init qemu and gdb.

This commit is contained in:
Colin 2025-09-20 09:55:30 +00:00
commit 6901da6488
18 changed files with 5275 additions and 0 deletions

7
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,7 @@
{
"files.associations": {
"BUILD": "bazel",
"*.inc": "cpp",
"stdio.h": "c"
}
}

44
Makefile Executable file
View File

@ -0,0 +1,44 @@
CFLAGS = -I../include -Wall -Wextra
LDFLAGS =
CURDIR := $(abspath $(dir $(lastword $(MAKEFILE_LIST))))
OUT := build
BIN = $(OUT)/
SHELL_HACK := $(shell mkdir -p $(OUT))
TEST_OBJ = $(OUT)/kernel.elf
TEST_DUMP = $(OUT)/kernel.dump
TEST_BIN = $(OUT)/kernel.bin
.PHONY: kernel clean
kernel: $(TEST_OBJ) $(TEST_BIN)
$(TEST_OBJ):
# riscv64-unknown-elf-gcc -march=rv32i -mabi=ilp32 -Wl,-Ttext=0x0 -nostdlib -g -o $@ $<
# riscv64-unknown-elf-gcc -march=rv64gc -mabi=lp64 -Wl,-Ttext=0x0 -nostdlib -g -o $@ $<
riscv64-unknown-elf-gcc -g -march=rv64gc -mabi=lp64d -nostdlib -T link.ld -o $@ kernel.c start.s
riscv64-unknown-elf-objdump -d -S $@ > $(TEST_DUMP)
$(TEST_BIN): $(TEST_OBJ)
riscv64-unknown-elf-objcopy -O binary $< $@
clean:
$(RM) -r $(BIN)
qemu: kernel
qemu-system-riscv64 -machine virt -smp 1 -bios none -kernel $(TEST_OBJ) -nographic -s -S
# gdb: kernel
# gdb-multiarch \
# -ex "file $(TEST_OBJ)" \
# -ex "set debug remote 1" \
# -ex "target remote localhost:1234" \
gdb: kernel
gdb-multiarch $(TEST_OBJ) -ex "target remote localhost:1234"

BIN
build/kernel.bin Executable file

Binary file not shown.

93
build/kernel.dump Normal file
View File

@ -0,0 +1,93 @@
build/kernel.elf: file format elf64-littleriscv
Disassembly of section .text:
0000000080000000 <_start>:
.section .text.entry
.global _start
_start:
# 初始化栈(使用链接脚本中定义的 stack_top
la sp, stack_top
80000000: 00000117 auipc sp,0x0
80000004: 0a010113 addi sp,sp,160 # 800000a0 <stack_top>
# 调用 main 函数
call main
80000008: 030000ef jal 80000038 <main>
000000008000000c <loop>:
# main 返回后进入死循环
loop:
j loop
8000000c: a001 j 8000000c <loop>
000000008000000e <add>:
int add(int a, int b) {
8000000e: 1101 addi sp,sp,-32
80000010: ec22 sd s0,24(sp)
80000012: 1000 addi s0,sp,32
80000014: 87aa mv a5,a0
80000016: 872e mv a4,a1
80000018: fef42623 sw a5,-20(s0)
8000001c: 87ba mv a5,a4
8000001e: fef42423 sw a5,-24(s0)
return a + b; // 待调试的函数
80000022: fec42783 lw a5,-20(s0)
80000026: 873e mv a4,a5
80000028: fe842783 lw a5,-24(s0)
8000002c: 9fb9 addw a5,a5,a4
8000002e: 2781 sext.w a5,a5
}
80000030: 853e mv a0,a5
80000032: 6462 ld s0,24(sp)
80000034: 6105 addi sp,sp,32
80000036: 8082 ret
0000000080000038 <main>:
int main() {
80000038: 7179 addi sp,sp,-48
8000003a: f406 sd ra,40(sp)
8000003c: f022 sd s0,32(sp)
8000003e: 1800 addi s0,sp,48
int x = 5;
80000040: 4795 li a5,5
80000042: fef42623 sw a5,-20(s0)
int y = 3;
80000046: 478d li a5,3
80000048: fef42423 sw a5,-24(s0)
int result = add(x, y);
8000004c: fe842703 lw a4,-24(s0)
80000050: fec42783 lw a5,-20(s0)
80000054: 85ba mv a1,a4
80000056: 853e mv a0,a5
80000058: fb7ff0ef jal 8000000e <add>
8000005c: 87aa mv a5,a0
8000005e: fef42223 sw a5,-28(s0)
volatile char *tohost_addr = (volatile char *)(0x80001000 - 4);
80000062: 200007b7 lui a5,0x20000
80000066: 3ff78793 addi a5,a5,1023 # 200003ff <_start-0x5ffffc01>
8000006a: 078a slli a5,a5,0x2
8000006c: fcf43c23 sd a5,-40(s0)
*tohost_addr = 0xff;
80000070: fd843783 ld a5,-40(s0)
80000074: 577d li a4,-1
80000076: 00e78023 sb a4,0(a5)
*tohost_addr = result;
8000007a: fe442783 lw a5,-28(s0)
8000007e: 0ff7f713 zext.b a4,a5
80000082: fd843783 ld a5,-40(s0)
80000086: 00e78023 sb a4,0(a5)
return 0;
8000008a: 4781 li a5,0
}
8000008c: 853e mv a0,a5
8000008e: 70a2 ld ra,40(sp)
80000090: 7402 ld s0,32(sp)
80000092: 6145 addi sp,sp,48
80000094: 8082 ret

BIN
build/kernel.elf Executable file

Binary file not shown.

2519
gdbstub/gdbstub.c Normal file

File diff suppressed because it is too large Load Diff

240
gdbstub/internals.h Normal file
View File

@ -0,0 +1,240 @@
/*
* gdbstub internals
*
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef GDBSTUB_INTERNALS_H
#define GDBSTUB_INTERNALS_H
#include "exec/cpu-common.h"
/*
* Most "large" transfers (e.g. memory reads, feature XML
* transfer) have mechanisms in the gdb protocol for splitting
* them. However, register values in particular cannot currently
* be split. This packet size must therefore be at least big enough
* for the worst-case register size. Currently that is Arm SME
* ZA storage with a 256x256 byte value. We also must account
* for the conversion from raw data to hex in gdb_memtohex(),
* which writes 2 * size bytes, and for other protocol overhead
* including command, register number and checksum which add
* another 4 bytes of overhead. However, to be consistent with
* the changes made in gdbserver to address this same requirement,
* we add a total of 32 bytes to account for protocol overhead
* (unclear why specifically 32 bytes), bringing the value of
* MAX_PACKET_LENGTH to 2 * 256 * 256 + 32 = 131104.
*
* The commit making this change for gdbserver can be found here:
* https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=
* b816042e88583f280ad186ff124ab84d31fb592b
*/
#define MAX_PACKET_LENGTH 131104
/*
* Shared structures and definitions
*/
enum {
GDB_SIGNAL_0 = 0,
GDB_SIGNAL_INT = 2,
GDB_SIGNAL_QUIT = 3,
GDB_SIGNAL_TRAP = 5,
GDB_SIGNAL_ABRT = 6,
GDB_SIGNAL_ALRM = 14,
GDB_SIGNAL_STOP = 17,
GDB_SIGNAL_IO = 23,
GDB_SIGNAL_XCPU = 24,
GDB_SIGNAL_UNKNOWN = 143
};
typedef struct GDBProcess {
uint32_t pid;
bool attached;
char *target_xml;
} GDBProcess;
enum RSState {
RS_INACTIVE,
RS_IDLE,
RS_GETLINE,
RS_GETLINE_ESC,
RS_GETLINE_RLE,
RS_CHKSUM1,
RS_CHKSUM2,
};
typedef struct GDBState {
bool init; /* have we been initialised? */
CPUState *c_cpu; /* current CPU for step/continue ops */
CPUState *g_cpu; /* current CPU for other ops */
CPUState *query_cpu; /* for q{f|s}ThreadInfo */
enum RSState state; /* parsing state */
char line_buf[MAX_PACKET_LENGTH];
int line_buf_index;
int line_sum; /* running checksum */
int line_csum; /* checksum at the end of the packet */
GByteArray *last_packet;
int signal;
bool multiprocess;
GDBProcess *processes;
int process_num;
GString *str_buf;
GByteArray *mem_buf;
int sstep_flags;
int supported_sstep_flags;
/*
* Whether we are allowed to send a stop reply packet at this moment.
* Must be set off after sending the stop reply itself.
*/
bool allow_stop_reply;
} GDBState;
/* lives in main gdbstub.c */
extern GDBState gdbserver_state;
/*
* Inline utility function, convert from int to hex and back
*/
static inline int fromhex(int v)
{
if (v >= '0' && v <= '9') {
return v - '0';
} else if (v >= 'A' && v <= 'F') {
return v - 'A' + 10;
} else if (v >= 'a' && v <= 'f') {
return v - 'a' + 10;
} else {
return 0;
}
}
static inline int tohex(int v)
{
if (v < 10) {
return v + '0';
} else {
return v - 10 + 'a';
}
}
/*
* Connection helpers for both system and user backends
*/
void gdb_put_strbuf(void);
int gdb_put_packet_binary(const char *buf, int len, bool dump);
void gdb_memtohex(GString *buf, const uint8_t *mem, int len);
void gdb_memtox(GString *buf, const char *mem, int len);
void gdb_read_byte(uint8_t ch);
/*
* Packet acknowledgement - we handle this slightly differently
* between user and system mode, mainly to deal with the differences
* between the flexible chardev and the direct fd approaches.
*
* We currently don't support a negotiated QStartNoAckMode
*/
/**
* gdb_got_immediate_ack() - check ok to continue
*
* Returns true to continue, false to re-transmit for user only, the
* system stub always returns true.
*/
bool gdb_got_immediate_ack(void);
/* utility helpers */
GDBProcess *gdb_get_process(uint32_t pid);
CPUState *gdb_get_first_cpu_in_process(GDBProcess *process);
CPUState *gdb_first_attached_cpu(void);
void gdb_append_thread_id(CPUState *cpu, GString *buf);
int gdb_get_cpu_index(CPUState *cpu);
unsigned int gdb_get_max_cpus(void); /* both */
bool gdb_can_reverse(void); /* system emulation, stub for user */
int gdb_target_sigtrap(void); /* user */
void gdb_create_default_process(GDBState *s);
/* signal mapping, common for system, specialised for user-mode */
int gdb_signal_to_target(int sig);
int gdb_target_signal_to_gdb(int sig);
int gdb_get_char(void); /* user only */
/**
* gdb_continue() - handle continue in mode specific way.
*/
void gdb_continue(void);
/**
* gdb_continue_partial() - handle partial continue in mode specific way.
*/
int gdb_continue_partial(char *newstates);
/*
* Helpers with separate system and user implementations
*/
void gdb_put_buffer(const uint8_t *buf, int len);
/*
* Command handlers - either specialised or system or user only
*/
void gdb_init_gdbserver_state(void);
void gdb_handle_query_rcmd(GArray *params, void *ctx); /* system */
void gdb_handle_query_offsets(GArray *params, void *user_ctx); /* user */
void gdb_handle_query_xfer_auxv(GArray *params, void *user_ctx); /*user */
void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx); /*user */
void gdb_handle_v_file_open(GArray *params, void *user_ctx); /* user */
void gdb_handle_v_file_close(GArray *params, void *user_ctx); /* user */
void gdb_handle_v_file_pread(GArray *params, void *user_ctx); /* user */
void gdb_handle_v_file_readlink(GArray *params, void *user_ctx); /* user */
void gdb_handle_query_xfer_exec_file(GArray *params, void *user_ctx); /* user */
void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx); /* user */
void gdb_handle_query_supported_user(const char *gdb_supported); /* user */
bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid); /* user */
bool gdb_handle_detach_user(uint32_t pid); /* user */
void gdb_handle_query_attached(GArray *params, void *ctx); /* both */
/* system only */
void gdb_handle_query_qemu_phy_mem_mode(GArray *params, void *ctx);
void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *ctx);
/* sycall handling */
void gdb_handle_file_io(GArray *params, void *user_ctx);
bool gdb_handled_syscall(void);
void gdb_disable_syscalls(void);
void gdb_syscall_reset(void);
/* user/system specific syscall handling */
void gdb_syscall_handling(const char *syscall_packet);
/*
* Break/Watch point support - there is an implementation for system
* and user mode.
*/
bool gdb_supports_guest_debug(void);
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len);
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len);
void gdb_breakpoint_remove_all(CPUState *cs);
/**
* gdb_target_memory_rw_debug() - handle debug access to memory
* @cs: CPUState
* @addr: nominal address, could be an entire physical address
* @buf: data
* @len: length of access
* @is_write: is it a write operation
*
* This function is specialised depending on the mode we are running
* in. For system guests we can switch the interpretation of the
* address to a physical address.
*/
int gdb_target_memory_rw_debug(CPUState *cs, hwaddr addr,
uint8_t *buf, int len, bool is_write);
#endif /* GDBSTUB_INTERNALS_H */

21
gdbstub/meson.build Normal file
View File

@ -0,0 +1,21 @@
#
# The main gdbstub still relies on per-build definitions of various
# types. The bits pushed to system/user.c try to use guest agnostic
# types such as hwaddr.
#
# We build two versions of gdbstub, one for each mode
user_ss.add(files(
'gdbstub.c',
'syscalls.c',
'user.c'
))
system_ss.add(files(
'gdbstub.c',
'syscalls.c',
'system.c'
))
# The user-target is specialised by the guest
specific_ss.add(when: 'CONFIG_USER_ONLY', if_true: files('user-target.c'))

206
gdbstub/syscalls.c Normal file
View File

@ -0,0 +1,206 @@
/*
* GDB Syscall Handling
*
* GDB can execute syscalls on the guests behalf, currently used by
* the various semihosting extensions.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2023 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "semihosting/semihost.h"
#include "system/runstate.h"
#include "gdbstub/user.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/commands.h"
#include "trace.h"
#include "internals.h"
/* Syscall specific state */
typedef struct {
char syscall_buf[256];
gdb_syscall_complete_cb current_syscall_cb;
} GDBSyscallState;
static GDBSyscallState gdbserver_syscall_state;
/*
* Return true if there is a GDB currently connected to the stub
* and attached to a CPU
*/
static bool gdb_attached(void)
{
return gdbserver_state.init && gdbserver_state.c_cpu;
}
static enum {
GDB_SYS_UNKNOWN,
GDB_SYS_ENABLED,
GDB_SYS_DISABLED,
} gdb_syscall_mode;
/* Decide if either remote gdb syscalls or native file IO should be used. */
int use_gdb_syscalls(void)
{
SemihostingTarget target = semihosting_get_target();
if (target == SEMIHOSTING_TARGET_NATIVE) {
/* -semihosting-config target=native */
return false;
} else if (target == SEMIHOSTING_TARGET_GDB) {
/* -semihosting-config target=gdb */
return true;
}
/* -semihosting-config target=auto */
/* On the first call check if gdb is connected and remember. */
if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
gdb_syscall_mode = gdb_attached() ? GDB_SYS_ENABLED : GDB_SYS_DISABLED;
}
return gdb_syscall_mode == GDB_SYS_ENABLED;
}
/* called when the stub detaches */
void gdb_disable_syscalls(void)
{
gdb_syscall_mode = GDB_SYS_DISABLED;
}
void gdb_syscall_reset(void)
{
gdbserver_syscall_state.current_syscall_cb = NULL;
}
bool gdb_handled_syscall(void)
{
if (gdbserver_syscall_state.current_syscall_cb) {
gdb_put_packet(gdbserver_syscall_state.syscall_buf);
return true;
}
return false;
}
/*
* Send a gdb syscall request.
* This accepts limited printf-style format specifiers, specifically:
* %x - target_ulong argument printed in hex.
* %lx - 64-bit argument printed in hex.
* %s - string pointer (target_ulong) and length (int) pair.
*/
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
{
char *p, *p_end;
va_list va;
if (!gdb_attached()) {
return;
}
gdbserver_syscall_state.current_syscall_cb = cb;
va_start(va, fmt);
p = gdbserver_syscall_state.syscall_buf;
p_end = p + sizeof(gdbserver_syscall_state.syscall_buf);
*(p++) = 'F';
while (*fmt) {
if (*fmt == '%') {
uint64_t i64;
uint32_t i32;
fmt++;
switch (*fmt++) {
case 'x':
i32 = va_arg(va, uint32_t);
p += snprintf(p, p_end - p, "%" PRIx32, i32);
break;
case 'l':
if (*(fmt++) != 'x') {
goto bad_format;
}
i64 = va_arg(va, uint64_t);
p += snprintf(p, p_end - p, "%" PRIx64, i64);
break;
case 's':
i64 = va_arg(va, uint64_t);
i32 = va_arg(va, uint32_t);
p += snprintf(p, p_end - p, "%" PRIx64 "/%x" PRIx32, i64, i32);
break;
default:
bad_format:
error_report("gdbstub: Bad syscall format string '%s'",
fmt - 1);
break;
}
} else {
*(p++) = *(fmt++);
}
}
*p = 0;
va_end(va);
gdb_syscall_handling(gdbserver_syscall_state.syscall_buf);
}
/*
* GDB Command Handlers
*/
void gdb_handle_file_io(GArray *params, void *user_ctx)
{
if (params->len >= 1 && gdbserver_syscall_state.current_syscall_cb) {
uint64_t ret;
int err;
ret = gdb_get_cmd_param(params, 0)->val_ull;
if (params->len >= 2) {
err = gdb_get_cmd_param(params, 1)->val_ull;
} else {
err = 0;
}
/* Convert GDB error numbers back to host error numbers. */
#define E(X) case GDB_E##X: err = E##X; break
switch (err) {
case 0:
break;
E(PERM);
E(NOENT);
E(INTR);
E(BADF);
E(ACCES);
E(FAULT);
E(BUSY);
E(EXIST);
E(NODEV);
E(NOTDIR);
E(ISDIR);
E(INVAL);
E(NFILE);
E(MFILE);
E(FBIG);
E(NOSPC);
E(SPIPE);
E(ROFS);
E(NAMETOOLONG);
default:
err = EINVAL;
break;
}
#undef E
gdbserver_syscall_state.current_syscall_cb(gdbserver_state.c_cpu,
ret, err);
gdbserver_syscall_state.current_syscall_cb = NULL;
}
if (params->len >= 3 && gdb_get_cmd_param(params, 2)->opcode == (uint8_t)'C') {
gdb_put_packet("T02");
return;
}
gdb_continue();
}

669
gdbstub/system.c Normal file
View File

@ -0,0 +1,669 @@
/*
* gdb server stub - system specific bits
*
* Debug integration depends on support from the individual
* accelerators so most of this involves calling the ops helpers.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/cutils.h"
#include "exec/gdbstub.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/commands.h"
#include "exec/hwaddr.h"
#include "exec/tb-flush.h"
#include "accel/accel-ops.h"
#include "accel/accel-cpu-ops.h"
#include "system/cpus.h"
#include "system/runstate.h"
#include "system/replay.h"
#include "system/tcg.h"
#include "hw/core/cpu.h"
#include "hw/cpu/cluster.h"
#include "hw/boards.h"
#include "chardev/char.h"
#include "chardev/char-fe.h"
#include "monitor/monitor.h"
#include "trace.h"
#include "internals.h"
/* System emulation specific state */
typedef struct {
CharBackend chr;
Chardev *mon_chr;
} GDBSystemState;
GDBSystemState gdbserver_system_state;
static void reset_gdbserver_state(void)
{
g_free(gdbserver_state.processes);
gdbserver_state.processes = NULL;
gdbserver_state.process_num = 0;
gdbserver_state.allow_stop_reply = false;
}
/*
* Return the GDB index for a given vCPU state.
*
* In system mode GDB numbers CPUs from 1 as 0 is reserved as an "any
* cpu" index.
*/
int gdb_get_cpu_index(CPUState *cpu)
{
return cpu->cpu_index + 1;
}
/*
* We check the status of the last message in the chardev receive code
*/
bool gdb_got_immediate_ack(void)
{
return true;
}
/*
* GDB Connection management. For system emulation we do all of this
* via our existing Chardev infrastructure which allows us to support
* network and unix sockets.
*/
void gdb_put_buffer(const uint8_t *buf, int len)
{
/*
* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks
*/
qemu_chr_fe_write_all(&gdbserver_system_state.chr, buf, len);
}
static void gdb_chr_event(void *opaque, QEMUChrEvent event)
{
int i;
GDBState *s = (GDBState *) opaque;
switch (event) {
case CHR_EVENT_OPENED:
/* Start with first process attached, others detached */
for (i = 0; i < s->process_num; i++) {
s->processes[i].attached = !i;
}
s->c_cpu = gdb_first_attached_cpu();
s->g_cpu = s->c_cpu;
vm_stop(RUN_STATE_PAUSED);
replay_gdb_attached();
break;
default:
break;
}
}
/*
* In system-mode we stop the VM and wait to send the syscall packet
* until notification that the CPU has stopped. This must be done
* because if the packet is sent now the reply from the syscall
* request could be received while the CPU is still in the running
* state, which can cause packets to be dropped and state transition
* 'T' packets to be sent while the syscall is still being processed.
*/
void gdb_syscall_handling(const char *syscall_packet)
{
vm_stop(RUN_STATE_DEBUG);
qemu_cpu_kick(gdbserver_state.c_cpu);
}
static void gdb_vm_state_change(void *opaque, bool running, RunState state)
{
CPUState *cpu = gdbserver_state.c_cpu;
g_autoptr(GString) buf = g_string_new(NULL);
g_autoptr(GString) tid = g_string_new(NULL);
const char *type;
int ret;
if (running || gdbserver_state.state == RS_INACTIVE) {
return;
}
/* Is there a GDB syscall waiting to be sent? */
if (gdb_handled_syscall()) {
return;
}
if (cpu == NULL) {
/* No process attached */
return;
}
if (!gdbserver_state.allow_stop_reply) {
return;
}
gdb_append_thread_id(cpu, tid);
switch (state) {
case RUN_STATE_DEBUG:
if (cpu->watchpoint_hit) {
switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
case BP_MEM_READ:
type = "r";
break;
case BP_MEM_ACCESS:
type = "a";
break;
default:
type = "";
break;
}
trace_gdbstub_hit_watchpoint(type,
gdb_get_cpu_index(cpu),
cpu->watchpoint_hit->vaddr);
g_string_printf(buf, "T%02xthread:%s;%swatch:%" VADDR_PRIx ";",
GDB_SIGNAL_TRAP, tid->str, type,
cpu->watchpoint_hit->vaddr);
cpu->watchpoint_hit = NULL;
goto send_packet;
} else {
trace_gdbstub_hit_break();
}
if (tcg_enabled()) {
tb_flush(cpu);
}
ret = GDB_SIGNAL_TRAP;
break;
case RUN_STATE_PAUSED:
trace_gdbstub_hit_paused();
ret = GDB_SIGNAL_INT;
break;
case RUN_STATE_SHUTDOWN:
trace_gdbstub_hit_shutdown();
ret = GDB_SIGNAL_QUIT;
break;
case RUN_STATE_IO_ERROR:
trace_gdbstub_hit_io_error();
ret = GDB_SIGNAL_STOP;
break;
case RUN_STATE_WATCHDOG:
trace_gdbstub_hit_watchdog();
ret = GDB_SIGNAL_ALRM;
break;
case RUN_STATE_INTERNAL_ERROR:
trace_gdbstub_hit_internal_error();
ret = GDB_SIGNAL_ABRT;
break;
case RUN_STATE_SAVE_VM:
case RUN_STATE_RESTORE_VM:
return;
case RUN_STATE_FINISH_MIGRATE:
ret = GDB_SIGNAL_XCPU;
break;
default:
trace_gdbstub_hit_unknown(state);
ret = GDB_SIGNAL_UNKNOWN;
break;
}
gdb_set_stop_cpu(cpu);
g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
send_packet:
gdb_put_packet(buf->str);
gdbserver_state.allow_stop_reply = false;
/* disable single step if it was enabled */
cpu_single_step(cpu, 0);
}
#ifndef _WIN32
static void gdb_sigterm_handler(int signal)
{
if (runstate_is_running()) {
vm_stop(RUN_STATE_PAUSED);
}
}
#endif
static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
{
g_autoptr(GString) hex_buf = g_string_new("O");
gdb_memtohex(hex_buf, buf, len);
gdb_put_packet(hex_buf->str);
return len;
}
static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
bool *be_opened, Error **errp)
{
*be_opened = false;
}
static void char_gdb_class_init(ObjectClass *oc, const void *data)
{
ChardevClass *cc = CHARDEV_CLASS(oc);
cc->internal = true;
cc->open = gdb_monitor_open;
cc->chr_write = gdb_monitor_write;
}
#define TYPE_CHARDEV_GDB "chardev-gdb"
static const TypeInfo char_gdb_type_info = {
.name = TYPE_CHARDEV_GDB,
.parent = TYPE_CHARDEV,
.class_init = char_gdb_class_init,
};
static int gdb_chr_can_receive(void *opaque)
{
/*
* We can handle an arbitrarily large amount of data.
* Pick the maximum packet size, which is as good as anything.
*/
return MAX_PACKET_LENGTH;
}
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
{
int i;
for (i = 0; i < size; i++) {
gdb_read_byte(buf[i]);
}
}
static int find_cpu_clusters(Object *child, void *opaque)
{
if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
GDBState *s = (GDBState *) opaque;
CPUClusterState *cluster = CPU_CLUSTER(child);
GDBProcess *process;
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
process = &s->processes[s->process_num - 1];
/*
* GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
* runtime, we enforce here that the machine does not use a cluster ID
* that would lead to PID 0.
*/
assert(cluster->cluster_id != UINT32_MAX);
process->pid = cluster->cluster_id + 1;
process->attached = false;
process->target_xml = NULL;
return 0;
}
return object_child_foreach(child, find_cpu_clusters, opaque);
}
static int pid_order(const void *a, const void *b)
{
GDBProcess *pa = (GDBProcess *) a;
GDBProcess *pb = (GDBProcess *) b;
if (pa->pid < pb->pid) {
return -1;
} else if (pa->pid > pb->pid) {
return 1;
} else {
return 0;
}
}
static void create_processes(GDBState *s)
{
object_child_foreach(object_get_root(), find_cpu_clusters, s);
if (gdbserver_state.processes) {
/* Sort by PID */
qsort(gdbserver_state.processes,
gdbserver_state.process_num,
sizeof(gdbserver_state.processes[0]),
pid_order);
}
gdb_create_default_process(s);
}
bool gdbserver_start(const char *device, Error **errp)
{
Chardev *chr = NULL;
Chardev *mon_chr;
g_autoptr(GString) cs = g_string_new(device);
if (!first_cpu) {
error_setg(errp, "gdbstub: meaningless to attach gdb to a "
"machine without any CPU.");
return false;
}
if (!gdb_supports_guest_debug()) {
error_setg(errp, "gdbstub: current accelerator doesn't "
"support guest debugging");
return false;
}
if (cs->len == 0) {
error_setg(errp, "gdbstub: missing connection string");
return false;
}
trace_gdbstub_op_start(cs->str);
if (g_strcmp0(cs->str, "none") != 0) {
if (g_str_has_prefix(cs->str, "tcp:")) {
/* enforce required TCP attributes */
g_string_append_printf(cs, ",wait=off,nodelay=on,server=on");
}
#ifndef _WIN32
else if (strcmp(device, "stdio") == 0) {
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_handler = gdb_sigterm_handler;
sigaction(SIGINT, &act, NULL);
}
#endif
/*
* FIXME: it's a bit weird to allow using a mux chardev here
* and implicitly setup a monitor. We may want to break this.
*/
chr = qemu_chr_new_noreplay("gdb", cs->str, true, NULL);
if (!chr) {
error_setg(errp, "gdbstub: couldn't create chardev");
return false;
}
}
if (!gdbserver_state.init) {
gdb_init_gdbserver_state();
qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
/* Initialize a monitor terminal for gdb */
mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
NULL, NULL, &error_abort);
monitor_init_hmp(mon_chr, false, &error_abort);
} else {
qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
mon_chr = gdbserver_system_state.mon_chr;
reset_gdbserver_state();
}
create_processes(&gdbserver_state);
if (chr) {
qemu_chr_fe_init(&gdbserver_system_state.chr, chr, &error_abort);
qemu_chr_fe_set_handlers(&gdbserver_system_state.chr,
gdb_chr_can_receive,
gdb_chr_receive, gdb_chr_event,
NULL, &gdbserver_state, NULL, true);
}
gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
gdbserver_system_state.mon_chr = mon_chr;
gdb_syscall_reset();
return true;
}
static void register_types(void)
{
type_register_static(&char_gdb_type_info);
}
type_init(register_types);
/* Tell the remote gdb that the process has exited. */
void gdb_exit(int code)
{
char buf[4];
if (!gdbserver_state.init) {
return;
}
trace_gdbstub_op_exiting((uint8_t)code);
if (gdbserver_state.allow_stop_reply) {
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
}
void gdb_qemu_exit(int code)
{
qemu_system_shutdown_request_with_code(SHUTDOWN_CAUSE_GUEST_SHUTDOWN,
code);
}
/*
* Memory access
*/
static int phy_memory_mode;
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
uint8_t *buf, int len, bool is_write)
{
if (phy_memory_mode) {
if (is_write) {
cpu_physical_memory_write(addr, buf, len);
} else {
cpu_physical_memory_read(addr, buf, len);
}
return 0;
}
if (cpu->cc->memory_rw_debug) {
return cpu->cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
/*
* cpu helpers
*/
unsigned int gdb_get_max_cpus(void)
{
MachineState *ms = MACHINE(qdev_get_machine());
return ms->smp.max_cpus;
}
bool gdb_can_reverse(void)
{
return replay_mode == REPLAY_MODE_PLAY;
}
/*
* Softmmu specific command helpers
*/
void gdb_handle_query_qemu_phy_mem_mode(GArray *params,
void *ctx)
{
g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
gdb_put_strbuf();
}
void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *ctx)
{
if (!params->len) {
gdb_put_packet("E22");
return;
}
if (!gdb_get_cmd_param(params, 0)->val_ul) {
phy_memory_mode = 0;
} else {
phy_memory_mode = 1;
}
gdb_put_packet("OK");
}
void gdb_handle_query_rcmd(GArray *params, void *ctx)
{
const guint8 zero = 0;
int len;
if (!params->len) {
gdb_put_packet("E22");
return;
}
len = strlen(gdb_get_cmd_param(params, 0)->data);
if (len % 2) {
gdb_put_packet("E01");
return;
}
g_assert(gdbserver_state.mem_buf->len == 0);
len = len / 2;
gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len);
g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
qemu_chr_be_write(gdbserver_system_state.mon_chr,
gdbserver_state.mem_buf->data,
gdbserver_state.mem_buf->len);
gdb_put_packet("OK");
}
/*
* Execution state helpers
*/
void gdb_handle_query_attached(GArray *params, void *ctx)
{
gdb_put_packet("1");
}
void gdb_continue(void)
{
if (!runstate_needs_reset()) {
trace_gdbstub_op_continue();
vm_start();
}
}
/*
* Resume execution, per CPU actions.
*/
int gdb_continue_partial(char *newstates)
{
CPUState *cpu;
int res = 0;
int flag = 0;
if (!runstate_needs_reset()) {
bool step_requested = false;
CPU_FOREACH(cpu) {
if (newstates[cpu->cpu_index] == 's') {
step_requested = true;
break;
}
}
if (vm_prepare_start(step_requested)) {
return 0;
}
CPU_FOREACH(cpu) {
switch (newstates[cpu->cpu_index]) {
case 0:
case 1:
break; /* nothing to do here */
case 's':
trace_gdbstub_op_stepping(cpu->cpu_index);
cpu_single_step(cpu, gdbserver_state.sstep_flags);
cpu_resume(cpu);
flag = 1;
break;
case 'c':
trace_gdbstub_op_continue_cpu(cpu->cpu_index);
cpu_resume(cpu);
flag = 1;
break;
default:
res = -1;
break;
}
}
}
if (flag) {
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
}
return res;
}
/*
* Signal Handling - in system mode we only need SIGINT and SIGTRAP; other
* signals are not yet supported.
*/
enum {
TARGET_SIGINT = 2,
TARGET_SIGTRAP = 5
};
int gdb_signal_to_target(int sig)
{
switch (sig) {
case 2:
return TARGET_SIGINT;
case 5:
return TARGET_SIGTRAP;
default:
return -1;
}
}
/*
* Break/Watch point helpers
*/
bool gdb_supports_guest_debug(void)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->supports_guest_debug) {
return ops->supports_guest_debug();
}
return false;
}
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->insert_breakpoint) {
return ops->insert_breakpoint(cs, type, addr, len);
}
return -ENOSYS;
}
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->remove_breakpoint) {
return ops->remove_breakpoint(cs, type, addr, len);
}
return -ENOSYS;
}
void gdb_breakpoint_remove_all(CPUState *cs)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->remove_all_breakpoints) {
ops->remove_all_breakpoints(cs);
}
}

32
gdbstub/trace-events Normal file
View File

@ -0,0 +1,32 @@
# See docs/devel/tracing.rst for syntax documentation.
# gdbstub.c
gdbstub_op_start(const char *device) "Starting gdbstub using device %s"
gdbstub_op_exiting(uint8_t code) "notifying exit with code=0x%02x"
gdbstub_op_continue(void) "Continuing all CPUs"
gdbstub_op_continue_cpu(int cpu_index) "Continuing CPU %d"
gdbstub_op_stepping(int cpu_index) "Stepping CPU %d"
gdbstub_op_extra_info(const char *info) "Thread extra info: %s"
gdbstub_hit_internal_error(void) "RUN_STATE_INTERNAL_ERROR"
gdbstub_hit_break(void) "RUN_STATE_DEBUG"
gdbstub_hit_paused(void) "RUN_STATE_PAUSED"
gdbstub_hit_shutdown(void) "RUN_STATE_SHUTDOWN"
gdbstub_hit_io_error(void) "RUN_STATE_IO_ERROR"
gdbstub_hit_watchdog(void) "RUN_STATE_WATCHDOG"
gdbstub_hit_unknown(int state) "Unknown run state=0x%x"
gdbstub_io_reply(const char *message) "Sent: %s"
gdbstub_io_binaryreply(size_t ofs, const char *line) "0x%04zx: %s"
gdbstub_io_command(const char *command) "Received: %s"
gdbstub_io_got_ack(void) "Got ACK"
gdbstub_io_got_unexpected(uint8_t ch) "Got 0x%02x when expecting ACK/NACK"
gdbstub_err_got_nack(void) "Got NACK, retransmitting"
gdbstub_err_garbage(uint8_t ch) "received garbage between packets: 0x%02x"
gdbstub_err_overrun(void) "command buffer overrun, dropping command"
gdbstub_err_invalid_repeat(uint8_t ch) "got invalid RLE count: 0x%02x"
gdbstub_err_invalid_rle(void) "got invalid RLE sequence"
gdbstub_err_checksum_invalid(uint8_t ch) "got invalid command checksum digit: 0x%02x"
gdbstub_err_checksum_incorrect(uint8_t expected, uint8_t got) "got command packet with incorrect checksum, expected=0x%02x, received=0x%02x"
gdbstub_err_unexpected_runpkt(uint8_t ch) "unexpected packet (0x%02x) while target running"
# system.c
gdbstub_hit_watchpoint(const char *type, int cpu_gdb_index, uint64_t vaddr) "Watchpoint hit, type=\"%s\" cpu=%d, vaddr=0x%" PRIx64 ""

1
gdbstub/trace.h Normal file
View File

@ -0,0 +1 @@
#include "trace/trace-gdbstub.h"

424
gdbstub/user-target.c Normal file
View File

@ -0,0 +1,424 @@
/*
* Target specific user-mode handling
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "exec/gdbstub.h"
#include "gdbstub/commands.h"
#include "qemu.h"
#include "internals.h"
#ifdef CONFIG_LINUX
#include "linux-user/loader.h"
#include "linux-user/qemu.h"
#endif
/*
* Map target signal numbers to GDB protocol signal numbers and vice
* versa. For user emulation's currently supported systems, we can
* assume most signals are defined.
*/
static int gdb_signal_table[] = {
0,
TARGET_SIGHUP,
TARGET_SIGINT,
TARGET_SIGQUIT,
TARGET_SIGILL,
TARGET_SIGTRAP,
TARGET_SIGABRT,
-1, /* SIGEMT */
TARGET_SIGFPE,
TARGET_SIGKILL,
TARGET_SIGBUS,
TARGET_SIGSEGV,
TARGET_SIGSYS,
TARGET_SIGPIPE,
TARGET_SIGALRM,
TARGET_SIGTERM,
TARGET_SIGURG,
TARGET_SIGSTOP,
TARGET_SIGTSTP,
TARGET_SIGCONT,
TARGET_SIGCHLD,
TARGET_SIGTTIN,
TARGET_SIGTTOU,
TARGET_SIGIO,
TARGET_SIGXCPU,
TARGET_SIGXFSZ,
TARGET_SIGVTALRM,
TARGET_SIGPROF,
TARGET_SIGWINCH,
-1, /* SIGLOST */
TARGET_SIGUSR1,
TARGET_SIGUSR2,
#ifdef TARGET_SIGPWR
TARGET_SIGPWR,
#else
-1,
#endif
-1, /* SIGPOLL */
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
#ifdef __SIGRTMIN
__SIGRTMIN + 1,
__SIGRTMIN + 2,
__SIGRTMIN + 3,
__SIGRTMIN + 4,
__SIGRTMIN + 5,
__SIGRTMIN + 6,
__SIGRTMIN + 7,
__SIGRTMIN + 8,
__SIGRTMIN + 9,
__SIGRTMIN + 10,
__SIGRTMIN + 11,
__SIGRTMIN + 12,
__SIGRTMIN + 13,
__SIGRTMIN + 14,
__SIGRTMIN + 15,
__SIGRTMIN + 16,
__SIGRTMIN + 17,
__SIGRTMIN + 18,
__SIGRTMIN + 19,
__SIGRTMIN + 20,
__SIGRTMIN + 21,
__SIGRTMIN + 22,
__SIGRTMIN + 23,
__SIGRTMIN + 24,
__SIGRTMIN + 25,
__SIGRTMIN + 26,
__SIGRTMIN + 27,
__SIGRTMIN + 28,
__SIGRTMIN + 29,
__SIGRTMIN + 30,
__SIGRTMIN + 31,
-1, /* SIGCANCEL */
__SIGRTMIN,
__SIGRTMIN + 32,
__SIGRTMIN + 33,
__SIGRTMIN + 34,
__SIGRTMIN + 35,
__SIGRTMIN + 36,
__SIGRTMIN + 37,
__SIGRTMIN + 38,
__SIGRTMIN + 39,
__SIGRTMIN + 40,
__SIGRTMIN + 41,
__SIGRTMIN + 42,
__SIGRTMIN + 43,
__SIGRTMIN + 44,
__SIGRTMIN + 45,
__SIGRTMIN + 46,
__SIGRTMIN + 47,
__SIGRTMIN + 48,
__SIGRTMIN + 49,
__SIGRTMIN + 50,
__SIGRTMIN + 51,
__SIGRTMIN + 52,
__SIGRTMIN + 53,
__SIGRTMIN + 54,
__SIGRTMIN + 55,
__SIGRTMIN + 56,
__SIGRTMIN + 57,
__SIGRTMIN + 58,
__SIGRTMIN + 59,
__SIGRTMIN + 60,
__SIGRTMIN + 61,
__SIGRTMIN + 62,
__SIGRTMIN + 63,
__SIGRTMIN + 64,
__SIGRTMIN + 65,
__SIGRTMIN + 66,
__SIGRTMIN + 67,
__SIGRTMIN + 68,
__SIGRTMIN + 69,
__SIGRTMIN + 70,
__SIGRTMIN + 71,
__SIGRTMIN + 72,
__SIGRTMIN + 73,
__SIGRTMIN + 74,
__SIGRTMIN + 75,
__SIGRTMIN + 76,
__SIGRTMIN + 77,
__SIGRTMIN + 78,
__SIGRTMIN + 79,
__SIGRTMIN + 80,
__SIGRTMIN + 81,
__SIGRTMIN + 82,
__SIGRTMIN + 83,
__SIGRTMIN + 84,
__SIGRTMIN + 85,
__SIGRTMIN + 86,
__SIGRTMIN + 87,
__SIGRTMIN + 88,
__SIGRTMIN + 89,
__SIGRTMIN + 90,
__SIGRTMIN + 91,
__SIGRTMIN + 92,
__SIGRTMIN + 93,
__SIGRTMIN + 94,
__SIGRTMIN + 95,
-1, /* SIGINFO */
-1, /* UNKNOWN */
-1, /* DEFAULT */
-1,
-1,
-1,
-1,
-1,
-1
#endif
};
int gdb_signal_to_target(int sig)
{
if (sig < ARRAY_SIZE(gdb_signal_table)) {
return gdb_signal_table[sig];
} else {
return -1;
}
}
int gdb_target_signal_to_gdb(int sig)
{
int i;
for (i = 0; i < ARRAY_SIZE(gdb_signal_table); i++) {
if (gdb_signal_table[i] == sig) {
return i;
}
}
return GDB_SIGNAL_UNKNOWN;
}
int gdb_get_cpu_index(CPUState *cpu)
{
TaskState *ts = get_task_state(cpu);
return ts ? ts->ts_tid : -1;
}
/*
* User-mode specific command helpers
*/
void gdb_handle_query_offsets(GArray *params, void *user_ctx)
{
TaskState *ts;
ts = get_task_state(gdbserver_state.c_cpu);
g_string_printf(gdbserver_state.str_buf,
"Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
";Bss=" TARGET_ABI_FMT_lx,
ts->info->code_offset,
ts->info->data_offset,
ts->info->data_offset);
gdb_put_strbuf();
}
#if defined(CONFIG_LINUX)
/* Partial user only duplicate of helper in gdbstub.c */
static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
uint8_t *buf, int len, bool is_write)
{
if (cpu->cc->memory_rw_debug) {
return cpu->cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
void gdb_handle_query_xfer_auxv(GArray *params, void *user_ctx)
{
TaskState *ts;
unsigned long offset, len, saved_auxv, auxv_len;
if (params->len < 2) {
gdb_put_packet("E22");
return;
}
offset = gdb_get_cmd_param(params, 0)->val_ul;
len = gdb_get_cmd_param(params, 1)->val_ul;
ts = get_task_state(gdbserver_state.c_cpu);
saved_auxv = ts->info->saved_auxv;
auxv_len = ts->info->auxv_len;
if (offset >= auxv_len) {
gdb_put_packet("E00");
return;
}
if (len > (MAX_PACKET_LENGTH - 5) / 2) {
len = (MAX_PACKET_LENGTH - 5) / 2;
}
if (len < auxv_len - offset) {
g_string_assign(gdbserver_state.str_buf, "m");
} else {
g_string_assign(gdbserver_state.str_buf, "l");
len = auxv_len - offset;
}
g_byte_array_set_size(gdbserver_state.mem_buf, len);
if (target_memory_rw_debug(gdbserver_state.g_cpu, saved_auxv + offset,
gdbserver_state.mem_buf->data, len, false)) {
gdb_put_packet("E14");
return;
}
gdb_memtox(gdbserver_state.str_buf,
(const char *)gdbserver_state.mem_buf->data, len);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}
#endif
static const char *get_filename_param(GArray *params, int i)
{
const char *hex_filename = gdb_get_cmd_param(params, i)->data;
gdb_hextomem(gdbserver_state.mem_buf, hex_filename,
strlen(hex_filename) / 2);
g_byte_array_append(gdbserver_state.mem_buf, (const guint8 *)"", 1);
return (const char *)gdbserver_state.mem_buf->data;
}
static void hostio_reply_with_data(const void *buf, size_t n)
{
g_string_printf(gdbserver_state.str_buf, "F%zx;", n);
gdb_memtox(gdbserver_state.str_buf, buf, n);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}
void gdb_handle_v_file_open(GArray *params, void *user_ctx)
{
const char *filename = get_filename_param(params, 0);
uint64_t flags = gdb_get_cmd_param(params, 1)->val_ull;
uint64_t mode = gdb_get_cmd_param(params, 2)->val_ull;
#ifdef CONFIG_LINUX
int fd = do_guest_openat(cpu_env(gdbserver_state.g_cpu), 0, filename,
flags, mode, false);
#else
int fd = open(filename, flags, mode);
#endif
if (fd < 0) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
} else {
g_string_printf(gdbserver_state.str_buf, "F%x", fd);
}
gdb_put_strbuf();
}
void gdb_handle_v_file_close(GArray *params, void *user_ctx)
{
int fd = gdb_get_cmd_param(params, 0)->val_ul;
if (close(fd) == -1) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
gdb_put_strbuf();
return;
}
gdb_put_packet("F00");
}
void gdb_handle_v_file_pread(GArray *params, void *user_ctx)
{
int fd = gdb_get_cmd_param(params, 0)->val_ul;
size_t count = gdb_get_cmd_param(params, 1)->val_ull;
off_t offset = gdb_get_cmd_param(params, 2)->val_ull;
size_t bufsiz = MIN(count, BUFSIZ);
g_autofree char *buf = g_try_malloc(bufsiz);
if (buf == NULL) {
gdb_put_packet("E12");
return;
}
ssize_t n = pread(fd, buf, bufsiz, offset);
if (n < 0) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
gdb_put_strbuf();
return;
}
hostio_reply_with_data(buf, n);
}
void gdb_handle_v_file_readlink(GArray *params, void *user_ctx)
{
const char *filename = get_filename_param(params, 0);
g_autofree char *buf = g_try_malloc(BUFSIZ);
if (buf == NULL) {
gdb_put_packet("E12");
return;
}
#ifdef CONFIG_LINUX
ssize_t n = do_guest_readlink(filename, buf, BUFSIZ);
#else
ssize_t n = readlink(filename, buf, BUFSIZ);
#endif
if (n < 0) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
gdb_put_strbuf();
return;
}
hostio_reply_with_data(buf, n);
}
void gdb_handle_query_xfer_exec_file(GArray *params, void *user_ctx)
{
uint32_t pid = gdb_get_cmd_param(params, 0)->val_ul;
uint32_t offset = gdb_get_cmd_param(params, 1)->val_ul;
uint32_t length = gdb_get_cmd_param(params, 2)->val_ul;
GDBProcess *process = gdb_get_process(pid);
if (!process) {
gdb_put_packet("E00");
return;
}
CPUState *cpu = gdb_get_first_cpu_in_process(process);
if (!cpu) {
gdb_put_packet("E00");
return;
}
TaskState *ts = get_task_state(cpu);
if (!ts || !ts->bprm || !ts->bprm->filename) {
gdb_put_packet("E00");
return;
}
size_t total_length = strlen(ts->bprm->filename);
if (offset > total_length) {
gdb_put_packet("E00");
return;
}
if (offset + length > total_length) {
length = total_length - offset;
}
g_string_printf(gdbserver_state.str_buf, "l%.*s", length,
ts->bprm->filename + offset);
gdb_put_strbuf();
}
int gdb_target_sigtrap(void)
{
return TARGET_SIGTRAP;
}

955
gdbstub/user.c Normal file
View File

@ -0,0 +1,955 @@
/*
* gdbstub user-mode helper routines.
*
* We know for user-mode we are using TCG so we can call stuff directly.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/cutils.h"
#include "qemu/sockets.h"
#include "qapi/error.h"
#include "exec/hwaddr.h"
#include "exec/tb-flush.h"
#include "exec/gdbstub.h"
#include "gdbstub/commands.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/user.h"
#include "gdbstub/enums.h"
#include "hw/core/cpu.h"
#include "user/signal.h"
#include "trace.h"
#include "internals.h"
#define GDB_NR_SYSCALLS 1024
typedef unsigned long GDBSyscallsMask[BITS_TO_LONGS(GDB_NR_SYSCALLS)];
/*
* Forked child talks to its parent in order to let GDB enforce the
* follow-fork-mode. This happens inside a start_exclusive() section, so that
* the other threads, which may be forking too, do not interfere. The
* implementation relies on GDB not sending $vCont until it has detached
* either from the parent (follow-fork-mode child) or from the child
* (follow-fork-mode parent).
*
* The parent and the child share the GDB socket; at any given time only one
* of them is allowed to use it, as is reflected in the respective fork_state.
* This is negotiated via the fork_sockets pair as a reaction to $Hg.
*
* Below is a short summary of the possible state transitions:
*
* ENABLED : Terminal state.
* DISABLED : Terminal state.
* ACTIVE : Parent initial state.
* INACTIVE : Child initial state.
* ACTIVE -> DEACTIVATING: On $Hg.
* ACTIVE -> ENABLING : On $D.
* ACTIVE -> DISABLING : On $D.
* ACTIVE -> DISABLED : On communication error.
* DEACTIVATING -> INACTIVE : On gdb_read_byte() return.
* DEACTIVATING -> DISABLED : On communication error.
* INACTIVE -> ACTIVE : On $Hg in the peer.
* INACTIVE -> ENABLE : On $D in the peer.
* INACTIVE -> DISABLE : On $D in the peer.
* INACTIVE -> DISABLED : On communication error.
* ENABLING -> ENABLED : On gdb_read_byte() return.
* ENABLING -> DISABLED : On communication error.
* DISABLING -> DISABLED : On gdb_read_byte() return.
*/
enum GDBForkState {
/* Fully owning the GDB socket. */
GDB_FORK_ENABLED,
/* Working with the GDB socket; the peer is inactive. */
GDB_FORK_ACTIVE,
/* Handing off the GDB socket to the peer. */
GDB_FORK_DEACTIVATING,
/* The peer is working with the GDB socket. */
GDB_FORK_INACTIVE,
/* Asking the peer to close its GDB socket fd. */
GDB_FORK_ENABLING,
/* Asking the peer to take over, closing our GDB socket fd. */
GDB_FORK_DISABLING,
/* The peer has taken over, our GDB socket fd is closed. */
GDB_FORK_DISABLED,
};
enum GDBForkMessage {
GDB_FORK_ACTIVATE = 'a',
GDB_FORK_ENABLE = 'e',
GDB_FORK_DISABLE = 'd',
};
/* User-mode specific state */
typedef struct {
int fd;
char *socket_path;
int running_state;
/*
* Store syscalls mask without memory allocation in order to avoid
* implementing synchronization.
*/
bool catch_all_syscalls;
GDBSyscallsMask catch_syscalls_mask;
bool fork_events;
enum GDBForkState fork_state;
int fork_sockets[2];
pid_t fork_peer_pid, fork_peer_tid;
uint8_t siginfo[MAX_SIGINFO_LENGTH];
unsigned long siginfo_len;
} GDBUserState;
static GDBUserState gdbserver_user_state;
int gdb_get_char(void)
{
uint8_t ch;
int ret;
for (;;) {
ret = recv(gdbserver_user_state.fd, &ch, 1, 0);
if (ret < 0) {
if (errno == ECONNRESET) {
gdbserver_user_state.fd = -1;
}
if (errno != EINTR) {
return -1;
}
} else if (ret == 0) {
close(gdbserver_user_state.fd);
gdbserver_user_state.fd = -1;
return -1;
} else {
break;
}
}
return ch;
}
bool gdb_got_immediate_ack(void)
{
int i;
i = gdb_get_char();
if (i < 0) {
/* no response, continue anyway */
return true;
}
if (i == '+') {
/* received correctly, continue */
return true;
}
/* anything else, including '-' then try again */
return false;
}
void gdb_put_buffer(const uint8_t *buf, int len)
{
int ret;
while (len > 0) {
ret = send(gdbserver_user_state.fd, buf, len, 0);
if (ret < 0) {
if (errno != EINTR) {
return;
}
} else {
buf += ret;
len -= ret;
}
}
}
/* Tell the remote gdb that the process has exited. */
void gdb_exit(int code)
{
char buf[4];
if (!gdbserver_state.init) {
return;
}
if (gdbserver_user_state.socket_path) {
unlink(gdbserver_user_state.socket_path);
}
if (gdbserver_user_state.fd < 0) {
return;
}
trace_gdbstub_op_exiting((uint8_t)code);
if (gdbserver_state.allow_stop_reply) {
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
}
void gdb_qemu_exit(int code)
{
exit(code);
}
int gdb_handlesig(CPUState *cpu, int sig, const char *reason, void *siginfo,
int siginfo_len)
{
char buf[256];
int n;
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return sig;
}
if (siginfo) {
/*
* Save target-specific siginfo.
*
* siginfo size, i.e. siginfo_len, is asserted at compile-time to fit in
* gdbserver_user_state.siginfo, usually in the source file calling
* gdb_handlesig. See, for instance, {linux,bsd}-user/signal.c.
*/
memcpy(gdbserver_user_state.siginfo, siginfo, siginfo_len);
gdbserver_user_state.siginfo_len = siginfo_len;
}
/* disable single step if it was enabled */
cpu_single_step(cpu, 0);
tb_flush(cpu);
if (sig != 0) {
gdb_set_stop_cpu(cpu);
if (gdbserver_state.allow_stop_reply) {
g_string_printf(gdbserver_state.str_buf,
"T%02xthread:", gdb_target_signal_to_gdb(sig));
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
g_string_append_c(gdbserver_state.str_buf, ';');
if (reason) {
g_string_append(gdbserver_state.str_buf, reason);
}
gdb_put_strbuf();
gdbserver_state.allow_stop_reply = false;
}
}
/*
* gdb_put_packet() might have detected that the peer terminated the
* connection.
*/
if (gdbserver_user_state.fd < 0) {
return sig;
}
sig = 0;
gdbserver_state.state = RS_IDLE;
gdbserver_user_state.running_state = 0;
while (gdbserver_user_state.running_state == 0) {
n = read(gdbserver_user_state.fd, buf, 256);
if (n > 0) {
int i;
for (i = 0; i < n; i++) {
gdb_read_byte(buf[i]);
}
} else {
/*
* XXX: Connection closed. Should probably wait for another
* connection before continuing.
*/
if (n == 0) {
close(gdbserver_user_state.fd);
}
gdbserver_user_state.fd = -1;
return sig;
}
}
sig = gdbserver_state.signal;
gdbserver_state.signal = 0;
return sig;
}
/* Tell the remote gdb that the process has exited due to SIG. */
void gdb_signalled(CPUArchState *env, int sig)
{
char buf[4];
if (!gdbserver_state.init || gdbserver_user_state.fd < 0 ||
!gdbserver_state.allow_stop_reply) {
return;
}
snprintf(buf, sizeof(buf), "X%02x", gdb_target_signal_to_gdb(sig));
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
static void gdb_accept_init(int fd)
{
gdb_init_gdbserver_state();
gdb_create_default_process(&gdbserver_state);
gdbserver_state.processes[0].attached = true;
gdbserver_state.c_cpu = gdb_first_attached_cpu();
gdbserver_state.g_cpu = gdbserver_state.c_cpu;
gdbserver_user_state.fd = fd;
}
static bool gdb_accept_socket(int gdb_fd)
{
int fd;
for (;;) {
fd = accept(gdb_fd, NULL, NULL);
if (fd < 0 && errno != EINTR) {
perror("accept socket");
return false;
} else if (fd >= 0) {
qemu_set_cloexec(fd);
break;
}
}
gdb_accept_init(fd);
return true;
}
static int gdbserver_open_socket(const char *path, Error **errp)
{
g_autoptr(GString) buf = g_string_new("");
char *pid_placeholder;
pid_placeholder = strstr(path, "%d");
if (pid_placeholder != NULL) {
g_string_append_len(buf, path, pid_placeholder - path);
g_string_append_printf(buf, "%d", qemu_get_thread_id());
g_string_append(buf, pid_placeholder + 2);
path = buf->str;
}
return unix_listen(path, errp);
}
static bool gdb_accept_tcp(int gdb_fd)
{
struct sockaddr_in sockaddr = {};
socklen_t len;
int fd;
for (;;) {
len = sizeof(sockaddr);
fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
if (fd < 0 && errno != EINTR) {
perror("accept");
return false;
} else if (fd >= 0) {
qemu_set_cloexec(fd);
break;
}
}
/* set short latency */
if (socket_set_nodelay(fd)) {
perror("setsockopt");
close(fd);
return false;
}
gdb_accept_init(fd);
return true;
}
static int gdbserver_open_port(int port, Error **errp)
{
struct sockaddr_in sockaddr;
int fd, ret;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
qemu_set_cloexec(fd);
socket_set_fast_reuse(fd);
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(port);
sockaddr.sin_addr.s_addr = 0;
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
error_setg_errno(errp, errno, "Failed to bind socket");
close(fd);
return -1;
}
ret = listen(fd, 1);
if (ret < 0) {
error_setg_errno(errp, errno, "Failed to listen to socket");
close(fd);
return -1;
}
return fd;
}
static bool gdbserver_accept(int port, int gdb_fd, const char *path)
{
bool ret;
if (port > 0) {
ret = gdb_accept_tcp(gdb_fd);
} else {
ret = gdb_accept_socket(gdb_fd);
if (ret) {
gdbserver_user_state.socket_path = g_strdup(path);
}
}
if (!ret) {
close(gdb_fd);
}
return ret;
}
struct {
int port;
int gdb_fd;
char *path;
} gdbserver_args;
static void do_gdb_handlesig(CPUState *cs, run_on_cpu_data arg)
{
int sig;
sig = target_to_host_signal(gdb_handlesig(cs, 0, NULL, NULL, 0));
if (sig >= 1 && sig < NSIG) {
qemu_kill_thread(gdb_get_cpu_index(cs), sig);
}
}
static void *gdbserver_accept_thread(void *arg)
{
if (gdbserver_accept(gdbserver_args.port, gdbserver_args.gdb_fd,
gdbserver_args.path)) {
CPUState *cs = first_cpu;
async_safe_run_on_cpu(cs, do_gdb_handlesig, RUN_ON_CPU_NULL);
qemu_kill_thread(gdb_get_cpu_index(cs), host_interrupt_signal);
}
g_free(gdbserver_args.path);
gdbserver_args.path = NULL;
return NULL;
}
#define USAGE "\nUsage: -g {port|path}[,suspend={y|n}]"
bool gdbserver_start(const char *args, Error **errp)
{
g_auto(GStrv) argv = g_strsplit(args, ",", 0);
const char *port_or_path = NULL;
bool suspend = true;
int gdb_fd, port;
GStrv arg;
for (arg = argv; *arg; arg++) {
g_auto(GStrv) tokens = g_strsplit(*arg, "=", 2);
if (g_strcmp0(tokens[0], "suspend") == 0) {
if (tokens[1] == NULL) {
error_setg(errp,
"gdbstub: missing \"suspend\" option value" USAGE);
return false;
} else if (!qapi_bool_parse(tokens[0], tokens[1],
&suspend, errp)) {
return false;
}
} else {
if (port_or_path) {
error_setg(errp, "gdbstub: unknown option \"%s\"" USAGE, *arg);
return false;
}
port_or_path = *arg;
}
}
if (!port_or_path) {
error_setg(errp, "gdbstub: port or path not specified" USAGE);
return false;
}
port = g_ascii_strtoull(port_or_path, NULL, 10);
if (port > 0) {
gdb_fd = gdbserver_open_port(port, errp);
} else {
gdb_fd = gdbserver_open_socket(port_or_path, errp);
}
if (gdb_fd < 0) {
return false;
}
if (suspend) {
if (gdbserver_accept(port, gdb_fd, port_or_path)) {
gdb_handlesig(first_cpu, 0, NULL, NULL, 0);
return true;
} else {
error_setg(errp, "gdbstub: failed to accept connection");
return false;
}
} else {
QemuThread thread;
gdbserver_args.port = port;
gdbserver_args.gdb_fd = gdb_fd;
gdbserver_args.path = g_strdup(port_or_path);
qemu_thread_create(&thread, "gdb-accept",
&gdbserver_accept_thread, NULL,
QEMU_THREAD_DETACHED);
return true;
}
}
void gdbserver_fork_start(void)
{
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return;
}
if (!gdbserver_user_state.fork_events ||
qemu_socketpair(AF_UNIX, SOCK_STREAM, 0,
gdbserver_user_state.fork_sockets) < 0) {
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
return;
}
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
gdbserver_user_state.fork_peer_pid = getpid();
gdbserver_user_state.fork_peer_tid = qemu_get_thread_id();
}
static void disable_gdbstub(CPUState *thread_cpu)
{
CPUState *cpu;
close(gdbserver_user_state.fd);
gdbserver_user_state.fd = -1;
CPU_FOREACH(cpu) {
cpu_breakpoint_remove_all(cpu, BP_GDB);
/* no cpu_watchpoint_remove_all for user-mode */
cpu_single_step(cpu, 0);
}
tb_flush(thread_cpu);
}
void gdbserver_fork_end(CPUState *cpu, pid_t pid)
{
char b;
int fd;
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return;
}
if (pid == -1) {
if (gdbserver_user_state.fork_state != GDB_FORK_DISABLED) {
g_assert(gdbserver_user_state.fork_state == GDB_FORK_INACTIVE);
close(gdbserver_user_state.fork_sockets[0]);
close(gdbserver_user_state.fork_sockets[1]);
}
return;
}
if (gdbserver_user_state.fork_state == GDB_FORK_DISABLED) {
if (pid == 0) {
disable_gdbstub(cpu);
}
return;
}
if (pid == 0) {
close(gdbserver_user_state.fork_sockets[0]);
fd = gdbserver_user_state.fork_sockets[1];
g_assert(gdbserver_state.process_num == 1);
g_assert(gdbserver_state.processes[0].pid ==
gdbserver_user_state.fork_peer_pid);
g_assert(gdbserver_state.processes[0].attached);
gdbserver_state.processes[0].pid = getpid();
} else {
close(gdbserver_user_state.fork_sockets[1]);
fd = gdbserver_user_state.fork_sockets[0];
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
gdbserver_user_state.fork_peer_pid = pid;
gdbserver_user_state.fork_peer_tid = pid;
if (!gdbserver_state.allow_stop_reply) {
goto fail;
}
g_string_printf(gdbserver_state.str_buf,
"T%02xfork:p%02x.%02x;thread:p%02x.%02x;",
gdb_target_signal_to_gdb(gdb_target_sigtrap()),
pid, pid, (int)getpid(), qemu_get_thread_id());
gdb_put_strbuf();
}
gdbserver_state.state = RS_IDLE;
gdbserver_state.allow_stop_reply = false;
gdbserver_user_state.running_state = 0;
for (;;) {
switch (gdbserver_user_state.fork_state) {
case GDB_FORK_ENABLED:
if (gdbserver_user_state.running_state) {
close(fd);
return;
}
QEMU_FALLTHROUGH;
case GDB_FORK_ACTIVE:
if (read(gdbserver_user_state.fd, &b, 1) != 1) {
goto fail;
}
gdb_read_byte(b);
break;
case GDB_FORK_DEACTIVATING:
b = GDB_FORK_ACTIVATE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
break;
case GDB_FORK_INACTIVE:
if (read(fd, &b, 1) != 1) {
goto fail;
}
switch (b) {
case GDB_FORK_ACTIVATE:
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
break;
case GDB_FORK_ENABLE:
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
break;
case GDB_FORK_DISABLE:
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
break;
default:
g_assert_not_reached();
}
break;
case GDB_FORK_ENABLING:
b = GDB_FORK_DISABLE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
break;
case GDB_FORK_DISABLING:
b = GDB_FORK_ENABLE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
break;
case GDB_FORK_DISABLED:
close(fd);
disable_gdbstub(cpu);
return;
default:
g_assert_not_reached();
}
}
fail:
close(fd);
if (pid == 0) {
disable_gdbstub(cpu);
}
}
void gdb_handle_query_supported_user(const char *gdb_supported)
{
if (strstr(gdb_supported, "fork-events+")) {
gdbserver_user_state.fork_events = true;
}
g_string_append(gdbserver_state.str_buf, ";fork-events+");
}
bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid)
{
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE &&
pid == gdbserver_user_state.fork_peer_pid &&
tid == gdbserver_user_state.fork_peer_tid) {
gdbserver_user_state.fork_state = GDB_FORK_DEACTIVATING;
gdb_put_packet("OK");
return true;
}
return false;
}
bool gdb_handle_detach_user(uint32_t pid)
{
bool enable;
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE) {
enable = pid == gdbserver_user_state.fork_peer_pid;
if (enable || pid == getpid()) {
gdbserver_user_state.fork_state = enable ? GDB_FORK_ENABLING :
GDB_FORK_DISABLING;
gdb_put_packet("OK");
return true;
}
}
return false;
}
/*
* Execution state helpers
*/
void gdb_handle_query_attached(GArray *params, void *user_ctx)
{
gdb_put_packet("0");
}
void gdb_continue(void)
{
gdbserver_user_state.running_state = 1;
trace_gdbstub_op_continue();
}
/*
* Resume execution, for user-mode emulation it's equivalent to
* gdb_continue.
*/
int gdb_continue_partial(char *newstates)
{
CPUState *cpu;
int res = 0;
/*
* This is not exactly accurate, but it's an improvement compared to the
* previous situation, where only one CPU would be single-stepped.
*/
CPU_FOREACH(cpu) {
if (newstates[cpu->cpu_index] == 's') {
trace_gdbstub_op_stepping(cpu->cpu_index);
cpu_single_step(cpu, gdbserver_state.sstep_flags);
}
}
gdbserver_user_state.running_state = 1;
return res;
}
/*
* Memory access helpers
*/
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
uint8_t *buf, int len, bool is_write)
{
if (cpu->cc->memory_rw_debug) {
return cpu->cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
/*
* cpu helpers
*/
unsigned int gdb_get_max_cpus(void)
{
CPUState *cpu;
unsigned int max_cpus = 1;
CPU_FOREACH(cpu) {
max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
}
return max_cpus;
}
/* replay not supported for user-mode */
bool gdb_can_reverse(void)
{
return false;
}
/*
* Break/Watch point helpers
*/
bool gdb_supports_guest_debug(void)
{
/* user-mode == TCG == supported */
return true;
}
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
{
CPUState *cpu;
int err = 0;
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
CPU_FOREACH(cpu) {
err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
if (err) {
break;
}
}
return err;
default:
/* user-mode doesn't support watchpoints */
return -ENOSYS;
}
}
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
{
CPUState *cpu;
int err = 0;
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
CPU_FOREACH(cpu) {
err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
if (err) {
break;
}
}
return err;
default:
/* user-mode doesn't support watchpoints */
return -ENOSYS;
}
}
void gdb_breakpoint_remove_all(CPUState *cs)
{
cpu_breakpoint_remove_all(cs, BP_GDB);
}
/*
* For user-mode syscall support we send the system call immediately
* and then return control to gdb for it to process the syscall request.
* Since the protocol requires that gdb hands control back to us
* using a "here are the results" F packet, we don't need to check
* gdb_handlesig's return value (which is the signal to deliver if
* execution was resumed via a continue packet).
*/
void gdb_syscall_handling(const char *syscall_packet)
{
gdb_put_packet(syscall_packet);
gdb_handlesig(gdbserver_state.c_cpu, 0, NULL, NULL, 0);
}
static bool should_catch_syscall(int num)
{
if (gdbserver_user_state.catch_all_syscalls) {
return true;
}
if (num < 0 || num >= GDB_NR_SYSCALLS) {
return false;
}
return test_bit(num, gdbserver_user_state.catch_syscalls_mask);
}
void gdb_syscall_entry(CPUState *cs, int num)
{
if (should_catch_syscall(num)) {
g_autofree char *reason = g_strdup_printf("syscall_entry:%x;", num);
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
}
}
void gdb_syscall_return(CPUState *cs, int num)
{
if (should_catch_syscall(num)) {
g_autofree char *reason = g_strdup_printf("syscall_return:%x;", num);
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
}
}
void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx)
{
const char *param = gdb_get_cmd_param(params, 0)->data;
GDBSyscallsMask catch_syscalls_mask;
bool catch_all_syscalls;
unsigned int num;
const char *p;
/* "0" means not catching any syscalls. */
if (strcmp(param, "0") == 0) {
gdbserver_user_state.catch_all_syscalls = false;
memset(gdbserver_user_state.catch_syscalls_mask, 0,
sizeof(gdbserver_user_state.catch_syscalls_mask));
gdb_put_packet("OK");
return;
}
/* "1" means catching all syscalls. */
if (strcmp(param, "1") == 0) {
gdbserver_user_state.catch_all_syscalls = true;
gdb_put_packet("OK");
return;
}
/*
* "1;..." means catching only the specified syscalls.
* The syscall list must not be empty.
*/
if (param[0] == '1' && param[1] == ';') {
catch_all_syscalls = false;
memset(catch_syscalls_mask, 0, sizeof(catch_syscalls_mask));
for (p = &param[2];; p++) {
if (qemu_strtoui(p, &p, 16, &num) || (*p && *p != ';')) {
goto err;
}
if (num >= GDB_NR_SYSCALLS) {
/*
* Fall back to reporting all syscalls. Reporting extra
* syscalls is inefficient, but the spec explicitly allows it.
* Keep parsing in case there is a syntax error ahead.
*/
catch_all_syscalls = true;
} else {
set_bit(num, catch_syscalls_mask);
}
if (!*p) {
break;
}
}
gdbserver_user_state.catch_all_syscalls = catch_all_syscalls;
if (!catch_all_syscalls) {
memcpy(gdbserver_user_state.catch_syscalls_mask,
catch_syscalls_mask, sizeof(catch_syscalls_mask));
}
gdb_put_packet("OK");
return;
}
err:
gdb_put_packet("E00");
}
void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx)
{
unsigned long offset, len;
uint8_t *siginfo_offset;
offset = gdb_get_cmd_param(params, 0)->val_ul;
len = gdb_get_cmd_param(params, 1)->val_ul;
if (offset + len > gdbserver_user_state.siginfo_len) {
/* Invalid offset and/or requested length. */
gdb_put_packet("E01");
return;
}
siginfo_offset = (uint8_t *)gdbserver_user_state.siginfo + offset;
/* Reply */
g_string_assign(gdbserver_state.str_buf, "l");
gdb_memtox(gdbserver_state.str_buf, (const char *)siginfo_offset, len);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}

14
kernel.c Executable file
View File

@ -0,0 +1,14 @@
int add(int a, int b) {
return a + b; // 待调试的函数
}
int main() {
int x = 5;
int y = 3;
int result = add(x, y);
volatile char *tohost_addr = (volatile char *)(0x80001000 - 4);
*tohost_addr = 0xff;
*tohost_addr = result;
return 0;
}

BIN
kernel_obj Executable file

Binary file not shown.

36
link.ld Normal file
View File

@ -0,0 +1,36 @@
/* link.ld - 自定义链接脚本 */
OUTPUT_ARCH(riscv) /* 目标架构RISC-V */
ENTRY(_start) /* 程序入口点_start 符号 */
/* 内存布局定义(根据实际硬件调整) */
MEMORY {
RAM (rwxa) : ORIGIN = 0x80000000, LENGTH = 128M /* 起始地址 0x80000000大小 128MB */
}
/* 段布局 */
SECTIONS {
.text : { /* 代码段:存放指令 */
*(.text.entry) /* 入口代码(如 _start优先放在最开始 */
*(.text) /* 其他代码 */
} > RAM /* 加载到 RAM 区域 */
.rodata : { /* 只读数据段:常量、字符串等 */
*(.rodata)
} > RAM
.data : { /* 数据段:初始化的全局变量 */
*(.data)
} > RAM
.bss : { /* BSS 段:未初始化的全局变量(自动清零) */
*(.bss)
} > RAM
/* 栈定义:从 RAM 高地址向下增长,大小 16KB */
.stack : {
. = ALIGN(16); /* 栈地址 16 字节对齐 */
stack_top = .; /* 栈顶地址符号 */
. += 16K; /* 栈大小 16KB */
stack_bottom = .; /* 栈底地址符号(供初始化用) */
} > RAM
}

14
start.s Normal file
View File

@ -0,0 +1,14 @@
# _start ENTRY(_start)
.section .text.entry
.global _start
_start:
# 使 stack_top
la sp, stack_top
# main
call main
# main
loop:
j loop