/* * The MIT License (MIT) * * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * Copyright (c) 2021, Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "pico/stdlib.h" #include "pico/binary_info.h" #include "pico/unique_id.h" #include "hardware/gpio.h" #include "hardware/sync.h" #include "hardware/resets.h" #include "hardware/structs/ioqspi.h" #include "hardware/structs/sio.h" #include "bsp/board_api.h" #include "board.h" #ifdef UART_DEV static uart_inst_t *uart_inst; #endif #if CFG_TUH_RPI_PIO_USB || CFG_TUD_RPI_PIO_USB #include "pio_usb.h" #endif #if CFG_TUH_ENABLED && CFG_TUH_MAX3421 #include "hardware/spi.h" static void max3421_init(void); #endif #ifdef BUTTON_BOOTSEL // This example blinks the Picoboard LED when the BOOTSEL button is pressed. // // Picoboard has a button attached to the flash CS pin, which the bootrom // checks, and jumps straight to the USB bootcode if the button is pressed // (pulling flash CS low). We can check this pin in by jumping to some code in // SRAM (so that the XIP interface is not required), floating the flash CS // pin, and observing whether it is pulled low. // // This doesn't work if others are trying to access flash at the same time, // e.g. XIP streamer, or the other core. bool __no_inline_not_in_flash_func(get_bootsel_button)(void) { const uint CS_PIN_INDEX = 1; // Must disable interrupts, as interrupt handlers may be in flash, and we // are about to temporarily disable flash access! uint32_t flags = save_and_disable_interrupts(); // Set chip select to Hi-Z hw_write_masked(&ioqspi_hw->io[CS_PIN_INDEX].ctrl, GPIO_OVERRIDE_LOW << IO_QSPI_GPIO_QSPI_SS_CTRL_OEOVER_LSB, IO_QSPI_GPIO_QSPI_SS_CTRL_OEOVER_BITS); // Note we can't call into any sleep functions in flash right now for (volatile int i = 0; i < 1000; ++i); // The HI GPIO registers in SIO can observe and control the 6 QSPI pins. // Note the button pulls the pin *low* when pressed. bool button_state = (sio_hw->gpio_hi_in & (1u << CS_PIN_INDEX)); // Need to restore the state of chip select, else we are going to have a // bad time when we return to code in flash! hw_write_masked(&ioqspi_hw->io[CS_PIN_INDEX].ctrl, GPIO_OVERRIDE_NORMAL << IO_QSPI_GPIO_QSPI_SS_CTRL_OEOVER_LSB, IO_QSPI_GPIO_QSPI_SS_CTRL_OEOVER_BITS); restore_interrupts(flags); return button_state; } #endif //------------- Segger RTT retarget -------------// #if defined(LOGGER_RTT) // Logging with RTT // - If RTT Control Block is not found by 'Auto Detection` try to use 'Search Range` with '0x20000000 0x10000' // - SWD speed is rather slow around 1000Khz #include "pico/stdio/driver.h" #include "SEGGER_RTT.h" static void stdio_rtt_write (const char *buf, int length) { SEGGER_RTT_Write(0, buf, (unsigned) length); } static int stdio_rtt_read (char *buf, int len) { return (int) SEGGER_RTT_Read(0, buf, (unsigned) len); } static stdio_driver_t stdio_rtt = { .out_chars = stdio_rtt_write, .out_flush = NULL, .in_chars = stdio_rtt_read }; void stdio_rtt_init(void) { stdio_set_driver_enabled(&stdio_rtt, true); } #endif //--------------------------------------------------------------------+ // //--------------------------------------------------------------------+ void board_init(void) { #if CFG_TUH_RPI_PIO_USB || CFG_TUD_RPI_PIO_USB // Set the system clock to a multiple of 120mhz for bitbanging USB with pico-usb set_sys_clock_khz(120000, true); #ifdef PICO_DEFAULT_PIO_USB_VBUSEN_PIN gpio_init(PICO_DEFAULT_PIO_USB_VBUSEN_PIN); gpio_set_dir(PICO_DEFAULT_PIO_USB_VBUSEN_PIN, GPIO_OUT); gpio_put(PICO_DEFAULT_PIO_USB_VBUSEN_PIN, PICO_DEFAULT_PIO_USB_VBUSEN_STATE); #endif // rp2040 use pico-pio-usb for host tuh_configure() can be used to passed pio configuration to the host stack // Note: tuh_configure() must be called before tuh_init() pio_usb_configuration_t pio_cfg = PIO_USB_DEFAULT_CONFIG; pio_cfg.pin_dp = PICO_DEFAULT_PIO_USB_DP_PIN; tuh_configure(BOARD_TUH_RHPORT, TUH_CFGID_RPI_PIO_USB_CONFIGURATION, &pio_cfg); #endif #ifdef LED_PIN bi_decl(bi_1pin_with_name(LED_PIN, "LED")); gpio_init(LED_PIN); gpio_set_dir(LED_PIN, GPIO_OUT); #endif // Button #ifndef BUTTON_BOOTSEL #endif #ifdef UART_DEV bi_decl(bi_2pins_with_func(UART_TX_PIN, UART_RX_PIN, GPIO_FUNC_UART)); uart_inst = uart_get_instance(UART_DEV); stdio_uart_init_full(uart_inst, CFG_BOARD_UART_BAUDRATE, UART_TX_PIN, UART_RX_PIN); #endif #if defined(LOGGER_RTT) stdio_rtt_init(); #endif #if CFG_TUD_ENABLED // TODO probably set up device mode? #endif #if CFG_TUH_ENABLED #if CFG_TUH_MAX3421 max3421_init(); #endif #endif #if !CFG_TUD_ENABLED && !CFG_TUH_ENABLED // board test exxample, reset usb controller reset_block(RESETS_RESET_USBCTRL_BITS); unreset_block_wait(RESETS_RESET_USBCTRL_BITS); #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { (void) state; #ifdef LED_PIN gpio_put(LED_PIN, state ? LED_STATE_ON : (1 - LED_STATE_ON)); #endif } uint32_t board_button_read(void) { #ifdef BUTTON_BOOTSEL return BUTTON_STATE_ACTIVE == get_bootsel_button(); #else return 0; #endif } size_t board_get_unique_id(uint8_t id[], size_t max_len) { pico_unique_board_id_t pico_id; pico_get_unique_board_id(&pico_id); size_t len = PICO_UNIQUE_BOARD_ID_SIZE_BYTES; if (len > max_len) len = max_len; memcpy(id, pico_id.id, len); return len; } int board_uart_read(uint8_t *buf, int len) { #ifdef UART_DEV int count = 0; while ( (count < len) && uart_is_readable(uart_inst) ) { buf[count] = uart_getc(uart_inst); count++; } return count; #else (void) buf; (void) len; return 0; #endif } int board_uart_write(void const *buf, int len) { #ifdef UART_DEV char const *bufch = (char const *) buf; for ( int i = 0; i < len; i++ ) { uart_putc(uart_inst, bufch[i]); } return len; #else (void) buf; (void) len; return 0; #endif } int board_getchar(void) { return getchar_timeout_us(0); } //--------------------------------------------------------------------+ // USB Interrupt Handler // rp2040 implementation will install appropriate handler when initializing // tinyusb. There is no need to forward IRQ from application //--------------------------------------------------------------------+ //--------------------------------------------------------------------+ // API: SPI transfer with MAX3421E, must be implemented by application //--------------------------------------------------------------------+ #if CFG_TUH_ENABLED && defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421 void max3421_int_handler(uint gpio, uint32_t event_mask) { if (!(gpio == MAX3421_INTR_PIN && event_mask & GPIO_IRQ_EDGE_FALL)) return; tuh_int_handler(BOARD_TUH_RHPORT, true); } static void max3421_init(void) { // CS pin gpio_init(MAX3421_CS_PIN); gpio_set_dir(MAX3421_CS_PIN, GPIO_OUT); gpio_put(MAX3421_CS_PIN, true); // Interrupt pin gpio_init(MAX3421_INTR_PIN); gpio_set_dir(MAX3421_INTR_PIN, GPIO_IN); gpio_pull_up(MAX3421_INTR_PIN); gpio_set_irq_enabled_with_callback(MAX3421_INTR_PIN, GPIO_IRQ_EDGE_FALL, true, max3421_int_handler); // SPI init spi_init(MAX3421_SPI, 4*1000000ul); gpio_set_function(MAX3421_SCK_PIN, GPIO_FUNC_SPI); gpio_set_function(MAX3421_MOSI_PIN, GPIO_FUNC_SPI); gpio_set_function(MAX3421_MISO_PIN, GPIO_FUNC_SPI); spi_set_format(MAX3421_SPI, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST); } //// API to enable/disable MAX3421 INTR pin interrupt void tuh_max3421_int_api(uint8_t rhport, bool enabled) { (void) rhport; irq_set_enabled(IO_IRQ_BANK0, enabled); } // API to control MAX3421 SPI CS void tuh_max3421_spi_cs_api(uint8_t rhport, bool active) { (void) rhport; gpio_put(MAX3421_CS_PIN, !active); } // API to transfer data with MAX3421 SPI // Either tx_buf or rx_buf can be NULL, which means transfer is write or read only bool tuh_max3421_spi_xfer_api(uint8_t rhport, uint8_t const* tx_buf, uint8_t* rx_buf, size_t xfer_bytes) { (void) rhport; if (tx_buf == NULL && rx_buf == NULL) { return false; } int ret; if (tx_buf == NULL) { ret = spi_read_blocking(MAX3421_SPI, 0, rx_buf, xfer_bytes); }else if (rx_buf == NULL) { ret = spi_write_blocking(MAX3421_SPI, tx_buf, xfer_bytes); }else { ret = spi_write_read_blocking(spi0, tx_buf, rx_buf, xfer_bytes); } return ret == (int) xfer_bytes; } #endif