (= 2t"esh core clock cycles) R/W 0
enable 0 Enable/disable forced debug halt timeout: R/W 0

0: Timeout mechanism disabled (default)

1: Timeout mechanism enabled

5.5.4 Forced Debug Halt Status Register (mfdhs)

The mfdhs register provides status information if any LSU and/or IFU bus transactions have been prematurely
terminated when the Debug Halt (db-halt) state has been entered. A debugger may read this register to inquire if any

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 45 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

3/29/2020

bus transactions have been terminated and data may have been lost while entering the Debug Halt state. If both
status bits are ‘0’ indicates that the core was properly quiesced.

Note: A debugger may also clear the status bits if desired, but clearing is not required for proper operation.

This register is mapped to the non-standard read/write CSR address space.

Table 5-8 Forced Debug Halt Status Register (mfdhs, at CSR 0x7CF)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
Isu 1 LSU bus transaction termination status: R/W 0
0: No transactions have been prematurely terminated
1: One or more transactions have been prematurely terminated
ifu 0 IFU bus transaction termination status: R/W 0
0: No transactions have been prematurely terminated
1: One or more transactions have been prematurely terminated
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 46 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

6 External Interrupts

See Chapter 7, Platform-Level Interrupt Controller (PLIC) in [2 (PLIC)] for general information.

Note: Even though this specification is modeled to a large extent after the RISC-V PLIC (Platform-Level Interrupt
Controller) specification, this interrupt controller is associated with the core, not the platform. Therefore, the more
general term PIC (Programmable Interrupt Controller) is used.

6.1 Features

The PIC provides these core-level external interrupt features:

e Up to 255 global (core-external) interrupt sources (from 1 (highest) to 255 (lowest)) with separate enable
control for each source

e 15 priority levels (numbered 1 (lowest) to 15 (highest)), separately programmable for each interrupt source

e Programmable reverse priority order (14 (lowest) to 0 (highest))

e Programmable priority threshold to disable lower-priority interrupts

e Wake-up priority threshold (hardwired to highest priority level) to wake up core from power-saving (Sleep)
mode if interrupts are enabled

e One interrupt target (RISC-V hart M-mode context)

e Support for vectored external interrupts

e Support for fast interrupt redirection in hardware (selectable by build argument)

e Support for interrupt chaining and nested interrupts

6.2 Naming Convention

6.2.1 Unit, Signal, and Register Naming
S suffix: Unit, signal, and register names which have an S suffix indicate an entity specific to an interrupt source.

X suffix: Register names which have an X suffix indicate a consolidated register for multiple interrupt sources.

6.2.2 Address Map Naming
Control/status register: A control/status register mapped to either the memory or the CSR address space.
Memory-mapped register: Register which is mapped to RISC-V’s 32-bit memory address space.

Register in CSR address space: Register which is mapped to RISC-V’s 12-bit CSR address space.
6.3 Overview of Major Functional Units

6.3.1 External Interrupt Source

All functional units on the chip which generate interrupts to be handled by the RISC-V core are referred to as external
interrupt sources. External interrupt sources indicate an interrupt request by sending an asynchronous signal to the
PIC.

6.3.2 Gateway

Each external interrupt source connects to a dedicated gateway. The gateway is responsible for synchronizing the
interrupt request to the core’s clock domain, and for converting the request signal to a common interrupt request
format (i.e., active-high and level-triggered) for the PIC. The PIC core can only handle one single interrupt request
per interrupt source at a time.

All current SoC IP interrupts are asynchronous and level-triggered. Therefore, the gateway’s only function for SoC IP
interrupts is to synchronize the request to the core clock domain. There is no state kept in the gateway.

A gateway suitable for ASIC-external interrupts must provide programmability for interrupt type (i.e., edge- vs. level-
triggered) as well as interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for edge-triggered interrupts,
active-high vs. -low for level-triggered interrupts). For edge-triggered interrupts, the gateway must latch the interrupt

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 47 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

request in an interrupt pending (IP) flop to convert the edge- to a level-triggered interrupt signal. Firmware must clear
the IP flop while handling the interrupt.

Note: For asynchronous interrupt sources, the pulse duration of an interrupt request must be at least two full clock
cycles of the receiving (i.e., PIC core) clock domain to guarantee it will be recognized as an interrupt request. Shorter
pulses might be dropped by the synchronizer circuit.

6.3.3 PIC Core

The PIC core’s responsibility is to evaluate all pending and enabled interrupt requests and to pick the highest-priority
request with the lowest interrupt source ID. It then compares this priority with a programmable priority threshold and,
to support nested interrupts, the priority of the interrupt handler if one is currently running. If the picked request's
priority is higher than both thresholds, it sends an interrupt notification to the core. In addition, it compares the picked
request’s priority with the wake-up threshold (highest priority level) and sends a wake-up signal to the core, if the
priorities match. The PIC core also provides the interrupt source ID of the picked request in a status register.

Implementation Note: Different levels in the evaluation tree may be staged wherever necessary to meet timing,
provided that all signals of a request (ID, priority, etc.) are equally staged.

6.3.4 Interrupt Target

The interrupt target is a specific RISC-V hart context. For the SweRV EL2 core, the interrupt target is the M privilege
mode of the hart.

6.4 PIC Block Diagram

Figure 6-1 depicts a high-level view of the PIC. A simple gateway for asynchronous, level-triggered interrupt sources
is shown in Figure 6-2, whereas Figure 6-3 depicts conceptually the internal functional blocks of a configurable
gateway. Figure 6-4 shows a single comparator which is the building block to form the evaluation tree logic in the
PIC core.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 48 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

External Interrupt Source 1 External Interrupt Source 2 External Interrupt Source 3 External Interrupt Source 254 External Interrupt Source 255
exintsrc_req[1] exintsrc_req[2] exintsrc_req[3] exintsrc_req[254] exintsrc_req[255]
Y Y

meip0. meip0. meip0. meip7. meip7.
intpendl intpend2 intpend3 intpend30 intpend31

& Comparator E & Comparator B

& Comparator S

meihap
base, claimid, 2'b0]

[ateway [Target PIC core [[] Comparator
[JRead-only CSR [write-only CSR

[CJrRw csr O R CSR (wicond. inversion)

Figure 6-1 PIC Block Diagram

Implementation Note: For R/W control/status registers with double-borders in Figure 6-1, the outputs of the registers
are conditionally bit-wise inverted, depending on the priority order set in the priord bit of the mpiccfg register. This
is necessary to support the reverse priority order feature.

Note: The PIC logic always operates in regular priority order. When in reverse priority order mode, firmware reads
and writes the control/status registers with reverse priority order values. The values written to and read from the
control/status registers are inverted. Therefore, from the firmware’s perspective, the PIC operates in reverse priority
order.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 49 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

. Multi-stage Interrupt Request
exintsrc_req[S] for Source S

Figure 6-2 Gateway for Asynchronous, Level-triggered Interrupt Sources

. Multi-stage XOR Interrupt Request
exintsrc_req([S] m for Source S

[] Gateway [JRMW CSR] write-only CSR

Figure 6-3 Conceptual Block Diagram of a Configurable Gateway

Priorityg

IDg > Priorityour
Prioritya : IDout

IDa

Figure 6-4 Comparator

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 50 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

6.5 Theory of Operation

Note: Interrupts must be disabled (i.e., the mie bit in the standard RISC-V mstatus register must be cleared) before
changing the standard RISC-V mtvec register or the PIC’s meicurpl and meipt registers, or unexpected behavior
may occur.

6.5.1 Initialization

The control registers must be initialized in the following sequence:

1.
2.

3.

o

Configure the priority order by writing the priord bit of the mpiccfg register.

For each configurable gateway S, set the polarity (polarity field) and type (type field) in the meigwctrls
register and clear the IP bit by writing to the gateway’s meigwclrS register.

Set the base address of the external vectored interrupt address table by writing the base field of the meivt
register.

Segt the priority level for each external interrupt source S by writing the corresponding priority field of the
meiplS registers.

Set the priority threshold by writing prithresh field of the meipt register.

Initialize the nesting priority thresholds by writing ‘0’ (or ‘15’ for reversed priority order) to the clidpri field of
the meicidpl and the currprifield of the meicurpl registers.

Enable interrupts for the appropriate external interrupt sources by setting the inten bit of the meie S registers
for each interrupt source S.

6.5.2 Regular Operation

A step-by-step description of interrupt control and delivery:

1.

2.

ok

10.

11.

12.
13.

The external interrupt source S signals an interrupt request to its gateway by activating the corresponding
exintsrc req[S] signal.
The gateway synchronizes the interrupt request from the asynchronous interrupt source’s clock domain to
the PIC core clock domain (pic_clk).
For edge-triggered interrupts, the gateway also converts the request to a level-triggered interrupt signal by
setting its internal interrupt pending (IP) bit.
The gateway then signals the level-triggered request to the PIC core by asserting its interrupt request signal.
The pending interrupt is visible to firmware by reading the corresponding intpend bit of the meipX register.
With the pending interrupt, the source’s interrupt priority (indicated by the priority field of the meipls
register) is forwarded to the evaluation logic.
If the corresponding interrupt enable (i.e., inten bit of the meie S register is set), the pending interrupt’s
priority is sent to the input of the first-level 2-input comparator.
The priorities of a pair of interrupt sources are compared:
a. If the two priorities are different, the higher priority and its associated hardwired interrupt source ID
are forwarded to the second-level comparator.
b. If the two priorities are the same, the priority and the lower hardwired interrupt source ID are
forwarded to the second-level comparator.
Each subsequent level of comparators compares the priorities from two comparator outputs of the previous
level:
a. If the two priorities are different, the higher priority and its associated interrupt source ID are
forwarded to the next-level comparator.
b. If the two priorities are the same, the priority and the lower interrupt source ID are forwarded to the
next-level comparator.
The output of the last-level comparator indicates the highest priority (maximum priority) and lowest interrupt
source ID (interrupt ID) of all currently pending and enabled interrupts.
Maximum priority is compared to the higher of the two priority thresholds (i.e., prithresh field of the meipt
and currpri field of the meicurpl registers):
a. If maximum priority is higher than the two priority thresholds, the mexintirqg signal is asserted.
b. If maximum priority is the same as or lower than the two priority thresholds, the mexintirqg signal
is deasserted.
The mexintirqg signal’s state is then reflected in the meip bit of the RISC-V hart’s mip register.
In addition, maximum priority is compared to the wake-up priority level:
a. If maximum priority is 15 (or O for reversed priority order), the wake-up notification (WUN) bit is set.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 51 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

b. If maximum priority is lower than 15 (or O for reversed priority order), the wake-up notification
(WUN) bit is not set.

14. The WUN state is indicated to the target hart with the mhwakeup signal®®.

15. When the target hart takes the external interrupt, it disables all interrupts (i.e., clears the mie bit of the RISC-
V hart's mstatus register) and jumps to the external interrupt handler.

16. The external interrupt handler writes to the meicpct register to trigger the capture of the interrupt source ID
of the currently highest-priority pending external interrupt (in the meihap register) and its corresponding
priority (in the meicidpl register). Note that the captured content of the claimid field of the meihap register
and its corresponding priority in the meicidpl register is neither affected by the priority thresholds
(prithresh field of the meipt and currpri field of the meicurpl registers) nor by the core’s external interrupt
enable bit (meie bit of the RISC-V hart’s mie register).

17. The handler then reads the meihap register to obtain the interrupt source ID provided in the claimid field.
Based on the content of the meihap register, the external interrupt handler jumps to the handler specific to
this external interrupt source.

18. The source-specific interrupt handler services the external interrupt, and then:

a. For level-triggered interrupt sources, the interrupt handler clears the state in the SoC IP which
initiated the interrupt request.

b. For edge-triggered interrupt sources, the interrupt handler clears the IP bit in the source’s gateway
by writing to the meigwclrsS register.

19. The clearing deasserts the source’s interrupt request to the PIC core and stops this external interrupt source
from participating in the highest priority evaluation.

20. In the background, the PIC core continuously evaluates the next pending interrupt with highest priority and
lowest interrupt source ID:

a. If there are other interrupts pending, enabled, and with a priority level higher than prithresh field of
the meipt and currpri field of the meicurpl registers, mexintirqg stays asserted.

b. If there are no further interrupts pending, enabled, and with a priority level higher than prithresh
field of the meipt and currpri field of the meicurpl registers, mexintirgqg is deasserted.

21. Firmware may update the content of the meihap and meicidpl registers by writing to the meicpct
register to trigger a new capture.

6.6 Support for Vectored External Interrupts

Note: The RISC-V standard defines support for vectored interrupts down to an interrupt class level (i.e., timer,
software, and external interrupts for each privilege level), but not to the granularity of individual external interrupt
sources (as described in this section). The two mechanisms are independent of each other and should be used
together for lowest interrupt latency. For more information on the standard RISC-V vectored interrupt support, see
Section 3.1.7 in [2].

The SweRV EL2 PIC implementation provides support for vectored external interrupts. The content of the meihap
register is a full 32-bit pointer to the specific vector to the handler of the external interrupt source which needs
service. This pointer consists of a 22-bit base address (base) of the external interrupt vector table, the 8-bit claim ID
(claimid), and a 2-bit ‘0’ field. The claimid field is adjusted with 2 bits of zeros to construct the offset into the vector
table containing 32-bit vectors. The external interrupt vector table resides either in the DCCM, SoC memory, or a
dedicated flop array in the core.

2 Note that the core is only woken up from the power management Sleep (pmu/fw-halt) state if the mie bit of the mstatus and the
meie bit of the mie standard RISC-V registers are both set.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 52 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

External Interrupt
Vector Table

External Interrupt
Handler Text Blocks

No-Interrupt
Handler

\

External Interrupt
Handler 1

base —»|

No-Interrupt Pointer

Source ID 1 Pointer

Source ID 2 Pointer

Y

External Interrupt
Handler 2

‘ meihap ‘
{base, claimid, 2'b0}

Source ID 3 Pointer

Source 1D 255 Pointer

Figure 6-5 Vectored External Interrupts

32 bits

\

External Interrupt
Handler 3

External Interrupt
Handler 255

3/29/2020

Arbitrary Size Text Blocks

Figure 6-5 depicts the steps from taking the external interrupt to starting to execute the interrupt source-specific
handler. When the core takes an external interrupt, the initiated external interrupt handler executes the following

operations:
1. Save register(s) used in this handler on the stack
2.
3. Load the meihap control/status register into regx
4. Load memory location at address in regXinto regy
5.

Store to the meicpct control/status register to capture a consistent claim ID / priority level pair

Jump to address in regy (i.e., start executing the interrupt source-specific handler)

Note: Two registers (regX and regy) are shown above for clarification only. The same register can be used.

Note: The interrupt source-specific handler must restore the register(s) saved in step 1. above before executing the

mret instruction.

It is possible in some corner cases that the captured claim ID read from the meihap register is O (i.e., no interrupt
request is pending). To keep the interrupt latency at a minimum, the external interrupt handler above should not

check for this condition. Instead, the pointer stored at the base address of the external interrupt vector table (i.e.,
pointer 0) must point to a ‘no-interrupt’ handler, as shown in Figure 6-5 above. That handler can be as simple as
executing a return from interrupt (i.e., mret) instruction.

Note that it is possible for multiple interrupt sources to share the same interrupt handler by populating their respective

interrupt vector table entries with the same pointer to that handler.

6.6.1 Fast Interrupt Redirect

SweRV EL2 provides fast interrupt handing through interrupt redirection by hardware. The fast interrupt redirect
feature is configured with a build argument to the core.

If this feature is instantiated, hardware automatically captures a consistent claim ID / priority level pair once at least
one qualifying external interrupt is pending and external interrupts are enabled (i.e., the meie bit in the mie register
and the mie bit in the mstatus register are set). Following conceptually the same flow as shown in Figure 6-5,
hardware uses the content of the meihap register to lookup the start address of the corresponding Interrupt Service
Routine (ISR) by stalling decode and creating a bubble in the LSU pipeline. This bubble allows the core to access
the external interrupt vector table in the DCCM to get the start address of the interrupt source-specific ISR. Once the
start address of the ISR is known, hardware creates an interrupt flush and redirects directly to the corresponding ISR.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

53 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

If the hardware lookup of the ISR’s start address fails for any reason, a non-maskable interrupt (NMI, see Section
2.15) is taken. The reason for the lookup failure is reported in the mcause register (see Table 10-3) so firmware may
determine which error condition has occurred. The fast-interrupt-redirect-related NMI failure modes are:

e Double-bit uncorrectable ECC error on access (mcause value: 0OxFO00_1000)
e Access not entirely contained within the DCCM, but within DCCM region (mcause value: 0OxF000_1001)
e Access to non-DCCM region (mcause value: 0OxF000_1002)

Note: The fast interrupt redirect mechanism is independent of the standard RISC-V direct and vectored interrupt
modes. However, when fast interrupt redirect is enabled, external interrupts are bypassing the standard RISC-V
interrupt mechanism. All other interrupts are still following the standard flow.

Note: The fast interrupt redirect feature is not compatible with interrupt chaining concept described in Section 6.7
below. The meicpct register (see Section 6.11.8) to capture the latest interrupt evaluation result is not present if the
fast interrupt redirect mechanism is instantiated because the capturing of the claim ID / priority level pair is initiated in
hardware, instead of firmware.

6.7 Interrupt Chaining

Figure 6-6 depicts the concept of chaining interrupts. The goal of chaining is to reduce the overhead of pushing and
popping state to and from the stack while handling a series of Interrupt Service Routines (ISR) of the same priority
level. The first ISR of the chain saves the state common to all interrupt handlers of this priority level to the stack and
then services its interrupt. If this handler needs to save additional state, it does so immediately after saving the
common state and then restores only the additional state when done. At the end of the handler routine, the ISR
writes to the meicpct register to capture the latest interrupt evaluation result, then reads the meihap register to
determine if any other interrupts of the same priority level are pending. If no, it restores the state from the stack and
exits. If yes, it immediately jumps into the next interrupt handler skipping the restoring of state in the finished handler
as well as the saving of the same state in the next handler. The chaining continues until no other ISRs of the same
priority level are pending, at which time the last ISR of the chain restores the original state from the stack again.

Note: Interrupt chaining is not compatible with the fast interrupt redirect feature (see Section 6.6.1). If the fast
interrupt redirect mechanism is instantiated, interrupt chaining cannot be used.

pusJ tate push state push state push state
Ex{ |nal Ex{ |nal Ex{ |nal Ex] [nal
Int¢ upt Int¢ upt Int¢ upt L) Int¢ |upt
H erA Han erB Han erC Harl lern
pop state pop state pop state pop tate

Figure 6-6 Concept of Interrupt Chaining

6.8 Interrupt Nesting

Support for multiple levels of nested interrupts helps to provide a more deterministic interrupt latency at higher priority
levels. To achieve this, a running interrupt handler with lower priority must be preemptable by a higher-priority
interrupt. The state of the preempted handler is saved before the higher priority interrupt is executed, so that it can
continue its execution at the point it was interrupted.

SweRV EL2 and its PIC provide supported for up to 15 nested interrupts, one interrupt handler at each priority level.
The conceptual steps of nesting are:

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 54 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

1. The external interrupt is taken as described in step 15. of Section 6.5.2 Regular Operation. When the core
takes the external interrupt, it automatically disables all interrupts.

2. The external interrupt handler executes the following steps to get into the source-specific interrupt handler,
as described in Section 6.6:

st meicpct // atomically captures winning claim ID and priority level
1d meihap // get pointer to interrupt handler starting address

1d isr_addr // load interrupt handler starting address

jmp isr addr // jump to source-specific interrupt handler

3. The source-specific interrupt handler then saves the state of the code it interrupted (including the priority
level in case it was an interrupt handler) to the stack, sets the priority threshold to its own priority, and then
reenables interrupts:

push mepc, mstatus, mie,

push meicurpl // save interrupted code’s priority level

1d meicidpl // read interrupt handler’s priority level
st meicurpl // change threshold to handler’s priority

mstatus.mei=1 // reenable interrupts

4. Any external interrupt with a higher priority can now safely preempt the currently executing interrupt handler.
5. Once the interrupt handler finished its task, it disables any interrupts and restores the state of the code it

interrupted:
mstatus.mei=0 // disable all interrupts
pop meicurpl // get interrupted code’s priority level
st meicurpl // set threshold to previous priority
pop mepc, mstatus, mie,
mret // return from interrupt, reenable interrupts

6. The interrupted code continues to execute.

6.9 Performance Targets

The target latency through the PIC, including the clock domain crossing latency incurred by the gateway, is 4 core
clock cycles.

6.10 Configurability

Typical implementations require fewer than 255 external interrupt sources. Code should only be generated for
functionality needed by the implementation.
6.10.1 Rules
e The IDs of external interrupt sources must start at 1 and be contiguous.
e All unused register bits must be hardwired to ‘0’.
6.10.2 Build Arguments
The PIC build arguments are:

e PIC base address for memory-mapped control/status registers (PIC_base_addr)
o See Section 15.2.2

e Number of external interrupt sources
o Total interrupt sources (RV_PIC_TOTAL_INT): 2..255

6.10.3 Impact on Generated Code

6.10.3.1 External Interrupt Sources
The number of required external interrupt sources has an impact on the following:

e General impact:
o Signal pins:

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 55 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

L] exintsrc reql[S]
o Registers:

" meiplS
" meipX
o Logic:

= Gateway S
e Target PIC core impact:

o Registers:
" meieS

o Logic:
= Gating of priority level with interrupt enable
= Number of first-level comparators
= Unnecessary levels of the comparator tree

6.10.3.2 Further Optimizations

Register fields, bus widths, and comparator MUXs are sized to cover the maximum external interrupt source IDs of
255. For approximately every halving of the number of interrupt sources, it would be possible to reduce the number
of register fields holding source IDs, bus widths carrying source IDs, and source ID MUXs in the comparators by one.
However, the overall reduction in logic is quite small, so it might not be worth the effort.

6.11 PIC Control/Status Registers

A summary of the PIC control/status registers in CSR address space:

External Interrupt Priority Threshold Register (meipt) (see Section 6.11.5)

External Interrupt Vector Table Register (meivt) (see Section 6.11.6)

External Interrupt Handler Address Pointer Register (meihap) (see Section 6.11.7)

External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct) (see Section 6.11.8)
External Interrupt Claim ID’s Priority Level Register (meicidpl) (see Section 6.11.9)

External Interrupt Current Priority Level Register (meicurpl) (see Section 6.11.10)

A summary of the PIC memory-mapped control/status registers:

PIC Configuration Register (mpiccfg) (see Section 6.11.1)

External Interrupt Priority Level Registers (meiplS) (see Section 6.11.2)

External Interrupt Pending Registers (meipX) (see Section 6.11.3)

External Interrupt Enable Registers (meieS) (see Section 6.11.4)

External Interrupt Gateway Configuration Registers (meigwctrlS) (see Section 6.11.11)
External Interrupt Gateway Clear Registers (meigwclrS) (see Section 6.11.12)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

Note: All memory-mapped register writes must be followed by a fence instruction to enforce ordering and
synchronization.

Note: All memory-mapped control/status register accesses must be word-sized and word-aligned. Non-word
sized/aligned loads cause a load access fault exception, and non-word sized/aligned stores cause a store/AMO
access fault exception.

Note: Accessing unused addresses within the 32KB PIC address range do not trigger an unmapped address
exception. Reads to unmapped addresses return 0, writes to unmapped addresses are silently dropped.
6.11.1 PIC Configuration Register (mpiccfg)

The PIC configuration register is used to select the operational parameters of the PIC.

This 32-bit register is an idempotent memory-mapped control register.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 56 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Table 6-1 PIC Configuration Register (mpiccfg, at PIC_base_addr+0x3000)

Field Bits Description Access | Reset
Reserved | 31:1 Reserved R 0
priord 0 Priority order: R/W 0

0: RISC-V standard compliant priority order (O=lowest to 15=highest)
1: Reverse priority order (15=lowest to O=highest)

6.11.2 External Interrupt Priority Level Registers (meiplS)

There are 255 priority level registers, one for each external interrupt source. Implementing individual priority level
registers allows a debugger to autonomously discover how many priority level bits are supported for this interrupt
source. Firmware must initialize the priority level for each used interrupt source. Firmware may also read the priority
level.

Implementation Note: The read and write paths between the core and the meip1 S registers must support direct and
inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is necessary to
support the reverse priority order feature.

These 32-bit registers are idempotent memory-mapped control registers.

Table 6-2 External Interrupt Priority Level Register S=1..255 (meiplS, at PIC_base_addr+S*4)

Field Bits Description Access | Reset
Reserved | 31:4 Reserved R 0
priority 3.0 External interrupt priority level for interrupt source ID S: R/W 0

RISC-V standard compliant priority order:

0: Never interrupt

1..15: Interrupt priority level (1 is lowest, 15 is highest)
Reverse priority order:

15: Never interrupt

14..0: Interrupt priority level (14 is lowest, 0 is highest)

6.11.3 External Interrupt Pending Registers (meipX)

Eight external interrupt pending registers are needed to report the current status of up to 255 independent external
interrupt sources. Each bit of these registers corresponds to an interrupt pending indication of a single external
interrupt source. These registers only provide the status of pending interrupts and cannot be written.

These 32-bit registers are idempotent memory-mapped status registers.

Table 6-3 External Interrupt Pending Register X=0..7 (meipX, at PIC_base_addr+0x1000+X*4)

Field Bits Description Access | Reset

X=0,Y=1.31 and X=1..7,Y=0.31

intpendX*32+Y | Y External interrupt pending for interrupt source ID X*32+Y: R 0
0: Interrupt not pending
1: Interrupt pending

X=0,Y=0

Reserved 0 Reserved R 0

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 57 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

6.11.4 External Interrupt Enable Registers (meieS)

Each of the up to 255 independently controlled external interrupt sources has a dedicated interrupt enable register.
Separate registers per interrupt source were chosen for ease-of-use and compatibility with existing controllers.

(Note: Not packing together interrupt enable bits as bit vectors results in context switching being a more expensive
operation.)

These 32-bit registers are idempotent memory-mapped control registers.

Table 6-4 External Interrupt Enable Register S=1..255 (meieS, at PIC_base_addr+0x2000+S*4)

Field Bits Description Access | Reset
Reserved | 31:1 | Reserved R 0
inten 0 External interrupt enable for interrupt source ID S: R/W 0

0: Interrupt disabled
1: Interrupt enabled

6.11.5 External Interrupt Priority Threshold Register (meipt)

The meipt register is used to set the interrupt target’s priority threshold. Interrupt notifications are sent to a target
only for external interrupt sources with a priority level strictly higher than this target’s threshold. Hosting the threshold
in a separate register allows a debugger to autonomously discover how many priority threshold level bits are
supported.

Implementation Note: The read and write paths between the core and the meipt register must support direct and
inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is necessary to
support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-5 External Interrupt Priority Threshold Register (meipt, at CSR 0xBC9)

Field Bits Description Access | Reset
Reserved | 31:4 | Reserved R 0
prithresh | 3:0 External interrupt priority threshold: R/W 0

RISC-V standard compliant priority order:
0: No interrupts masked

1..14: Mask interrupts with priority strictly lower than or equal to this
threshold

15: Mask all interrupts
Reverse priority order:
15: No interrupts masked

14..1: Mask interrupts with priority strictly lower than or equal to this
threshold

0: Mask all interrupts

6.11.6 External Interrupt Vector Table Register (meivt)

The meivt register is used to set the base address of the external vectored interrupt address table. The value
written to the base field of the meivt register appears in the base field of the meihap register.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 58 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

This 32-bit register is mapped to the non-standard read-write CSR address space.

Table 6-6 External Interrupt Vector Table Register (meivt, at CSR 0xBC8)

Field Bits Description Access | Reset
base 31:10 | Base address of external interrupt vector table R/W 0
Reserved | 9:0 Reserved R 0

6.11.7 External Interrupt Handler Address Pointer Register (meihap)

The meihap register provides a pointer into the vectored external interrupt table for the highest-priority pending
external interrupt. The winning claim ID is captured in the claimid field of the meihap register when firmware writes
to the meicpct register to claim an external interrupt. The priority level of the external interrupt source
corresponding to the claimid field of this register is simultaneously captured in the clidpri field of the meicidpl
register. Since the PIC core is constantly evaluating the currently highest-priority pending interrupt, this mechanism
provides a consistent snapshot of the highest-priority source requesting an interrupt and its associated priority level.
This is important to support nested interrupts.

The meihap register contains the full 32-bit address of the pointer to the starting address of the specific interrupt
handler for this external interrupt source. The external interrupt handler then loads the interrupt handler’s starting
address and jumps to that address.

Alternatively, the external interrupt source ID indicated by the claimid field of the meihap register may be used by the
external interrupt handler to calculate the address of the interrupt handler specific to this external interrupt source.

Implementation Note: The base field in the meihap register reflects the current value of the base field in the meivt
register. l.e., base is not stored in the meihap register.

This 32-bit register is mapped to the non-standard read-only CSR address space.

Table 6-7 External Interrupt Handler Address Pointer Register (meihap, at CSR 0xFC8)

Field Bits Description Access | Reset

base 31:10 | Base address of external interrupt vector table (i.e., base field of meivt R 0
register)

claimid 9:2 External interrupt source 1D of highest-priority pending interrupt (i.e., R 0

lowest source ID with highest priority)

00 1:0 Must read as ‘00’ R 0

6.11.8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct)

The meicpct register is used to trigger the simultaneous capture of the currently highest-priority interrupt source ID
(in the claimid field of the meihap register) and its corresponding priority level (in the clidpri field of the meicidpl
register) by writing to this register. Since the PIC core is constantly evaluating the currently highest-priority pending
interrupt, this mechanism provides a consistent snapshot of the highest-priority source requesting an interrupt and its
associated priority level. This is important to support nested interrupts.

Note: The meicpct register to capture the latest interrupt evaluation result is not present (i.e., an invalid CSR
address) if the fast interrupt redirect mechanism (see Section 6.6.1) is instantiated. With that feature, capturing the
claim ID / priority level pair is initiated in hardware, instead of firmware.

The meicpct register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

Implementation Note: The meicpct register does not have any physical storage elements associated with it. Itis

write-only and solely serves as the trigger to simultaneously capture the winning claim ID and corresponding priority
level.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 59 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct, at CSR 0xBCA)

Field Bits Description Access | Reset

Reserved | 31:0 Reserved RO/WA | O

6.11.9 External Interrupt Claim ID’s Priority Level Register (meicidpl)

The meicidpl register captures the priority level corresponding to the interrupt source indicated in the claimid field
of the meihap register when firmware writes to the meicpct register. Since the PIC core is constantly evaluating the
currently highest-priority pending interrupt, this mechanism provides a consistent snapshot of the highest-priority
source requesting an interrupt and its associated priority level. This is important to support nested interrupts.

Implementation Note: The read and write paths between the core and the meicidpl register must support direct
and inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is
necessary to support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-9 External Interrupt Claim ID’s Priority Level Register (meicidpl, at CSR 0xBCB)

Field Bits Description Access | Reset

Reserved | 31:4 | Reserved R 0

clidpri 3.0 Priority level of preempting external interrupt source (corresponding to R/W 0
source ID read from claimid field of me ihap register)

6.11.10 External Interrupt Current Priority Level Register (meicurpl)

The meicurpl register is used to set the interrupt target’s priority threshold for nested interrupts. Interrupt
notifications are signaled to the core only for external interrupt sources with a priority level strictly higher than the
thresholds indicated in this register and the meipt register.

The meicurpl register is written by firmware, and not updated by hardware. The interrupt handler should read its
own priority level from the clidpri field of the meicidpl register and write it to the currpri field of the meicurpl
register. This avoids potentially being interrupted by another interrupt request with lower or equal priority once
interrupts are reenabled.

Note: Providing the meicurpl register in addition to the meipt threshold register enables an interrupt service
routine to temporarily set the priority level threshold to its own priority level. Therefore, only new interrupt requests
with a strictly higher priority level are allowed to preempt the current handler, without modifying the longer-term
threshold set by firmware in the meipt register.

Implementation Note: The read and write paths between the core and the meicurpl register must support direct
and inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is
necessary to support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-10 External Interrupt Current Priority Level Register (meicurpl, at CSR 0xBCC)

Field Bits Description Access | Reset
Reserved | 31:4 | Reserved R 0
currpri 3.0 Priority level of current interrupt service routine (managed by firmware) R/W 0

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 60 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

6.11.11 External Interrupt Gateway Configuration Registers (meigwctrlS)

Each configurable gateway has a dedicated configuration register to control the interrupt type (i.e., edge- vs. level-
triggered) as well as the interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for edge-triggered
interrupts, active-high vs. -low for level-triggered interrupts).

Note: A register is only present for interrupt source S if a configurable gateway is instantiated.
These 32-bit registers are idempotent memory-mapped control registers.

Table 6-11 External Interrupt Gateway Configuration Register S=1..255 (meigwctrlS, at
PIC_base_addr+0x4000+S*4)

Field Bits Description Access | Reset
Reserved | 31:2 Reserved R 0
type 1 External interrupt type for interrupt source ID S: R/W 0

0: Level-triggered interrupt
1: Edge-triggered interrupt

polarity 0 External interrupt polarity for interrupt source ID S: R/W 0
0: Active-high interrupt
1: Active-low interrupt

6.11.12 External Interrupt Gateway Clear Registers (meigwclrS)

Each configurable gateway has a dedicated clear register to reset its interrupt pending (IP) bit. For edge-triggered
interrupts, firmware must clear the gateway’s IP bit while servicing the external interrupt of source ID S by writing to
the meigwclrS register.

Note: A register is only present for interrupt source S if a configurable gateway is instantiated.

The meigwclrS register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

Implementation Note: The meigwclrS register does not have any physical storage elements associated with it. It
is write-only and solely serves as the trigger to clear the interrupt pending (IP) bit of the configurable gateway S.

These 32-bit registers are idempotent memory-mapped control registers.

Table 6-12 External Interrupt Gateway Clear Register S=1..255 (meigwclrS, at PIC_base_addr+0x5000+S*4)

Field Bits Description Access | Reset

Reserved | 31:0 Reserved RO/WA | O

6.12 PIC CSR Address Map
Table 6-13 summarizes the PIC non-standard RISC-V CSR address map.

Table 6-13 PIC Non-standard RISC-V CSR Address Map

Number | Privilege | Name Description Section
0xBC8 MRW meivt External interrupt vector table register 6.11.6
0xBC9 MRW meipt External interrupt priority threshold register 6.11.5

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 61 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

3/29/2020

Number | Privilege | Name Description Section
O0xBCA MRW meicpct External interrupt claim ID / priority level capture trigger register 6.11.8
0xBCB MRW meicidpl External interrupt claim |ID’s priority level register 6.11.9
0xBCC MRW meicurpl External interrupt current priority level register 6.11.10
OxFC8 MRO meihap External interrupt handler address pointer register 6.11.7
6.13 PIC Memory-mapped Register Address Map
Table 6-14 summarizes the PIC memory-mapped register address map.
Table 6-14 PIC Memory-mapped Register Address Map
Address Offset from PIC_base_addr
Name Description Section
Start End
+ 0x0000 + 0x0003 Reserved Reserved
+ 0x0004 + 0x0004 + Smax*4-1 meiplS Extgrnal interrupt priority level 6.11.2
register
+ 0x0004 + Smax*4 + OXOFFF Reserved Reserved
+ 0x1000 + 0x1000 + (Xmax+1)*4-1 | meipX External interrupt pending register | 6.11.3
+ 0x1000 + (Xmax+1)*4 | + OX1FFF Reserved Reserved
+ 0x2000 + 0x2003 Reserved Reserved
+ 0x2004 + 0x2004 + Smax*4-1 meieS External interrupt enable register 6.11.4
+ 0x2004 + Smax*4 + OX2FFF Reserved Reserved
+ 0x3000 + 0x3003 mpiccfg External interrupt PIC 6.11.1
configuration register
+ 0x3004 + Ox3FFF Reserved Reserved
+ 0x4000 + 0x4003 Reserved Reserved
+ 0x4004 + 0x4004 + Smax*4-1 meigwctrlS | External interrupt gateway 6.11.11
configuration register
(for configurable gateways only)
+ 0x4004 + Smax*4 + OxX4FFF Reserved Reserved
+ 0x5000 + 0x5003 Reserved Reserved
+ 0x5004 + 0x5004 + Smax*4-1 meigwclrS Extgrnal interrupt gateway clear 6.11.12
register
(for configurable gateways only)
+ 0x5004 + Smax*4 + OX7FFF Reserved Reserved
Note: Xmax = (Smax + 31) // 32, whereas // is an integer division ignoring the remainder
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 62 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

6.14 Interrupt Enable/Disable Code Samples

6.14.1 Example Interrupt Flows

e Macro flow to enable interrupt source id 5 with priority set to 7, threshold set to 1, and gateway configured
for edge-triggered/active-low interrupt source:

disable ext int // Disable interrupts (MIE[meip]=0)

set threshold 1 // Program global threshold to 1

init gateway 5, 1, 1 // Configure gateway id=5 to edge-triggered/low
clear gateway 5 // Clear gateway id=5

set priority 5, 7 // Set i1d=5 threshold at 7

enable interrupt 5 // Enable id=5

enable ext int // Enable interrupts (MIE[meip]=1)

e Macro flow to initialize priority order:

o To RISC-V standard order:
init priorityorder 0 // Set priority to standard RISC-V order
init nstthresholds 0 // Initialize nesting thresholds to 0

o To reverse priority order:

init priorityorder 1 // Set priority to reverse order
init nstthresholds 15 // Initialize nesting thresholds to 15

e Code to jump to the interrupt handler from the RISC-V trap vector:
trap vector: // Interrupt trap starts here when MTVEC [mode]=1

csrwi meicpct, 1 // Capture winning claim id and priority
csrr t0, meihap // Load pointer index

1w t1, 0(t0) // Load vector address

jr tl // Go there

e Code to handle the interrupt:

eint handler:
: // Do some useful interrupt handling
mret // Return from ISR

6.14.2 Example Interrupt Macros

e Disable external interrupt:

.macro disable ext int
// Clear MIE[miep]
disable ext int \@:
1i a0, (1<<11)
csrrc zero, mie, a0
.endm

e Enable external interrupt:

.macro enable ext int
enable ext int \@:

// Set MIE[miep]

1i a0, (1<<11)

csrrs zero, mie, a0
.endm

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 63 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

e Initialize external interrupt priority order:

.macro init priorityorder priord

init priorityorder \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MPICCFG OFFSET)
1i t0, \priord
sw t0, 0(tp)

.endm

e |Initialize external interrupt nesting priority thresholds:

.macro init nstthresholds threshold

init nstthresholds \@:
1i t0, \threshold
1i tp, (RV_PIC_BASE ADDR + RV_PIC MEICIDPL OFFSET)
sw t0, 0 (tp)
1i tp, (RV_PIC_BASE ADDR + RV_PIC MEICURPL OFFSET)
sw t0, 0 (tp)

.endm

e Set external interrupt priority threshold:

.macro set threshold threshold

set threshold \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIPT OFFSET)
1i t0, \threshold
sw t0, 0(tp)

.endm

e Enable interrupt for source id:

.macro enable interrupt id

enable interrupt \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIE OFFSET + (\id <<2))
1i to, 1
sw t0, O (tp)

.endm

e Set priority of source id:

.macro set priority id, priority

set priority \@:
1i tp, (RV_PIC BASE ADDR + RV PIC MEIPL OFFSET + (\id <<2))
1i t0, \priority
sw t0, 0(tp)

.endm

¢ |Initialize gateway of source id:

.macro init gateway id, polarity, type
init gateway \@:
1i tp, (RV_PIC_BASE ADDR + RV_PIC _MEIGWCTRL OFFSET + (\id <<2))

1i t0, ((\polarity<<l) | \type)
sw t0, 0(tp)
.endm

e Clear gateway of source id:

.macro clear gateway id

clear gateway \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIGWCLR OFFSET + (\id <<2))
sw zero, O0(tp)

.endm

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 64 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

7 Performance Monitoring

This chapter describes the performance monitoring features of the SweRV EL2 core.

7.1 Features

SweRV EL2 provides these performance monitoring features:

Four standard 64-bit wide event counters

Standard separate event selection for each counter
Standard selective count enable/disable controllability
Standard synchronized counter enable/disable controllability
Standard cycle counter

Standard retired instructions counter

Support for standard SoC-based machine timer registers

7.2 Control/Status Registers

7.2.1 Standard RISC-V Registers
A list of performance monitoring-related standard RISC-V CSRs with references to their definitions:

e Machine Hardware Performance Monitor (ncycle{ |h}, minstret{|h}, mhpmcounter3{|h}-
mhpmcounter31{ |h}, and mhpmevent3-mhpmevent31) (see Section 3.1.11 in [2])

e Machine Counter-Inhibit Register?® (ncountinhibit) (see Section 3.1.13 in [2])

e Machine Timer Registers (mt ime and mt imecmp) (see Section 3.1.10 in [2])

7.3 Counters

Only event counters 3 to 6 (mhpmcounter3{ |h}-mhpmcounter6{|h}) and their corresponding event selectors
(mhpmevent3-mhpmevent6) are functional on SweRV EL2. Event counters 7 to 31 (mhpmcounter7{ |h}-
mhpmcounter31{|h}) and their corresponding event selectors (mhpmevent7-mhpmevent31) are hardwired to ‘0’.

7.4 Count-Impacting Conditions

A few comments to consider on conditions that have an impact on the performance monitor counting:

e While in the pmu/fw-halt power management state, performance counters (including the mcycle counter)
are disabled.

e While in debug halt (db-halt) state, the stopcount bit in the dcsr (Debug Control and Status Register)
register determines if performance counters are enabled.

e While in the pmu/fw-halt power management state or the debug halt (db-halt) state with the stopcount bit
set, DMA accesses are allowed, but not counted by the performance counters. It would be up to the bus
master to count accesses while the core is in a halt state.

¢ While executing PAUSE, performance counters are enabled.

Also, it is recommended that the performance counters are disabled (using the mgpmc register) before the counters
and event selectors are modified, and then reenabled again. This minimizes the impact of reading and writing the
counter and event selector CSRs on the event count values, specifically for the CSR read/write events (i.e., events
#16 and #17). In general, performance counters are incremented after a read access to the counter CSRs, but
before a write access to the counter CSRs.

% The standard mcountinhibit register which was recently added to [2] replaces the non-standard mgpmc register of the previous
SweRYV generation. The mcountinhibit register provides the same functionality as the mgpmc register did, but at a much finer
granularity (i.e., an enable/disable control bit per standard hardware performance counter instead of a single control bit for the
mhpmcounter3 - mhpmcounter6 counters).

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 65 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

7.5 Events

Table 7-1 provides a list of the countable events.

3/29/2020

Note: The event selector registers mhpmevent3-mhpmevent 6 have WARL behavior. When writing a value larger
than the highest supported event number, the event selector is set to the highest event number.

Table 7-1 List of Countable Events
Legend: IP = In-Pipe; OOP = Out-Of-Pipe

Event No | Event Name Description
0 Reserved (no event counted)
Events counted while in Active (CO) state
1 cycles clocks active Number of cycles clock active (OOP)
2 I-cache hits Number of I-cache hits (OOP, speculative, valid fetch & hit)
3 I-cache misses Number of I-cache misses (OOP, valid fetch & miss)
4 instr committed - all Number of all (16b+32b) instructions committed (IP, non-speculative, 0/1)
5 instr committed - 16b Number of 16b instructions committed (IP, non-speculative, 0/1)
6 instr committed - 32b Number of 32b instructions committed (IP, non-speculative, 0/1)
7 instr aligned - all Number of all (16b+32b) instructions aligned (OOP, speculative, 0/1)
8 instr decoded - all Number of all (16b+32b) instructions decoded (OOP, speculative, 0/1)
9 muls committed Number of multiplications committed (IP, 0/1)
10 divs committed Number of divisions and remainders committed (1P, 0/1)
11 loads committed Number of loads committed (IP, 0/1)
12 stores committed Number of stores committed (IP, 0/1)
13 misaligned loads Number of misaligned loads (IP, 0/1)
14 misaligned stores Number of misaligned stores (IP, 0/1)
15 alus committed Number of ALU?? operations committed (IP, 0/1)
16 CSR read Number of CSR read instructions committed (IP, 0/1)
17 CSR read/write Number of CSR read/write instructions committed (IP, 0/1)
18 CSR write rd==0 Number of CSR write rd==0 instructions committed (IP, 0/1)
19 ebreak Number of ebreak instructions committed (IP, 0/1)
20 ecall Number of ecall instructions committed (IP, 0/1)
21 fence Number of fence instructions committed (IP, 0/1)
22 fence.1i Number of fence.i instructions committed (IP, 0/1)
23 mret Number of mret instructions committed (IP, 0/1)
24 branches committed Number of branches committed (IP)
25 branches mispredicted Number of branches mispredicted (IP)

27 NOP is an ALU operation. WFI is implemented as a NOP in SweRV EL2 and, hence, counted as an ALU operation was well.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

66 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

3/29/2020

Event No | Event Name Description

26 branches taken Number of branches taken (IP)

27 unpredictable branches | Number of unpredictable branches (IP)

28 cycles fetch stalled Number of cycles fetch ready but stalled (OOP)

29 Reserved

30 cycles decode stalled Number of cycles one or more instructions valid in IB but decode stalled

(OO0P)

31 cycles postsync stalled Number of cycles postsync stalled at decode (OOP)

32 cycles presync stalled Number of cycles presync stalled at decode (OOP)

33 Reserved

34 cycles SB/WB stalled Number of cycles decode stalled due to SB or WB full (OOP)
(Isu_store_stall_any)

35 cycles DMA DCCM Number of cycles DMA stalled due to decode for load/store (OOP)
transaction stalled
(dma_dccm_stall_any)

36 cycles DMA ICCM Number of cycles DMA stalled due to fetch (OOP)
transaction stalled
(dma_iccm_stall_any)

37 exceptions taken Number of exceptions taken (IP)

38 timer interrupts taken Number of timer?® interrupts taken (IP)

39 external interrupts taken | Number of external interrupts taken (IP)

40 TLU flushes (flush Number of TLU flushes (flush lower) (IP)
lower)

41 branch error flushes Number of branch error flushes (IP)

42 I-bus transactions - instr [Number of instr transactions on I-bus interface (OOP)

43 D-bus transactions - Number of Id/st transactions on D-bus interface (OOP)
Id/st

44 D-bus transactions - Number of misaligned transactions on D-bus interface (OOP)
misaligned

45 I-bus errors Number of transaction errors on I-bus interface (OOP)

46 D-bus errors Number of transaction errors on D-bus interface (OOP)

47 cycles stalled due to I- Number of cycles stalled due to AXI4 or AHB-Lite I-bus busy (OOP)
bus busy

48 cycles stalled due to D- | Number of cycles stalled due to AX14 or AHB-Lite D-bus busy (OOP)
bus busy

49 cycles interrupts Number of cycles interrupts disabled (MSTATUS.MIE==0) (OOP)
disabled

50 cycles interrupts stalled | Number of cycles interrupts stalled while disabled (MSTATUS.MIE==0)
while disabled (O0OP)

51-54 Reserved

2 Events counted include interrupts triggered by the standard RISC-V platform-level timer as well as by the two internal timers.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

67 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Event No | Event Name Description
55 D-bus loads committed Number of load instructions to D-bus committed (IP, 0/1)
56 D-bus stores committed | Number of store instructions to D-bus committed (IP, 0/1)
57 - 511 Reserved
Events counted while in Active (CO) or Sleep (C3) states
512 cycles in Sleep (C3) Number of cycles in Sleep (C3) state (OOP)
state
513 DMA reads (all) Total number of DMA slave read transactions (OOP)
514 DMA writes (all) Total number of DMA slave write transactions (OOP)
515 DMA reads to DCCM Number of DMA slave read transactions to DCCM (OOP)
516 DMA writes to DCCM Number of DMA slave write transactions to DCCM (OOP)
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 68 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

8 Cache Control

This chapter describes the features to control the SweRV EL2 core’s instruction cache (I-cache).

8.1 Features

The SweRV EL2’s I-cache control features are:

e Flushing the I-cache
e Capability to enable/disable I-cache
e Diagnostic access to data, tag, and status information of the I-cache

Note: The I-cache is an optional core feature. Instantiation of the I-cache is controlled by the RV_ICACHE_ENABLE
build argument.

8.2 Feature Descriptions

8.2.1 Cache Flushing

As described in Section 2.8.2, a debugger may initiate an operation that is equivalent to a fence. i instruction by
writing a ‘1’ to the fence_i field of the dmst register. As part of executing this operation, the I-cache is flushed (i.e., all
entries in the I-cache are invalidated).

8.2.2 Enabling/Disabling I-Cache

As described in Section 2.8.1, each of the 16 memory regions has two control bits which are hosted in the mrac
register. One of these control bits, cacheable, controls if accesses to that region may be cached. If the cacheable
bits of all 16 regions are set to ‘0’, the I-cache is effectively turned off.

8.2.3 Diagnostic Access

For firmware as well as hardware debug, direct access to the raw content of the data array, tag array, and status bits
of the I-cache may be important. Instructions stored in the cache, the tag of a cache line as well as status information
including a line’s valid bit and a set’s LRU bits can be manipulated. It is also possible to inject a parity/ECC error in
the data or tag array to check error recovery. Five control registers are used to provide read/write diagnostic access
to the two arrays and status bits. The dicawics register controls the selection of the array, way, and index of a
cache line. The dicad0/0h/1 and dicago registers are used to perform a read or write access to the selected array
location. See Sections 8.5.1 - 8.5.5 for more detailed information.

Note: The instructions and the tags are stored in parity/ECC-protected SRAM arrays. The status bits are stored in
flops.

8.3 Use Cases

The I-cache control features can be broadly divided into two categories:
1. Debug Support
A few examples how diagnostic accesses (Section 8.2.3) may be useful for debug:

Generating an I-cache dump (e.g., to investigate performance issues).

Injecting parity/ECC errors in the data or tag array of the I-cache.

Diagnosing stuck-at bits in the data or tag array of the I-cache.

Preloading the I-cache if a hardware bug prevents instruction fetching from memory.

2. Performance Evaluation

To evaluate the performance advantage of the I-cache, it is useful to run code with and without the cache
enabled. Enabling and disabling the I-cache (Section 8.2.2) is an essential feature for this.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 69 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

8.4 Theory of Operation

8.4.1 Read a Chunk of an I-cache Cache Line

The following steps must be performed to read a 64-bit chunk of instruction data and its associated 4 parity / 7 ECC
bits in an I-cache cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: O (i.e., I-cache data array),
o way field: way to be accessed (i.e., 0..1 for 2-way or 0..3 for 4-way set-associative cache), and
¢ index field: index of cache line to be accessed.
2. Read the dicago register which causes a read access from the I-cache data array at the location selected
by the dicawics register.
3. Readthe dicad0 and dicadOh registers to get the selected 64-bit cache line chunk (instr fields), and read
the dicadl register to get the associated parity/ECC bits (parity0/1/2/3 | ecc fields).

8.4.2 Write a Chunk of an I-cache Cache Line

The following steps must be performed to write a 64-bit chunk of instruction data and its associated 4 parity / 7 ECC
bits in an I-cache cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: O (i.e., I-cache data array),
e way field: way to be accessed (i.e., 0..1 for 2-way or 0..3 for 4-way set-associative cache), and
e index field: index of cache line to be accessed.
2. Write the new instruction data to the instr fields of the dicad0 and dicadOh registers, and write the
calculated correct instruction parity/ECC bits (unless error injection should be performed) to the parity0/1/2/3
/ ecc and fields of the dicad1 register.
3. Write a ‘1’ to the go field of the dicago register which causes a write access to the I-cache data array
copying the information stored in the dicad0/0h/1 registers to the location selected by the dicawics
register.

8.4.3 Read or Write a Full I-cache Cache Line

The following steps must be performed to read or write instruction data and associated parity/ECC bits of a full I-
cache cache line:

1. Start with an index naturally aligned to the 64- or 32-byte cache line size (i.e., index[5:3] = ‘000’ for 64-byte
or index[4:3] = ‘00’ for 32-byte).

2. Perform steps in Section 8.4.1 to read or Section 8.4.2 to write.

3. Increment the index.

4. Go back to step 2.) for a total of 8 (for 64-byte line size) or 4 (for 32-byte line size) iterations.

8.4.4 Read a Tag and Status Information of an I-cache Cache Line

The following steps must be performed to read the tag, tag’s parity/ECC bit(s), and status information of an I-cache
cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: 1 (i.e., I-cache tag array and status),
e way field: way to be accessed (i.e., 0..1 for 2-way or 0..3 for 4-way set-associative cache), and
e index field: index of cache line to be accessed.
2. Read the dicago register which causes a read access from the I-cache tag array and status bits at the
location selected by the dicawics register.
3. Readthe dicad0 register to get the selected cache line’s tag (tag field) and valid bit (valid field) as well as
the set’s LRU bits (Iru field), and read the dicadl register to get the tag’s parity/ECC bit(s) (parityO / ecc
field).

8.4.5 Write a Tag and Status Information of an I-cache Cache Line

The following steps must be performed to write the tag, tag’s parity/ECC bit, and status information of an I-cache
cache line:

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 70 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: 1 (i.e., I-cache tag array and status),
e way field: way to be accessed (i.e., 0..1 for 2-way or 0..3 for 4-way set-associative cache), and
e index field: index of cache line to be accessed.

2. Write the new tag, valid, and LRU information to the tag, valid, and Iru fields of the dicado0 register, and
write the calculated correct tag parity/ECC bit (unless error injection should be performed) to the parityO /
ecc field of the dicadl register.

3. Write a ‘1’ to the go field of the dicago register which causes a write access to the I-cache tag array and
status bits copying the information stored in the dicad0/1 registers to the location selected by the
dicawics register.

8.5 I-Cache Control/Status Registers

A summary of the I-cache control/status registers in CSR address space:

e |-Cache Array/Way/Index Selection Register (dicawics) (see Section 8.5.1)
e |-Cache Array Data 0 Register (dicad0) (see Section 8.5.2)

e |-Cache Array Data 0 High Register (dicadOh) (see Section 8.5.3)

e |-Cache Array Data 1 Register (dicadl) (see Section 8.5.4)

e |-Cache Array Go Register (dicago) (see Section 8.5.5)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

8.5.1 I-Cache Array/Way/Index Selection Register (dicawics)

The dicawics register is used to select a specific location in either the data array or the tag array / status of the I-
cache. In addition to selecting the array, the location in the array must be specified by providing the way, and index.
Once selected, the dicad0/0h/1 registers (see Sections 8.5.2, 8.5.3, and 8.5.4) hold the information read from or to
be written to the specified location, and the dicago register (see Section 8.5.5) is used to control the read/write
access to the specified I-cache array.

The cache line size of the I-cache is either 64 or 32 bytes. The dicawics register addresses a 64-bit chunk of
instruction data or a cache line tag with its associated status. Each 64-bit instruction data chunk is protected either
with four parity bits (each covering 16 consecutive instruction data bits) or with 7-bit ECC (covering all 64 instruction
data bits). There are 8 such chunks in a 64-byte or 4 such chunks in a 32-byte cache line. Each cache line tag is
protected either with a single parity bit or with 5-bit ECC.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-1 I-Cache Array/Way/Index Selection Register (dicawics, at CSR 0x7C8)

Field Bits Description Access | Reset
Reserved | 31:25 | Reserved R 0
array 24 Array select: R/W 0

0: I-cache data array (incl. parity/ECC bits)
1: I-cache tag array (incl. parity/ECC bits) and status (incl. valid and

LRU bits)
Reserved | 23:22 | Reserved R 0
way 21:20 | Way select: R/W 0

Four-way set-associative cache: way[21:20]
Two-way set-associative cache: way[20] (way[21] reserved, must be 0)

Reserved | 19:17 | Reserved R 0

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 71 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Field Bits Description Access | Reset
index?? 16:3 Index address bits select R/W 0
Notes:

¢ Index hits are right-justified:

e For 4-way set-associative cache, index[16] and other unused upper
bits (for I-cache sizes smaller than 256KB) must be 0

e For 2-way set-associative cache, unused upper bits (for I-cache
sizes smaller than 256KB) must be 0

e For tag array and status access:
e For 64-byte cache line size, bits 5..3 are ignored by hardware
e For 32-byte cache line size, bits 4..3 are ignored by hardware

Reserved | 2:0 Reserved R 0

8.5.2 I-Cache Array Data 0 Register (dicad0)

The dicad0 register, in combination with the dicad0h/1 registers (see Sections 8.5.3 and 8.5.4), is used to store
information read from or to be written to the I-cache array location specified with the dicawics register (see Section
8.5.1). Triggering a read or write access of the I-cache array is controlled by the dicago register (see Section 8.5.5).
The layout of the dicad0 register is different for the data array and the tag array / status, as described in Table 8-2
below.

Note: During normal operation, the parity/ECC bits over the 64-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-2 I-Cache Array Data 0 Register (dicad0, at CSR 0x7C9)

Field Bits Description Access | Reset

I-cache data array

instr 31:0 Instruction data R/W 0
31:16: instruction data bytes 3/2 (protected by parityl / ecc)
15:0: instruction data bytes 1/0 (protected by parityO / ecc)

I-cache tag array and status bits

tag 31:11 | Tag R/W 0
Note:

Tag bits are right-justified; unused higher bits (for I-cache sizes larger
than 8KB) must be 0

Unused 10:7 Unused R/W 0

2 SweRV EL2'’s I-cache supports four- or two-way set-associativity and cache line sizes of 64 or 32 bytes. Each way is subdivided
into 2 banks, and each bank is 8 bytes wide. A bank is selected by index[3], and index[2:0] address a byte of the 8-byte wide bank.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 72 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Field Bits Description Access | Reset

Iru 6:4 Pseudo LRU bits (same bits are accessed independent of selected way): R/W 0
Four-way set-associative cache:
Iru[4]: wayO/1 / way2/3 selection
0: wayO0/1
1: way2/3
Iru[5]: wayO / way1 selection
0: way0
1: wayl
Iru[6]: way2 / way3 selection
0: way2
1: way3
Two-way set-associative cache:
Iru[4]: wayO / way1 selection

0: way0
1: wayl
Iru[6:5]: Reserved (must be 0)
Unused 31 Unused R/W 0
valid 0 Cache line valid/invalid: R/W 0

0: cache line invalid
1: cache line valid

8.5.3 I-Cache Array Data 0 High Register (dicadOh)

The dicadOh register, in combination with the dicad0 and dicadl registers (see Sections 8.5.2 and 8.5.4), is used
to store information read from or to be written to the I-cache array location specified with the dicawics register (see
Section 8.5.1). Triggering a read or write access of the I-cache array is controlled by the dicago register (see
Section 8.5.5). The layout of the dicadOh register is described in Table 8-3 below.

Note: During normal operation, the parity/ECC bits over the 64-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-3 I-Cache Array Data 0 High Register (dicadOh, at CSR 0x7CC)

Field Bits Description Access | Reset

instr 31:.0 Instruction data R/W 0
31:16: instruction data bytes 7/6 (protected by parity3 / ecc)
15:0: instruction data bytes 5/4 (protected by parity2 / ecc)

8.5.4 I-Cache Array Data 1 Register (dicadl)

The dicadl register, in combination with the dicad0/0h registers (see Section 8.5.2 and 8.5.3), is used to store
information read from or to be written to the I-cache array location specified with the dicawics register (see Section

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 73 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

8.5.1). Triggering a read or write access of the I-cache array is controlled by the dicago register (see Section 8.5.5).
The layout of the dicadl register is described in Table 8-4 below.

Note: During normal operation, the parity/ECC bits over the 64-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-4 |-Cache Array Data 1 Register (dicadl, at CSR 0x7CA)

Field Bits Description Access | Reset

Parity

Instruction data

Reserved | 31:4 Reserved R 0

parity3 3 Even parity for I-cache data bytes 7/6 (instr[31:16] in dicadOh) R/W 0

parity2 2 Even parity for I-cache data bytes 5/4 (instr[15:0] in dicadOh) R/W 0

parityl 1 Even parity for I-cache data bytes 3/2 (instr[31:16] in dicad0) R/W 0

parityO 0 Even parity for I-cache data bytes 1/0 (instr[15:0] in dicad0) R/W 0

Tag

Reserved | 31:1 Reserved R 0

parityO 0 Even parity for I-cache tag (tag) R/W 0

ECC

Instruction data

Reserved | 31:7 Reserved R 0

ecc 6:0 ECC for I-cache data bytes 7/6/5/4/3/2/1/0 (instr[31:0] in dicadOh and R/W 0
instr[31:0] in dicado0)

Tag

Reserved | 31:5 Reserved R 0

ecc 4:0 ECC for I-cache tag (tag) R/W 0

8.5.5 I-Cache Array Go Register (dicago)

The dicago register is used to trigger a read from or write to the I-cache array location specified with the dicawics
register (see Section 8.5.1). Reading the dicago register populates the dicad0/dicadOh/dicadl registers (see
Sections 8.5.2, 8.5.3, and 8.5.4) with the information read from the I-cache array. Writing a ‘1’ to the go field of the
dicago register copies the information stored in the dicad0/dicad0h /dicadl registers to the I-cache array. The
layout of the dicago register is described in Table 8-5 below.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

The go field of the dicago register has W1R0 (Write 1, Read 0) behavior, as also indicated in the ‘Access’ column.

This register is mapped to the non-standard read-write CSR address space.

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 74 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Table 8-5 I-Cache Array Go Register (dicago, at CSR 0x7CB)

Field Bits Description Access | Reset

Reserved | 31:1 Reserved R 0

go 0 Read triggers an I-cache read, write-1 triggers an I-cache write RO/W1 | O
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 75 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

9 Low-Level Core Control

This chapter describes some low-level core control registers.

9.1 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

e Feature Disable Control Register (mfdc) (see Section 9.1.1)
e Clock Gating Control Register (mcgc) (see Section 9.1.2)

3/29/2020

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

9.1.1 Feature Disable Control Register (mfdc)

The mfdc register hosts low-level core control bits to disable specific features. This may be useful in case a feature
intended to increase core performance should prove to have problems.

Note: fence. i instructions are required before and after writes to the mfdc register.

Note: The default state of the controllable features is ‘enabled’. Firmware may turn off a feature if needed.

This register is mapped to the non-standard read/write CSR address space.

Table 9-1 Feature Disable Control Register (mfdc, at CSR 0x7F9)

Field Bits Description Access | Reset
Reserved 31:19 | Reserved R 0
dqc 18:16 | DMA QoS control (see Section 2.13.3) R/W 7
Reserved 15:12 | Reserved R 0
elfd 11 External load forwarding disable: R/W 0
0: enable external load forwarding
1: disable external load forwarding
Reserved 10:9 Reserved R 0
cecd 8 Core ECC check disable: R/W 0
0: ICCM/DCCM ECC checking enabled
1: ICCM/DCCM ECC checking disabled
Reserved 7 Reserved R 0
sepd 6 Side effect posted disable: R/W 0
0: side effect stores handled as posted writes (AHB-Lite)
1: side effect stores block all subsequent bus transactions until 1
store response with default value received (AX14)
Note: Reset value depends on selected bus core build argument
Reserved 5:4 Reserved R 0
bpd 3 Branch prediction disable: R/W 0
0: enable branch prediction and return address stack
1: disable branch prediction and return address stack
whbcd 2 Write Buffer (WB) coalescing disable: R/W 0
0: enable Write Buffer coalescing
1: disable Write Buffer coalescing
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 76 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

3/29/2020

0: pipelined execution
1: single instruction execution

Field Bits Description Access | Reset
Reserved 1 Reserved R 0
pd 0 Pipelining disable: R/W 0

9.1.2 Clock Gating Control Register (mcgc)

The mcgc register hosts low-level core control bits to override clock gating for specific units. This may be useful in
case a unit intended to be clock gated should prove to have problems when in lower power mode.

Note: The default state of the clock gating overrides is ‘disabled’. Firmware may turn off clock gating (i.e., set the
clock gating override bit) for a specific unit if needed.

This register is mapped to the non-standard read/write CSR address space.

Table 9-2 Clock Gating Control Register (mcgc, at CSR 0x7F8)

Field

Bits

Description

Access

Reset

Reserved

31:9

Reserved

R

misc

8

Miscellaneous clock gating override:
0: enable clock gating
1: clock gating override

R/W

dec

DEC clock gating override:
0: enable clock gating
1: clock gating override

R/W

exu

EXU clock gating override:
0: enable clock gating
1: clock gating override

R/W

ifu

IFU clock gating override:
0: enable clock gating
1: clock gating override

R/W

Isu

LSU clock gating override:
0: enable clock gating
1: clock gating override

R/W

bus

Bus clock gating override:
0: enable clock gating
1: clock gating override

R/W

pic

PIC clock gating override:
0: enable clock gating
1: clock gating override

R/W

dcecm

DCCM clock gating override:
0: enable clock gating
1: clock gating override

R/W

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

77 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Field Bits Description Access | Reset
iccm 0 ICCM clock gating override: R/W 0

0: enable clock gating
1: clock gating override
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 78 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

10 Standard RISC-V CSRs with Core-Specific Adaptations

A summary of standard RISC-V control/status registers in CSR space with platform-specific adaptations:

e Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers (see Section 10.1.1)
e Machine Cause Register (mcause) (see Section 10.1.2)
e Machine Hardware Thread ID Register (mhartid) (see Section 10.1.3)

All reserved and unused bits in these control/status registers must be hardwired to ‘0. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

10.1.1 Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers

The standard RISC-V mie and mip registers hold the machine interrupt enable and interrupt pending bits,
respectively. Since SweRV EL2 only supports machine mode, all supervisor- and user-specific bits are not
implemented. In addition, the mie/mip registers also host the platform-specific local interrupt enable/pending bits
(shown with a gray background in Table 10-1 and Table 10-2 below).

The mie register is a standard read/write CSR.

Table 10-1 Machine Interrupt Enable Register (mie, at CSR 0x304)

Field Bits Description Access | Reset
Reserved 31 Reserved R 0
mceie 30 Correctable error local interrupt enable R/W 0
mitie0 29 Internal timer O local interrupt enable R/W 0
mitiel 28 Internal timer 1 local interrupt enable R/W 0
Reserved 27:12 | Reserved R 0
meie 11 Machine external interrupt enable R/W 0
Reserved 10:8 Reserved R 0
mtie 7 Machine timer interrupt enable R/W 0
Reserved 6:4 Reserved R 0
msie 3 Machine software interrupt enable R/W 0
Reserved 2.0 Reserved R 0

The mip register is a standard read/write CSR.

Note: All M-mode interrupt pending bits of the read/write mip register are read-only.

Table 10-2 Machine Interrupt Pending Register (mip, at CSR 0x344)

Field Bits Description Access | Reset
Reserved 31 Reserved R 0
mceip 30 Correctable error local interrupt pending R 0
mitip0 29 Internal timer O local interrupt pending R 0
mitipl 28 Internal timer 1 local interrupt pending R 0
Reserved 27:12 | Reserved R 0
meip 11 Machine external interrupt pending R 0

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 79 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Field Bits Description Access | Reset
Reserved 10:8 Reserved R 0
mtip 7 Machine timer interrupt pending R 0
Reserved 6:4 Reserved R 0
msip 3 Machine software interrupt pending R 0
Reserved 2:0 Reserved R 0

10.1.2 Machine Cause Register (mcause)

The standard RISC-V mcause register indicates the cause for a trap as shown in Table 10-3, including standard
exceptions/interrupts, platform-specific local interrupts (with light gray background), and NMI causes (with dark gray

background).

Additional trap information is provided in the mscause register (see Section 2.8.5) which allows the determination of

the exact cause of a trap for cases where multiple, different conditions share a single trap code.

The mcause register has WLRL (Write Legal value, Read Legal value) behavior.

This register is a standard read/write CSR.

Table 10-3 Machine Cause Register (mcause, at CSR 0x342)

Type Trap Code mca\ljzl:[‘:e%l:O] Description Section(s)
NMI N/A 0x0000_0000 NMI pin assertion 2.15
1 0x0000_0001 Instruction access fault §h7d5é_i'7'7’
2 0x0000_0002 lllegal instruction
3 0x0000_0003 Breakpoint
4 0x0000_0004 Load address misaligned 2.7.6
Fxeeption 5 0x0000_0005 Load access fault §h7d5?;_‘21'7'7‘
6 0x0000_0006 Store/AMO address misaligned 2.7.6
7 0x0000_0007 | Store/AMO access fault 2}17&53;.421'7'7'
11 0x0000_000B Environment call from M-mode
3 0x8000_0003 Machine software interrupt 2.16
7 0x8000_0007 Machine timer3° interrupt
11 0x8000_000B Machine external interrupt 6
Interrupt
28 0x8000_001C | Machine internal timer 1 local interrupt
29 0x8000_001D Machine internal timer O local interrupt &3
30 0x8000_001E Machine correctable error local interrupt 2.7.2
%0 Core external timer
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 80 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Value
Type Trap Code Description Section(s
P P mcause[31:0] P ©)

Note: All other values are reserved.

10.1.3 Machine Hardware Thread ID Register (mhartid)

The standard RISC-V mhartid register provides the integer ID of the hardware thread running the code. Hart IDs
must be unique. Hart IDs might not necessarily be numbered contiguously in a multiprocessor system, but at least
one hart must have a hart ID of zero.

Note: In certain cases, it must be ensured that exactly one hart runs some code (e.g., at reset), hence the
requirement for one hart to have a known hart ID of zero.

The mhartid register is split into two fixed-sized fields. The SoC must provide a hardwired core ID on the

core 1d[31:4] bus. The value provided on that bus sources the mhartid register’s coreid field. If the SoC hosts
more than one RISC-V core, each core must have its own unique core_id value. Each hardware thread of the core
has a unique, hardwired thread ID which is reflected in the mhartid register’s hartid field starting at 0x0 up to OxF.
SweRV EL2 implements a single hardware thread with thread ID 0xO.

This register is a standard read-only CSR.

Table 10-4 Machine Hardware Thread ID Register (mhartid, at CSR 0xF14)

Field Bits Description Access | Reset
coreid 31:4 Core ID of this SweRV EL2 R core id[31:4]
bus value

(see Table 14-1)

hartid 3.0 Hardwired per-core hart ID: R 0x0
0x0: thread 0 (master thread)

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 81 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

11 CSR Address Map

11.1 Standard RISC-V CSRs

Table 11-1 lists the SweRV EL2 core-specific standard RISC-V Machine Information CSRs.

Table 11-1 SweRV EL2 Core-Specific Standard RISC-V Machine Information CSRs

3/29/2020

Number | Privilege | Name Description Value
0x301 MRW misa ISA and extensions 0x4000_1104

Note: writes ignored
OxF11 MRO mvendorid | Vendor ID 0x0000_0045
OxF12 MRO marchid Architecture ID 0x0000_0010
O0xF13 MRO mimpid Implementation ID 0x0000_0002
O0xF14 MRO mhartid Hardware thread ID (see Section 10.1.3)

Table 11-2 lists the SweRV EL2 standard RISC-V CSR address map.

Table 11-2 SweRV EL2 Standard RISC-V CSR Address Map

Number | Privilege | Name Description Section

0x300 MRW mstatus Machine status

0x304 MRW mie Machine interrupt enable 10.1.1

0x305 MRW mtvec Machine trap-handler base address

0x320 MRW mcountinhibit Machine counter-inhibit register 7.2.1

0x323 MRW mhpmevent3 Machine performance-monitoring event selector

0x324 MRW mhpmevent4 Machine performance-monitoring event selector

0x325 MRW mhpmevent5 Machine performance-monitoring event selector 2t

0x326 MRW mhpmevent6 Machine performance-monitoring event selector

0x340 MRW mscratch Scratch register for machine trap handlers

0x341 MRW mepc Machine exception program counter

0x342 MRW mcause Machine trap cause 10.1.2

0x343 MRW mtval Machine bad address or instruction

0x344 MRW mip Machine interrupt pending 10.1.1

0x7A0 MRW tselect Debug/Trace trigger register select

0x7A1 MRW tdatal First Debug/Trace trigger data

0x7A2 MRW tdata2 Second Debug/Trace trigger data

0x7B0 DRW dcsr Debug control and status register

0x7B1 DRW dpc Debug PC

0xB00 MRW mcycle Machine cycle counter 7.2.1

0xB02 MRW minstret Machine instructions-retired counter 7.2.1
Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 82 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Number | Privilege | Name Description Section
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter
0xB04 MRW mhpmcounter4 Machine performance-monitoring counter
0xB05 MRW mhpmcounter5 Machine performance-monitoring counter 72l
0xB06 MRW mhpmcounter6 Machine performance-monitoring counter
0xB80 MRW mcycleh Upper 32 bits of mcycle, RV32l only 7.2.1
0xB82 MRW minstreth Upper 32 bits of minstret, RV32I only 7.2.1
0xB83 MRW mhpmcounter3h | Upper 32 bits of mhpmcounter3, RV32I only
0xB84 MRW mhpmcounter4h | Upper 32 bits of mhpmcounter4, RV32l only
0xB85 MRW mhpmcounter5h | Upper 32 bits of mhpmcounter5, RV32I only 72
0xB86 MRW mhpmcounter6h | Upper 32 bits of mhpmcounter6, RV32I only

11.2 Non-Standard RISC-V CSRs

Table 11-3 summarizes the SweRV EL2 non-standard RISC-V CSR address map.

Table 11-3 SweRV EL2 Non-Standard RISC-V CSR Address Map
Number | Privilege | Name Description Section
0x7CO0 MRW mrac Region access control 281
0x7C2 MRW mcpc Core pause control 5.5.2
0x7C4 DRW dmst Memory synchronization trigger (Debug Mode only) 2.8.2
0x7C6 MRW mpmc Power management control 55.1
0x7C8 DRW dicawics I-cache array/way/index selection (Debug Mode only) 8.5.1
0x7C9 DRW dicad0 I-cache array data 0 (Debug Mode only) 8.5.2
0x7CA DRW dicadl I-cache array data 1 (Debug Mode only) 8.5.4
0x7CB DRW dicago I-cache array go (Debug Mode only) 8.5.5
0x7CC DRW dicadOh I-cache array data O high (Debug Mode only) 8.5.3
0x7CE MRW mfdht Force debug halt threshold 5.5.3
0x7CF MRW mfdhs Force debug halt status 55.4
0x7D2 MRW mitcntO Internal timer counter O 44.1
0x7D3 MRW mitb0 Internal timer bound 0 442
0x7D4 MRW mitctl0 Internal timer control O 4.4.3
0x7D5 MRW mitcntl Internal timer counter 1 441
0x7D6 MRW mitb1 Internal timer bound 1 442
0x7D7 MRW mitctl1 Internal timer control 1 4.4.3
0x7FO0 MRW micect I-cache error counter/threshold 351
Ox7F1 MRW miccmect | ICCM correctable error counter/threshold 3.5.2

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 83 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020
Number | Privilege | Name Description Section
Ox7F2 MRW mdccmect | DCCM correctable error counter/threshold 3.53
Ox7F8 MRW mcgc Clock gating control 9.1.2
0x7F9 MRW mfdc Feature disable control 9.1.1
Ox7FF MRW mscause Machine secondary cause 285
0xBCO MRW mdeau D-Bus error address unlock 284
0xBC8 MRW meivt External interrupt vector table 6.11.6
0xBC9 MRW meipt External interrupt priority threshold 6.11.5
O0xBCA MRW meicpct External interrupt claim ID / priority level capture trigger 6.11.8
0xBCB MRW meicidpl External interrupt claim ID’s priority level 6.11.9
0xBCC MRW meicurpl External interrupt current priority level 6.11.10
0xFCO MRO mdseac D-bus first error address capture 2.8.3
OxFC8 MRO meihap External interrupt handler address pointer 6.11.7

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 84 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

12 Interrupt Priorities

3/29/2020

Table 12-1 summarizes the SweRV EL2 platform-specific (Local) and standard RISC-V (External, Software, and

Timer) relative interrupt priorities.

Table 12-1 SweRV EL2 Platform-specific and Standard RISC-V Interrupt Priorities

Interrupt Section
Highest Interrupt Priority | Non-Maskable Interrupt (standard RISC-V) | 2.15

External interrupt (standard RISC-V) 6

Correctable error (local interrupt) 2.7.2

Software interrupt (standard RISC-V) 2.16

Timer interrupt (standard RISC-V)

Internal timer O (local interrupt) 4.3

4.3

Lowest Interrupt Priority Internal timer 1 (local interrupt)

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

85 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

13 Clock and Reset

This chapter describes clocking and reset signals used by the SweRV EL2 core complex.

13.1 Features

The SweRV EL2 core complex’s clock and reset features are:

e Support for independent clock ratios for four separate system bus interfaces
o System bus clock ratios controlled by SoC

e Single core complex clock input
o System bus clock ratios controlled by enable signals

e Single core complex reset signal
o Ability to reset to Debug Mode
e Separate Debug Module reset signal
o Allows to interact with Debug Module when core complex is still in reset

13.2 Clocking

13.2.1 Regular Operation

The SweRV EL2 core complex is driven by a single clock (c1k). All input and output signals, except those listed in
Table 13-1, are synchronous to c1k.

The core complex provides three master system bus interfaces (for instruction fetch, load/store data, and debug) as
well as one slave (DMA) system bus interface. The SoC controls the clock ratio for each system bus interface via the
clock enable signal (*_bus_clk_en). The clock ratios selected by the SoC may be the same or different for each

system bus.

Figure 13-1 depicts the conceptual relationship of the clock (c1k), system bus enable (*_bus_clk_en) used to
select the clock ratio for each system bus, and the data (*data) of the respective system bus.

ok L \ / \\]

* bus_clk_en _/ \

* bus_clk / | N\ |

*data

Figure 13-1 Conceptual Clock, Clock-Enable, and Data Timing Relationship

Note that the clock net is not explicitly buffered, as the clock tree is expected to be synthesized during place-and-
route. The achievable clock frequency depends on the configuration, the sizes and configuration of I-cache and
I/DCCMs, and the silicon implementation technology.

13.2.2 System Bus-to-Core Clock Ratios

Figure 13-2 to Figure 13-9 depict the timing relationships of clock, clock-enable, and data for the supported system
bus clock ratios from 1:1 (i.e., the system bus and core run at the same rate) to 1:8 (i.e., the system bus runs eight
times slower than the core).

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 86 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2-

clk _/

N\ S S\

3/29/2020

S WA

* bus_clk_en

*_bus_clk \

N\
/N S\

¢
/
’

*data

Figure 13-2 1:1 System Bus-to-Core Clock Ratio

* bus_clk_en

* bus_clk \

o /[N_/ \LJ
/7

A

N\

N\ S S\

¢
[/

*data

Figure 13-3 1:2 System Bus-to-Core Clock Ratio

N/ \

* bus_clk_en

R

*_bus_clk

N\

/

*data

Figure 13-4 1:3 System Bus-to-Core Clock Ratio

N/ \

* bus_clk_en

—_—

*_bus_clk

N\

N\ S\

*data

Figure 13-5 1:4 System Bus-to-Core Clock Ratio

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0

87 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

* bus_clk_en

— —

*_bus_clk

*data

Figure 13-6 1:5 System Bus-to-Core Clock Ratio

T —_—

* bus_clk_en

* bus_clk

*data

Figure 13-7 1:6 System Bus-to-Core Clock Ratio

clk _/__/__/__/__/__/__/__/__/

* bus_clk_en

R

He

*_bus_clk

*data

Figure 13-8 1:7 System Bus-to-Core Clock Ratio

* bus_clk_en

— —

*_bus_clk

*data

Figure 13-9 1:8 System Bus-to-Core Clock Ratio

13.2.3 Asynchronous Signals

Table 13-1 provides a list of signals which are asynchronous to the core clock (c1k). Signals which are inputs to the
core complex are synchronized to c1k in the core complex logic. Signals which are outputs of the core complex must

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 88 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

be synchronized outside of the core complex logic if the respective receiving clock domain is driven by a different
clock than c1k.

Note that each asynchronous input passes through a two-stage synchronizer. The signal must be asserted for at
least two full c1k cycles to guarantee it is detected by the core complex logic. Shorter pulses might be dropped by
the synchronizer circuit.

Table 13-1 Core Complex Asynchronous Signals

Signal Dir | Description

Interrupts

extintsrc_req[pt.PIC_TOTAL_INT:1] in External interrupts

soft_int in Standard RISC-V software interrupt
timer_int in Standard RISC-V timer interrupt
nmi_int in Non-Maskable Interrupt

Power Management Unit (PMU) Interface

i_cpu_halt_req in PMU halt request to core

i_cpu_run_req in PMU run request to core

Multi-Processor Controller (MPC) Debug Interface

mpc_debug_halt_req in MPC debug halt request to core

mpc_debug_run_req in MPC debug run request to core

JTAG

jtag_tck in JTAG Test Clock

jtag_tms in JTAG Test Mode Select (synchronous to jtag_tck)

jtag_tdi in JTAG Test Data In (synchronous to jtag_tck)

jtag_trst_n in JTAG Test Reset

jtag_tdo out | JTAG Test Data Out (synchronous to jtag_tck)
13.3 Reset

The SweRV EL2 core complex provides two reset signals, the core complex reset (see Section 13.3.1) and the
Debug Module reset (see Section 13.3.2).

13.3.1 Core Complex Reset (rst_I)

As shown in Figure 13-10, the core complex reset signal (rst_1) is active-low, may be asynchronously asserted, but
must be synchronously deasserted to avoid any glitches. The rst_1 input signal is not synchronized to the core
clock (c1k) inside the core complex logic. All core complex flops are reset asynchronously.

ck N\)

- TN S

! !
Figure 13-10 Conceptual Clock and Reset Timing Relationship

Copyright © 2020 Western Digital Corporation or its affiliates; Licensed under Apache-2.0 89 of 104

RISC-V SweRV™ EL2 Programmer's Reference Manual —Rev. 1.2- 3/29/2020

Note that the core complex clock (c1k) must be stable before the core complex reset (rst 1) is deasserted. Also,
the rst_1 signal is not explicitly buffered, as synthesis tools are expected to automatically buffer the rst_1 net.

Note: The core complex reset signal resets the entire SweRV EL2 core complex, except the Debug Module.

13.3.2 Debug Module Reset (dbg_rst_I)

The Debug Module reset signal (dbg_rst 1) is an active-low signal which resets the SweRV EL2 core complex’s
Debug Module as well as the synchronizers between the JTAG interface and the core complex. The Debug Module
reset signal may be connected to the power-on reset signal of the SoC. This allows an external debugger to interact
with the Debug Module when the core complex reset signal (rst_1) is still asserted.

If this layered reset functionality