Update gdbstub.

This commit is contained in:
Colin 2025-09-23 15:50:06 +00:00
parent d79f526ce2
commit a40a4b3381
26 changed files with 400 additions and 7331 deletions

View File

@ -57,6 +57,8 @@
"internals.h": "c",
"stdint.h": "c",
"ctype.h": "c",
"gdbstub.h": "c"
"gdbstub.h": "c",
"pthread.h": "c",
"enums.h": "c"
}
}

View File

@ -1,30 +0,0 @@
/*
* QEMU breakpoint & watchpoint definitions
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef EXEC_BREAKPOINT_H
#define EXEC_BREAKPOINT_H
#include "qemu/queue.h"
#include "exec/vaddr.h"
#include "exec/memattrs.h"
typedef struct CPUBreakpoint {
vaddr pc;
int flags; /* BP_* */
QTAILQ_ENTRY(CPUBreakpoint) entry;
} CPUBreakpoint;
typedef struct CPUWatchpoint {
vaddr vaddr;
vaddr len;
vaddr hitaddr;
MemTxAttrs hitattrs;
int flags; /* BP_* */
QTAILQ_ENTRY(CPUWatchpoint) entry;
} CPUWatchpoint;
#endif

View File

@ -1,108 +0,0 @@
#ifndef GDBSTUB_COMMANDS_H
#define GDBSTUB_COMMANDS_H
typedef void (*GdbCmdHandler)(GArray *params, void *user_ctx);
typedef enum GDBThreadIdKind {
GDB_ONE_THREAD = 0,
GDB_ALL_THREADS, /* One process, all threads */
GDB_ALL_PROCESSES,
GDB_READ_THREAD_ERR
} GDBThreadIdKind;
typedef union GdbCmdVariant {
const char *data;
uint8_t opcode;
unsigned long val_ul;
unsigned long long val_ull;
struct {
GDBThreadIdKind kind;
uint32_t pid;
uint32_t tid;
} thread_id;
} GdbCmdVariant;
#define gdb_get_cmd_param(p, i) (&g_array_index(p, GdbCmdVariant, i))
/**
* typedef GdbCmdParseEntry - gdb command parser
*
* This structure keeps the information necessary to match a gdb command,
* parse it (extract its parameters), and select the correct handler for it.
*
* @cmd: The command to be matched
* @cmd_startswith: If true, @cmd is compared using startswith
* @schema: Each schema for the command parameter entry consists of 2 chars,
* the first char represents the parameter type handling the second char
* represents the delimiter for the next parameter.
*
* Currently supported schema types:
* 'l' -> unsigned long (stored in .val_ul)
* 'L' -> unsigned long long (stored in .val_ull)
* 's' -> string (stored in .data)
* 'o' -> single char (stored in .opcode)
* 't' -> thread id (stored in .thread_id)
* '?' -> skip according to delimiter
*
* Currently supported delimiters:
* '?' -> Stop at any delimiter (",;:=\0")
* '0' -> Stop at "\0"
* '.' -> Skip 1 char unless reached "\0"
* Any other value is treated as the delimiter value itself
*
* @allow_stop_reply: True iff the gdbstub can respond to this command with a
* "stop reply" packet. The list of commands that accept such response is
* defined at the GDB Remote Serial Protocol documentation. See:
* https://sourceware.org/gdb/onlinedocs/gdb/Stop-Reply-Packets.html#Stop-Reply-Packets.
*
* @need_cpu_context: Pass current CPU context to command handler via user_ctx.
*/
typedef struct GdbCmdParseEntry {
GdbCmdHandler handler;
const char *cmd;
bool cmd_startswith;
const char *schema;
bool allow_stop_reply;
bool need_cpu_context;
} GdbCmdParseEntry;
/**
* gdb_put_packet() - put string into gdb server's buffer so it is sent
* to the client
*/
int gdb_put_packet(const char *buf);
/**
* gdb_extend_query_table() - Extend query table.
* @table: GPtrArray of GdbCmdParseEntry entries.
*
* The caller should free @table afterwards
*/
void gdb_extend_query_table(GPtrArray *table);
/**
* gdb_extend_set_table() - Extend set table.
* @table: GPtrArray of GdbCmdParseEntry entries.
*
* The caller should free @table afterwards
*/
void gdb_extend_set_table(GPtrArray *table);
/**
* gdb_extend_qsupported_features() - Extend the qSupported features string.
* @qsupported_features: The additional qSupported feature(s) string. The string
* should start with a semicolon and, if there are more than one feature, the
* features should be separate by a semicolon.
*
* The caller should free @qsupported_features afterwards if
* dynamically allocated.
*/
void gdb_extend_qsupported_features(char *qsupported_features);
/**
* Convert a hex string to bytes. Conversion is done per byte, so 2 hex digits
* are converted to 1 byte. Invalid hex digits are treated as 0 digits.
*/
void gdb_hextomem(GByteArray *mem, const char *buf, int len);
#endif /* GDBSTUB_COMMANDS_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,21 +0,0 @@
/*
* gdbstub enums
*
* Copyright (c) 2024 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef GDBSTUB_ENUMS_H
#define GDBSTUB_ENUMS_H
#define DEFAULT_GDBSTUB_PORT "1234"
/* GDB breakpoint/watchpoint types */
#define GDB_BREAKPOINT_SW 0
#define GDB_BREAKPOINT_HW 1
#define GDB_WATCHPOINT_WRITE 2
#define GDB_WATCHPOINT_READ 3
#define GDB_WATCHPOINT_ACCESS 4
#endif /* GDBSTUB_ENUMS_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,164 +0,0 @@
#ifndef GDBSTUB_H
#define GDBSTUB_H
typedef struct GDBFeature {
const char *xmlname;
const char *xml;
const char *name;
const char * const *regs;
int num_regs;
} GDBFeature;
typedef struct GDBFeatureBuilder {
GDBFeature *feature;
GPtrArray *xml;
GPtrArray *regs;
int base_reg;
} GDBFeatureBuilder;
/* Get or set a register. Returns the size of the register. */
typedef int (*gdb_get_reg_cb)(CPUState *cpu, GByteArray *buf, int reg);
typedef int (*gdb_set_reg_cb)(CPUState *cpu, uint8_t *buf, int reg);
/**
* gdb_init_cpu(): Initialize the CPU for gdbstub.
* @cpu: The CPU to be initialized.
*/
void gdb_init_cpu(CPUState *cpu);
/**
* gdb_register_coprocessor() - register a supplemental set of registers
* @cpu - the CPU associated with registers
* @get_reg - get function (gdb reading)
* @set_reg - set function (gdb modifying)
* @num_regs - number of registers in set
* @xml - xml name of set
* @gpos - non-zero to append to "general" register set at @gpos
*/
void gdb_register_coprocessor(CPUState *cpu,
gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg,
const GDBFeature *feature, int g_pos);
/**
* gdb_unregister_coprocessor_all() - unregisters supplemental set of registers
* @cpu - the CPU associated with registers
*/
void gdb_unregister_coprocessor_all(CPUState *cpu);
/**
* gdbserver_start: start the gdb server
* @port_or_device: connection spec for gdb
* @errp: error handle
*
* For CONFIG_USER this is either a tcp port or a path to a fifo. For
* system emulation you can use a full chardev spec for your gdbserver
* port.
*
* The error handle should be either &error_fatal (for start-up) or
* &error_warn (for QMP/HMP initiated sessions).
*
* Returns true when server successfully started.
*/
bool gdbserver_start(const char *port_or_device, Error **errp);
/**
* gdb_feature_builder_init() - Initialize GDBFeatureBuilder.
* @builder: The builder to be initialized.
* @feature: The feature to be filled.
* @name: The name of the feature.
* @xmlname: The name of the XML.
* @base_reg: The base number of the register ID.
*/
void gdb_feature_builder_init(GDBFeatureBuilder *builder, GDBFeature *feature,
const char *name, const char *xmlname,
int base_reg);
/**
* gdb_feature_builder_append_tag() - Append a tag.
* @builder: The builder.
* @format: The format of the tag.
* @...: The values to be formatted.
*/
void G_GNUC_PRINTF(2, 3)
gdb_feature_builder_append_tag(const GDBFeatureBuilder *builder,
const char *format, ...);
/**
* gdb_feature_builder_append_reg() - Append a register.
* @builder: The builder.
* @name: The register's name; it must be unique within a CPU.
* @bitsize: The register's size, in bits.
* @regnum: The offset of the register's number in the feature.
* @type: The type of the register.
* @group: The register group to which this register belongs; it can be NULL.
*/
void gdb_feature_builder_append_reg(const GDBFeatureBuilder *builder,
const char *name,
int bitsize,
int regnum,
const char *type,
const char *group);
/**
* gdb_feature_builder_end() - End building GDBFeature.
* @builder: The builder.
*/
void gdb_feature_builder_end(const GDBFeatureBuilder *builder);
/**
* gdb_find_static_feature() - Find a static feature.
* @xmlname: The name of the XML.
*
* Return: The static feature.
*/
const GDBFeature *gdb_find_static_feature(const char *xmlname);
/**
* gdb_read_register() - Read a register associated with a CPU.
* @cpu: The CPU associated with the register.
* @buf: The buffer that the read register will be appended to.
* @reg: The register's number returned by gdb_find_feature_register().
*
* Return: The number of read bytes.
*/
int gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
/**
* gdb_write_register() - Write a register associated with a CPU.
* @cpu: The CPU associated with the register.
* @buf: The buffer that the register contents will be set to.
* @reg: The register's number returned by gdb_find_feature_register().
*
* The size of @buf must be at least the size of the register being
* written.
*
* Return: The number of written bytes, or 0 if an error occurred (for
* example, an unknown register was provided).
*/
int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg);
/**
* typedef GDBRegDesc - a register description from gdbstub
*/
typedef struct {
int gdb_reg;
const char *name;
const char *feature_name;
} GDBRegDesc;
/**
* gdb_get_register_list() - Return list of all registers for CPU
* @cpu: The CPU being searched
*
* Returns a GArray of GDBRegDesc, caller frees array but not the
* const strings.
*/
GArray *gdb_get_register_list(CPUState *cpu);
void gdb_set_stop_cpu(CPUState *cpu);
/* in gdbstub-xml.c, generated by scripts/feature_to_c.py */
extern const GDBFeature gdb_static_features[];
#endif /* GDBSTUB_H */

View File

@ -1,117 +0,0 @@
/*
* gdbstub helpers
*
* These are all used by the various frontends and have to be host
* aware to ensure things are store in target order.
*
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef _GDBSTUB_HELPERS_H_
#define _GDBSTUB_HELPERS_H_
#ifndef COMPILING_PER_TARGET
#error "gdbstub helpers should only be included by target specific code"
#endif
#include "qemu/bswap.h"
#include "qemu/target-info.h"
#include "cpu-param.h"
/*
* The GDB remote protocol transfers values in target byte order. As
* the gdbstub may be batching up several register values we always
* append to the array.
*/
static inline int gdb_get_reg8(GByteArray *buf, uint8_t val)
{
g_byte_array_append(buf, &val, 1);
return 1;
}
static inline int gdb_get_reg16(GByteArray *buf, uint16_t val)
{
if (target_big_endian()) {
cpu_to_be16s(&val);
} else {
cpu_to_le16s(&val);
}
g_byte_array_append(buf, (uint8_t *) &val, 2);
return 2;
}
static inline int gdb_get_reg32(GByteArray *buf, uint32_t val)
{
if (target_big_endian()) {
cpu_to_be32s(&val);
} else {
cpu_to_le32s(&val);
}
g_byte_array_append(buf, (uint8_t *) &val, 4);
return 4;
}
static inline int gdb_get_reg64(GByteArray *buf, uint64_t val)
{
if (target_big_endian()) {
cpu_to_be64s(&val);
} else {
cpu_to_le64s(&val);
}
g_byte_array_append(buf, (uint8_t *) &val, 8);
return 8;
}
static inline int gdb_get_reg128(GByteArray *buf, uint64_t val_hi,
uint64_t val_lo)
{
uint64_t tmp[2];
if (target_big_endian()) {
tmp[0] = cpu_to_be64(val_hi);
tmp[1] = cpu_to_be64(val_lo);
} else {
tmp[0] = cpu_to_le64(val_lo);
tmp[1] = cpu_to_le64(val_hi);
}
g_byte_array_append(buf, (uint8_t *)&tmp, 16);
return 16;
}
static inline int gdb_get_zeroes(GByteArray *array, size_t len)
{
guint oldlen = array->len;
g_byte_array_set_size(array, oldlen + len);
memset(array->data + oldlen, 0, len);
return len;
}
/**
* gdb_get_reg_ptr: get pointer to start of last element
* @len: length of element
*
* This is a helper function to extract the pointer to the last
* element for additional processing. Some front-ends do additional
* dynamic swapping of the elements based on CPU state.
*/
static inline uint8_t *gdb_get_reg_ptr(GByteArray *buf, int len)
{
return buf->data + buf->len - len;
}
#if TARGET_LONG_BITS == 64
#define gdb_get_regl(buf, val) gdb_get_reg64(buf, val)
#define ldtul_p(addr) ldq_p(addr)
#define ldtul_le_p(addr) ldq_le_p(addr)
#define ldtul_be_p(addr) ldq_be_p(addr)
#else
#define gdb_get_regl(buf, val) gdb_get_reg32(buf, val)
#define ldtul_p(addr) ldl_p(addr)
#define ldtul_le_p(addr) ldl_le_p(addr)
#define ldtul_be_p(addr) ldl_be_p(addr)
#endif
#endif /* _GDBSTUB_HELPERS_H_ */

View File

@ -1,240 +0,0 @@
/*
* gdbstub internals
*
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef GDBSTUB_INTERNALS_H
#define GDBSTUB_INTERNALS_H
#include "exec/cpu-common.h"
/*
* Most "large" transfers (e.g. memory reads, feature XML
* transfer) have mechanisms in the gdb protocol for splitting
* them. However, register values in particular cannot currently
* be split. This packet size must therefore be at least big enough
* for the worst-case register size. Currently that is Arm SME
* ZA storage with a 256x256 byte value. We also must account
* for the conversion from raw data to hex in gdb_memtohex(),
* which writes 2 * size bytes, and for other protocol overhead
* including command, register number and checksum which add
* another 4 bytes of overhead. However, to be consistent with
* the changes made in gdbserver to address this same requirement,
* we add a total of 32 bytes to account for protocol overhead
* (unclear why specifically 32 bytes), bringing the value of
* MAX_PACKET_LENGTH to 2 * 256 * 256 + 32 = 131104.
*
* The commit making this change for gdbserver can be found here:
* https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=
* b816042e88583f280ad186ff124ab84d31fb592b
*/
#define MAX_PACKET_LENGTH 131104
/*
* Shared structures and definitions
*/
enum {
GDB_SIGNAL_0 = 0,
GDB_SIGNAL_INT = 2,
GDB_SIGNAL_QUIT = 3,
GDB_SIGNAL_TRAP = 5,
GDB_SIGNAL_ABRT = 6,
GDB_SIGNAL_ALRM = 14,
GDB_SIGNAL_STOP = 17,
GDB_SIGNAL_IO = 23,
GDB_SIGNAL_XCPU = 24,
GDB_SIGNAL_UNKNOWN = 143
};
typedef struct GDBProcess {
uint32_t pid;
bool attached;
char *target_xml;
} GDBProcess;
enum RSState {
RS_INACTIVE,
RS_IDLE,
RS_GETLINE,
RS_GETLINE_ESC,
RS_GETLINE_RLE,
RS_CHKSUM1,
RS_CHKSUM2,
};
typedef struct GDBState {
bool init; /* have we been initialised? */
CPUState *c_cpu; /* current CPU for step/continue ops */
CPUState *g_cpu; /* current CPU for other ops */
CPUState *query_cpu; /* for q{f|s}ThreadInfo */
enum RSState state; /* parsing state */
char line_buf[MAX_PACKET_LENGTH];
int line_buf_index;
int line_sum; /* running checksum */
int line_csum; /* checksum at the end of the packet */
GByteArray *last_packet;
int signal;
bool multiprocess;
GDBProcess *processes;
int process_num;
GString *str_buf;
GByteArray *mem_buf;
int sstep_flags;
int supported_sstep_flags;
/*
* Whether we are allowed to send a stop reply packet at this moment.
* Must be set off after sending the stop reply itself.
*/
bool allow_stop_reply;
} GDBState;
/* lives in main gdbstub.c */
extern GDBState gdbserver_state;
/*
* Inline utility function, convert from int to hex and back
*/
static inline int fromhex(int v)
{
if (v >= '0' && v <= '9') {
return v - '0';
} else if (v >= 'A' && v <= 'F') {
return v - 'A' + 10;
} else if (v >= 'a' && v <= 'f') {
return v - 'a' + 10;
} else {
return 0;
}
}
static inline int tohex(int v)
{
if (v < 10) {
return v + '0';
} else {
return v - 10 + 'a';
}
}
/*
* Connection helpers for both system and user backends
*/
void gdb_put_strbuf(void);
int gdb_put_packet_binary(const char *buf, int len, bool dump);
void gdb_memtohex(GString *buf, const uint8_t *mem, int len);
void gdb_memtox(GString *buf, const char *mem, int len);
void gdb_read_byte(uint8_t ch);
/*
* Packet acknowledgement - we handle this slightly differently
* between user and system mode, mainly to deal with the differences
* between the flexible chardev and the direct fd approaches.
*
* We currently don't support a negotiated QStartNoAckMode
*/
/**
* gdb_got_immediate_ack() - check ok to continue
*
* Returns true to continue, false to re-transmit for user only, the
* system stub always returns true.
*/
bool gdb_got_immediate_ack(void);
/* utility helpers */
GDBProcess *gdb_get_process(uint32_t pid);
CPUState *gdb_get_first_cpu_in_process(GDBProcess *process);
CPUState *gdb_first_attached_cpu(void);
void gdb_append_thread_id(CPUState *cpu, GString *buf);
int gdb_get_cpu_index(CPUState *cpu);
unsigned int gdb_get_max_cpus(void); /* both */
bool gdb_can_reverse(void); /* system emulation, stub for user */
int gdb_target_sigtrap(void); /* user */
void gdb_create_default_process(GDBState *s);
/* signal mapping, common for system, specialised for user-mode */
int gdb_signal_to_target(int sig);
int gdb_target_signal_to_gdb(int sig);
int gdb_get_char(void); /* user only */
/**
* gdb_continue() - handle continue in mode specific way.
*/
void gdb_continue(void);
/**
* gdb_continue_partial() - handle partial continue in mode specific way.
*/
int gdb_continue_partial(char *newstates);
/*
* Helpers with separate system and user implementations
*/
void gdb_put_buffer(const uint8_t *buf, int len);
/*
* Command handlers - either specialised or system or user only
*/
void gdb_init_gdbserver_state(void);
void gdb_handle_query_rcmd(GArray *params, void *ctx); /* system */
void gdb_handle_query_offsets(GArray *params, void *user_ctx); /* user */
void gdb_handle_query_xfer_auxv(GArray *params, void *user_ctx); /*user */
void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx); /*user */
void gdb_handle_v_file_open(GArray *params, void *user_ctx); /* user */
void gdb_handle_v_file_close(GArray *params, void *user_ctx); /* user */
void gdb_handle_v_file_pread(GArray *params, void *user_ctx); /* user */
void gdb_handle_v_file_readlink(GArray *params, void *user_ctx); /* user */
void gdb_handle_query_xfer_exec_file(GArray *params, void *user_ctx); /* user */
void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx); /* user */
void gdb_handle_query_supported_user(const char *gdb_supported); /* user */
bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid); /* user */
bool gdb_handle_detach_user(uint32_t pid); /* user */
void gdb_handle_query_attached(GArray *params, void *ctx); /* both */
/* system only */
void gdb_handle_query_qemu_phy_mem_mode(GArray *params, void *ctx);
void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *ctx);
/* sycall handling */
void gdb_handle_file_io(GArray *params, void *user_ctx);
bool gdb_handled_syscall(void);
void gdb_disable_syscalls(void);
void gdb_syscall_reset(void);
/* user/system specific syscall handling */
void gdb_syscall_handling(const char *syscall_packet);
/*
* Break/Watch point support - there is an implementation for system
* and user mode.
*/
bool gdb_supports_guest_debug(void);
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len);
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len);
void gdb_breakpoint_remove_all(CPUState *cs);
/**
* gdb_target_memory_rw_debug() - handle debug access to memory
* @cs: CPUState
* @addr: nominal address, could be an entire physical address
* @buf: data
* @len: length of access
* @is_write: is it a write operation
*
* This function is specialised depending on the mode we are running
* in. For system guests we can switch the interpretation of the
* address to a physical address.
*/
int gdb_target_memory_rw_debug(CPUState *cs, hwaddr addr,
uint8_t *buf, int len, bool is_write);
#endif /* GDBSTUB_INTERNALS_H */

View File

@ -1,21 +0,0 @@
#
# The main gdbstub still relies on per-build definitions of various
# types. The bits pushed to system/user.c try to use guest agnostic
# types such as hwaddr.
#
# We build two versions of gdbstub, one for each mode
user_ss.add(files(
'gdbstub.c',
'syscalls.c',
'user.c'
))
system_ss.add(files(
'gdbstub.c',
'syscalls.c',
'system.c'
))
# The user-target is specialised by the guest
specific_ss.add(when: 'CONFIG_USER_ONLY', if_true: files('user-target.c'))

View File

@ -1,206 +0,0 @@
/*
* GDB Syscall Handling
*
* GDB can execute syscalls on the guests behalf, currently used by
* the various semihosting extensions.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2023 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "semihosting/semihost.h"
#include "system/runstate.h"
#include "gdbstub/user.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/commands.h"
#include "trace.h"
#include "internals.h"
/* Syscall specific state */
typedef struct {
char syscall_buf[256];
gdb_syscall_complete_cb current_syscall_cb;
} GDBSyscallState;
static GDBSyscallState gdbserver_syscall_state;
/*
* Return true if there is a GDB currently connected to the stub
* and attached to a CPU
*/
static bool gdb_attached(void)
{
return gdbserver_state.init && gdbserver_state.c_cpu;
}
static enum {
GDB_SYS_UNKNOWN,
GDB_SYS_ENABLED,
GDB_SYS_DISABLED,
} gdb_syscall_mode;
/* Decide if either remote gdb syscalls or native file IO should be used. */
int use_gdb_syscalls(void)
{
SemihostingTarget target = semihosting_get_target();
if (target == SEMIHOSTING_TARGET_NATIVE) {
/* -semihosting-config target=native */
return false;
} else if (target == SEMIHOSTING_TARGET_GDB) {
/* -semihosting-config target=gdb */
return true;
}
/* -semihosting-config target=auto */
/* On the first call check if gdb is connected and remember. */
if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
gdb_syscall_mode = gdb_attached() ? GDB_SYS_ENABLED : GDB_SYS_DISABLED;
}
return gdb_syscall_mode == GDB_SYS_ENABLED;
}
/* called when the stub detaches */
void gdb_disable_syscalls(void)
{
gdb_syscall_mode = GDB_SYS_DISABLED;
}
void gdb_syscall_reset(void)
{
gdbserver_syscall_state.current_syscall_cb = NULL;
}
bool gdb_handled_syscall(void)
{
if (gdbserver_syscall_state.current_syscall_cb) {
gdb_put_packet(gdbserver_syscall_state.syscall_buf);
return true;
}
return false;
}
/*
* Send a gdb syscall request.
* This accepts limited printf-style format specifiers, specifically:
* %x - target_ulong argument printed in hex.
* %lx - 64-bit argument printed in hex.
* %s - string pointer (target_ulong) and length (int) pair.
*/
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
{
char *p, *p_end;
va_list va;
if (!gdb_attached()) {
return;
}
gdbserver_syscall_state.current_syscall_cb = cb;
va_start(va, fmt);
p = gdbserver_syscall_state.syscall_buf;
p_end = p + sizeof(gdbserver_syscall_state.syscall_buf);
*(p++) = 'F';
while (*fmt) {
if (*fmt == '%') {
uint64_t i64;
uint32_t i32;
fmt++;
switch (*fmt++) {
case 'x':
i32 = va_arg(va, uint32_t);
p += snprintf(p, p_end - p, "%" PRIx32, i32);
break;
case 'l':
if (*(fmt++) != 'x') {
goto bad_format;
}
i64 = va_arg(va, uint64_t);
p += snprintf(p, p_end - p, "%" PRIx64, i64);
break;
case 's':
i64 = va_arg(va, uint64_t);
i32 = va_arg(va, uint32_t);
p += snprintf(p, p_end - p, "%" PRIx64 "/%x" PRIx32, i64, i32);
break;
default:
bad_format:
error_report("gdbstub: Bad syscall format string '%s'",
fmt - 1);
break;
}
} else {
*(p++) = *(fmt++);
}
}
*p = 0;
va_end(va);
gdb_syscall_handling(gdbserver_syscall_state.syscall_buf);
}
/*
* GDB Command Handlers
*/
void gdb_handle_file_io(GArray *params, void *user_ctx)
{
if (params->len >= 1 && gdbserver_syscall_state.current_syscall_cb) {
uint64_t ret;
int err;
ret = gdb_get_cmd_param(params, 0)->val_ull;
if (params->len >= 2) {
err = gdb_get_cmd_param(params, 1)->val_ull;
} else {
err = 0;
}
/* Convert GDB error numbers back to host error numbers. */
#define E(X) case GDB_E##X: err = E##X; break
switch (err) {
case 0:
break;
E(PERM);
E(NOENT);
E(INTR);
E(BADF);
E(ACCES);
E(FAULT);
E(BUSY);
E(EXIST);
E(NODEV);
E(NOTDIR);
E(ISDIR);
E(INVAL);
E(NFILE);
E(MFILE);
E(FBIG);
E(NOSPC);
E(SPIPE);
E(ROFS);
E(NAMETOOLONG);
default:
err = EINVAL;
break;
}
#undef E
gdbserver_syscall_state.current_syscall_cb(gdbserver_state.c_cpu,
ret, err);
gdbserver_syscall_state.current_syscall_cb = NULL;
}
if (params->len >= 3 && gdb_get_cmd_param(params, 2)->opcode == (uint8_t)'C') {
gdb_put_packet("T02");
return;
}
gdb_continue();
}

View File

@ -1,122 +0,0 @@
/*
* GDB Syscall support
*
* Copyright (c) 2023 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#ifndef _SYSCALLS_H_
#define _SYSCALLS_H_
/* For gdb file i/o remote protocol open flags. */
#define GDB_O_RDONLY 0
#define GDB_O_WRONLY 1
#define GDB_O_RDWR 2
#define GDB_O_APPEND 8
#define GDB_O_CREAT 0x200
#define GDB_O_TRUNC 0x400
#define GDB_O_EXCL 0x800
/* For gdb file i/o remote protocol errno values */
#define GDB_EPERM 1
#define GDB_ENOENT 2
#define GDB_EINTR 4
#define GDB_EBADF 9
#define GDB_EACCES 13
#define GDB_EFAULT 14
#define GDB_EBUSY 16
#define GDB_EEXIST 17
#define GDB_ENODEV 19
#define GDB_ENOTDIR 20
#define GDB_EISDIR 21
#define GDB_EINVAL 22
#define GDB_ENFILE 23
#define GDB_EMFILE 24
#define GDB_EFBIG 27
#define GDB_ENOSPC 28
#define GDB_ESPIPE 29
#define GDB_EROFS 30
#define GDB_ENAMETOOLONG 91
#define GDB_EUNKNOWN 9999
/* For gdb file i/o remote protocol lseek whence. */
#define GDB_SEEK_SET 0
#define GDB_SEEK_CUR 1
#define GDB_SEEK_END 2
/* For gdb file i/o stat/fstat. */
typedef uint32_t gdb_mode_t;
typedef uint32_t gdb_time_t;
struct gdb_stat {
uint32_t gdb_st_dev; /* device */
uint32_t gdb_st_ino; /* inode */
gdb_mode_t gdb_st_mode; /* protection */
uint32_t gdb_st_nlink; /* number of hard links */
uint32_t gdb_st_uid; /* user ID of owner */
uint32_t gdb_st_gid; /* group ID of owner */
uint32_t gdb_st_rdev; /* device type (if inode device) */
uint64_t gdb_st_size; /* total size, in bytes */
uint64_t gdb_st_blksize; /* blocksize for filesystem I/O */
uint64_t gdb_st_blocks; /* number of blocks allocated */
gdb_time_t gdb_st_atime; /* time of last access */
gdb_time_t gdb_st_mtime; /* time of last modification */
gdb_time_t gdb_st_ctime; /* time of last change */
} QEMU_PACKED;
struct gdb_timeval {
gdb_time_t tv_sec; /* second */
uint64_t tv_usec; /* microsecond */
} QEMU_PACKED;
typedef void (*gdb_syscall_complete_cb)(CPUState *cpu, uint64_t ret, int err);
/**
* gdb_do_syscall:
* @cb: function to call when the system call has completed
* @fmt: gdb syscall format string
* ...: list of arguments to interpolate into @fmt
*
* Send a GDB syscall request. This function will return immediately;
* the callback function will be called later when the remote system
* call has completed.
*
* @fmt should be in the 'call-id,parameter,parameter...' format documented
* for the F request packet in the GDB remote protocol. A limited set of
* printf-style format specifiers is supported:
* %x - target_ulong argument printed in hex
* %lx - 64-bit argument printed in hex
* %s - string pointer (target_ulong) and length (int) pair
*/
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...);
/**
* use_gdb_syscalls() - report if GDB should be used for syscalls
*
* This is mostly driven by the semihosting mode the user configures
* but assuming GDB is allowed by that we report true if GDB is
* connected to the stub.
*/
int use_gdb_syscalls(void);
/**
* gdb_exit: exit gdb session, reporting inferior status
* @code: exit code reported
*
* This closes the session and sends a final packet to GDB reporting
* the exit status of the program. It also cleans up any connections
* detritus before returning.
*/
void gdb_exit(int code);
/**
* gdb_qemu_exit: ask qemu to exit
* @code: exit code reported
*
* This requests qemu to exit. This function is allowed to return as
* the exit request might be processed asynchronously by qemu backend.
*/
void gdb_qemu_exit(int code);
#endif /* _SYSCALLS_H_ */

View File

@ -1,669 +0,0 @@
/*
* gdb server stub - system specific bits
*
* Debug integration depends on support from the individual
* accelerators so most of this involves calling the ops helpers.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/cutils.h"
#include "exec/gdbstub.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/commands.h"
#include "exec/hwaddr.h"
#include "exec/tb-flush.h"
#include "accel/accel-ops.h"
#include "accel/accel-cpu-ops.h"
#include "system/cpus.h"
#include "system/runstate.h"
#include "system/replay.h"
#include "system/tcg.h"
#include "hw/core/cpu.h"
#include "hw/cpu/cluster.h"
#include "hw/boards.h"
#include "chardev/char.h"
#include "chardev/char-fe.h"
#include "monitor/monitor.h"
#include "trace.h"
#include "internals.h"
/* System emulation specific state */
typedef struct {
CharBackend chr;
Chardev *mon_chr;
} GDBSystemState;
GDBSystemState gdbserver_system_state;
static void reset_gdbserver_state(void)
{
g_free(gdbserver_state.processes);
gdbserver_state.processes = NULL;
gdbserver_state.process_num = 0;
gdbserver_state.allow_stop_reply = false;
}
/*
* Return the GDB index for a given vCPU state.
*
* In system mode GDB numbers CPUs from 1 as 0 is reserved as an "any
* cpu" index.
*/
int gdb_get_cpu_index(CPUState *cpu)
{
return cpu->cpu_index + 1;
}
/*
* We check the status of the last message in the chardev receive code
*/
bool gdb_got_immediate_ack(void)
{
return true;
}
/*
* GDB Connection management. For system emulation we do all of this
* via our existing Chardev infrastructure which allows us to support
* network and unix sockets.
*/
void gdb_put_buffer(const uint8_t *buf, int len)
{
/*
* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks
*/
qemu_chr_fe_write_all(&gdbserver_system_state.chr, buf, len);
}
static void gdb_chr_event(void *opaque, QEMUChrEvent event)
{
int i;
GDBState *s = (GDBState *) opaque;
switch (event) {
case CHR_EVENT_OPENED:
/* Start with first process attached, others detached */
for (i = 0; i < s->process_num; i++) {
s->processes[i].attached = !i;
}
s->c_cpu = gdb_first_attached_cpu();
s->g_cpu = s->c_cpu;
vm_stop(RUN_STATE_PAUSED);
replay_gdb_attached();
break;
default:
break;
}
}
/*
* In system-mode we stop the VM and wait to send the syscall packet
* until notification that the CPU has stopped. This must be done
* because if the packet is sent now the reply from the syscall
* request could be received while the CPU is still in the running
* state, which can cause packets to be dropped and state transition
* 'T' packets to be sent while the syscall is still being processed.
*/
void gdb_syscall_handling(const char *syscall_packet)
{
vm_stop(RUN_STATE_DEBUG);
qemu_cpu_kick(gdbserver_state.c_cpu);
}
static void gdb_vm_state_change(void *opaque, bool running, RunState state)
{
CPUState *cpu = gdbserver_state.c_cpu;
g_autoptr(GString) buf = g_string_new(NULL);
g_autoptr(GString) tid = g_string_new(NULL);
const char *type;
int ret;
if (running || gdbserver_state.state == RS_INACTIVE) {
return;
}
/* Is there a GDB syscall waiting to be sent? */
if (gdb_handled_syscall()) {
return;
}
if (cpu == NULL) {
/* No process attached */
return;
}
if (!gdbserver_state.allow_stop_reply) {
return;
}
gdb_append_thread_id(cpu, tid);
switch (state) {
case RUN_STATE_DEBUG:
if (cpu->watchpoint_hit) {
switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
case BP_MEM_READ:
type = "r";
break;
case BP_MEM_ACCESS:
type = "a";
break;
default:
type = "";
break;
}
trace_gdbstub_hit_watchpoint(type,
gdb_get_cpu_index(cpu),
cpu->watchpoint_hit->vaddr);
g_string_printf(buf, "T%02xthread:%s;%swatch:%" VADDR_PRIx ";",
GDB_SIGNAL_TRAP, tid->str, type,
cpu->watchpoint_hit->vaddr);
cpu->watchpoint_hit = NULL;
goto send_packet;
} else {
trace_gdbstub_hit_break();
}
if (tcg_enabled()) {
tb_flush(cpu);
}
ret = GDB_SIGNAL_TRAP;
break;
case RUN_STATE_PAUSED:
trace_gdbstub_hit_paused();
ret = GDB_SIGNAL_INT;
break;
case RUN_STATE_SHUTDOWN:
trace_gdbstub_hit_shutdown();
ret = GDB_SIGNAL_QUIT;
break;
case RUN_STATE_IO_ERROR:
trace_gdbstub_hit_io_error();
ret = GDB_SIGNAL_STOP;
break;
case RUN_STATE_WATCHDOG:
trace_gdbstub_hit_watchdog();
ret = GDB_SIGNAL_ALRM;
break;
case RUN_STATE_INTERNAL_ERROR:
trace_gdbstub_hit_internal_error();
ret = GDB_SIGNAL_ABRT;
break;
case RUN_STATE_SAVE_VM:
case RUN_STATE_RESTORE_VM:
return;
case RUN_STATE_FINISH_MIGRATE:
ret = GDB_SIGNAL_XCPU;
break;
default:
trace_gdbstub_hit_unknown(state);
ret = GDB_SIGNAL_UNKNOWN;
break;
}
gdb_set_stop_cpu(cpu);
g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
send_packet:
gdb_put_packet(buf->str);
gdbserver_state.allow_stop_reply = false;
/* disable single step if it was enabled */
cpu_single_step(cpu, 0);
}
#ifndef _WIN32
static void gdb_sigterm_handler(int signal)
{
if (runstate_is_running()) {
vm_stop(RUN_STATE_PAUSED);
}
}
#endif
static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
{
g_autoptr(GString) hex_buf = g_string_new("O");
gdb_memtohex(hex_buf, buf, len);
gdb_put_packet(hex_buf->str);
return len;
}
static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
bool *be_opened, Error **errp)
{
*be_opened = false;
}
static void char_gdb_class_init(ObjectClass *oc, const void *data)
{
ChardevClass *cc = CHARDEV_CLASS(oc);
cc->internal = true;
cc->open = gdb_monitor_open;
cc->chr_write = gdb_monitor_write;
}
#define TYPE_CHARDEV_GDB "chardev-gdb"
static const TypeInfo char_gdb_type_info = {
.name = TYPE_CHARDEV_GDB,
.parent = TYPE_CHARDEV,
.class_init = char_gdb_class_init,
};
static int gdb_chr_can_receive(void *opaque)
{
/*
* We can handle an arbitrarily large amount of data.
* Pick the maximum packet size, which is as good as anything.
*/
return MAX_PACKET_LENGTH;
}
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
{
int i;
for (i = 0; i < size; i++) {
gdb_read_byte(buf[i]);
}
}
static int find_cpu_clusters(Object *child, void *opaque)
{
if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
GDBState *s = (GDBState *) opaque;
CPUClusterState *cluster = CPU_CLUSTER(child);
GDBProcess *process;
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
process = &s->processes[s->process_num - 1];
/*
* GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
* runtime, we enforce here that the machine does not use a cluster ID
* that would lead to PID 0.
*/
assert(cluster->cluster_id != UINT32_MAX);
process->pid = cluster->cluster_id + 1;
process->attached = false;
process->target_xml = NULL;
return 0;
}
return object_child_foreach(child, find_cpu_clusters, opaque);
}
static int pid_order(const void *a, const void *b)
{
GDBProcess *pa = (GDBProcess *) a;
GDBProcess *pb = (GDBProcess *) b;
if (pa->pid < pb->pid) {
return -1;
} else if (pa->pid > pb->pid) {
return 1;
} else {
return 0;
}
}
static void create_processes(GDBState *s)
{
object_child_foreach(object_get_root(), find_cpu_clusters, s);
if (gdbserver_state.processes) {
/* Sort by PID */
qsort(gdbserver_state.processes,
gdbserver_state.process_num,
sizeof(gdbserver_state.processes[0]),
pid_order);
}
gdb_create_default_process(s);
}
bool gdbserver_start(const char *device, Error **errp)
{
Chardev *chr = NULL;
Chardev *mon_chr;
g_autoptr(GString) cs = g_string_new(device);
if (!first_cpu) {
error_setg(errp, "gdbstub: meaningless to attach gdb to a "
"machine without any CPU.");
return false;
}
if (!gdb_supports_guest_debug()) {
error_setg(errp, "gdbstub: current accelerator doesn't "
"support guest debugging");
return false;
}
if (cs->len == 0) {
error_setg(errp, "gdbstub: missing connection string");
return false;
}
trace_gdbstub_op_start(cs->str);
if (g_strcmp0(cs->str, "none") != 0) {
if (g_str_has_prefix(cs->str, "tcp:")) {
/* enforce required TCP attributes */
g_string_append_printf(cs, ",wait=off,nodelay=on,server=on");
}
#ifndef _WIN32
else if (strcmp(device, "stdio") == 0) {
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_handler = gdb_sigterm_handler;
sigaction(SIGINT, &act, NULL);
}
#endif
/*
* FIXME: it's a bit weird to allow using a mux chardev here
* and implicitly setup a monitor. We may want to break this.
*/
chr = qemu_chr_new_noreplay("gdb", cs->str, true, NULL);
if (!chr) {
error_setg(errp, "gdbstub: couldn't create chardev");
return false;
}
}
if (!gdbserver_state.init) {
gdb_init_gdbserver_state();
qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
/* Initialize a monitor terminal for gdb */
mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
NULL, NULL, &error_abort);
monitor_init_hmp(mon_chr, false, &error_abort);
} else {
qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
mon_chr = gdbserver_system_state.mon_chr;
reset_gdbserver_state();
}
create_processes(&gdbserver_state);
if (chr) {
qemu_chr_fe_init(&gdbserver_system_state.chr, chr, &error_abort);
qemu_chr_fe_set_handlers(&gdbserver_system_state.chr,
gdb_chr_can_receive,
gdb_chr_receive, gdb_chr_event,
NULL, &gdbserver_state, NULL, true);
}
gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
gdbserver_system_state.mon_chr = mon_chr;
gdb_syscall_reset();
return true;
}
static void register_types(void)
{
type_register_static(&char_gdb_type_info);
}
type_init(register_types);
/* Tell the remote gdb that the process has exited. */
void gdb_exit(int code)
{
char buf[4];
if (!gdbserver_state.init) {
return;
}
trace_gdbstub_op_exiting((uint8_t)code);
if (gdbserver_state.allow_stop_reply) {
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
}
void gdb_qemu_exit(int code)
{
qemu_system_shutdown_request_with_code(SHUTDOWN_CAUSE_GUEST_SHUTDOWN,
code);
}
/*
* Memory access
*/
static int phy_memory_mode;
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
uint8_t *buf, int len, bool is_write)
{
if (phy_memory_mode) {
if (is_write) {
cpu_physical_memory_write(addr, buf, len);
} else {
cpu_physical_memory_read(addr, buf, len);
}
return 0;
}
if (cpu->cc->memory_rw_debug) {
return cpu->cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
/*
* cpu helpers
*/
unsigned int gdb_get_max_cpus(void)
{
MachineState *ms = MACHINE(qdev_get_machine());
return ms->smp.max_cpus;
}
bool gdb_can_reverse(void)
{
return replay_mode == REPLAY_MODE_PLAY;
}
/*
* Softmmu specific command helpers
*/
void gdb_handle_query_qemu_phy_mem_mode(GArray *params,
void *ctx)
{
g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
gdb_put_strbuf();
}
void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *ctx)
{
if (!params->len) {
gdb_put_packet("E22");
return;
}
if (!gdb_get_cmd_param(params, 0)->val_ul) {
phy_memory_mode = 0;
} else {
phy_memory_mode = 1;
}
gdb_put_packet("OK");
}
void gdb_handle_query_rcmd(GArray *params, void *ctx)
{
const guint8 zero = 0;
int len;
if (!params->len) {
gdb_put_packet("E22");
return;
}
len = strlen(gdb_get_cmd_param(params, 0)->data);
if (len % 2) {
gdb_put_packet("E01");
return;
}
g_assert(gdbserver_state.mem_buf->len == 0);
len = len / 2;
gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len);
g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
qemu_chr_be_write(gdbserver_system_state.mon_chr,
gdbserver_state.mem_buf->data,
gdbserver_state.mem_buf->len);
gdb_put_packet("OK");
}
/*
* Execution state helpers
*/
void gdb_handle_query_attached(GArray *params, void *ctx)
{
gdb_put_packet("1");
}
void gdb_continue(void)
{
if (!runstate_needs_reset()) {
trace_gdbstub_op_continue();
vm_start();
}
}
/*
* Resume execution, per CPU actions.
*/
int gdb_continue_partial(char *newstates)
{
CPUState *cpu;
int res = 0;
int flag = 0;
if (!runstate_needs_reset()) {
bool step_requested = false;
CPU_FOREACH(cpu) {
if (newstates[cpu->cpu_index] == 's') {
step_requested = true;
break;
}
}
if (vm_prepare_start(step_requested)) {
return 0;
}
CPU_FOREACH(cpu) {
switch (newstates[cpu->cpu_index]) {
case 0:
case 1:
break; /* nothing to do here */
case 's':
trace_gdbstub_op_stepping(cpu->cpu_index);
cpu_single_step(cpu, gdbserver_state.sstep_flags);
cpu_resume(cpu);
flag = 1;
break;
case 'c':
trace_gdbstub_op_continue_cpu(cpu->cpu_index);
cpu_resume(cpu);
flag = 1;
break;
default:
res = -1;
break;
}
}
}
if (flag) {
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
}
return res;
}
/*
* Signal Handling - in system mode we only need SIGINT and SIGTRAP; other
* signals are not yet supported.
*/
enum {
TARGET_SIGINT = 2,
TARGET_SIGTRAP = 5
};
int gdb_signal_to_target(int sig)
{
switch (sig) {
case 2:
return TARGET_SIGINT;
case 5:
return TARGET_SIGTRAP;
default:
return -1;
}
}
/*
* Break/Watch point helpers
*/
bool gdb_supports_guest_debug(void)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->supports_guest_debug) {
return ops->supports_guest_debug();
}
return false;
}
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->insert_breakpoint) {
return ops->insert_breakpoint(cs, type, addr, len);
}
return -ENOSYS;
}
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->remove_breakpoint) {
return ops->remove_breakpoint(cs, type, addr, len);
}
return -ENOSYS;
}
void gdb_breakpoint_remove_all(CPUState *cs)
{
const AccelOpsClass *ops = cpus_get_accel();
if (ops->remove_all_breakpoints) {
ops->remove_all_breakpoints(cs);
}
}

View File

@ -1,32 +0,0 @@
# See docs/devel/tracing.rst for syntax documentation.
# gdbstub.c
gdbstub_op_start(const char *device) "Starting gdbstub using device %s"
gdbstub_op_exiting(uint8_t code) "notifying exit with code=0x%02x"
gdbstub_op_continue(void) "Continuing all CPUs"
gdbstub_op_continue_cpu(int cpu_index) "Continuing CPU %d"
gdbstub_op_stepping(int cpu_index) "Stepping CPU %d"
gdbstub_op_extra_info(const char *info) "Thread extra info: %s"
gdbstub_hit_internal_error(void) "RUN_STATE_INTERNAL_ERROR"
gdbstub_hit_break(void) "RUN_STATE_DEBUG"
gdbstub_hit_paused(void) "RUN_STATE_PAUSED"
gdbstub_hit_shutdown(void) "RUN_STATE_SHUTDOWN"
gdbstub_hit_io_error(void) "RUN_STATE_IO_ERROR"
gdbstub_hit_watchdog(void) "RUN_STATE_WATCHDOG"
gdbstub_hit_unknown(int state) "Unknown run state=0x%x"
gdbstub_io_reply(const char *message) "Sent: %s"
gdbstub_io_binaryreply(size_t ofs, const char *line) "0x%04zx: %s"
gdbstub_io_command(const char *command) "Received: %s"
gdbstub_io_got_ack(void) "Got ACK"
gdbstub_io_got_unexpected(uint8_t ch) "Got 0x%02x when expecting ACK/NACK"
gdbstub_err_got_nack(void) "Got NACK, retransmitting"
gdbstub_err_garbage(uint8_t ch) "received garbage between packets: 0x%02x"
gdbstub_err_overrun(void) "command buffer overrun, dropping command"
gdbstub_err_invalid_repeat(uint8_t ch) "got invalid RLE count: 0x%02x"
gdbstub_err_invalid_rle(void) "got invalid RLE sequence"
gdbstub_err_checksum_invalid(uint8_t ch) "got invalid command checksum digit: 0x%02x"
gdbstub_err_checksum_incorrect(uint8_t expected, uint8_t got) "got command packet with incorrect checksum, expected=0x%02x, received=0x%02x"
gdbstub_err_unexpected_runpkt(uint8_t ch) "unexpected packet (0x%02x) while target running"
# system.c
gdbstub_hit_watchpoint(const char *type, int cpu_gdb_index, uint64_t vaddr) "Watchpoint hit, type=\"%s\" cpu=%d, vaddr=0x%" PRIx64 ""

View File

@ -1 +0,0 @@
#include "trace/trace-gdbstub.h"

View File

@ -1,424 +0,0 @@
/*
* Target specific user-mode handling
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "exec/gdbstub.h"
#include "gdbstub/commands.h"
#include "qemu.h"
#include "internals.h"
#ifdef CONFIG_LINUX
#include "linux-user/loader.h"
#include "linux-user/qemu.h"
#endif
/*
* Map target signal numbers to GDB protocol signal numbers and vice
* versa. For user emulation's currently supported systems, we can
* assume most signals are defined.
*/
static int gdb_signal_table[] = {
0,
TARGET_SIGHUP,
TARGET_SIGINT,
TARGET_SIGQUIT,
TARGET_SIGILL,
TARGET_SIGTRAP,
TARGET_SIGABRT,
-1, /* SIGEMT */
TARGET_SIGFPE,
TARGET_SIGKILL,
TARGET_SIGBUS,
TARGET_SIGSEGV,
TARGET_SIGSYS,
TARGET_SIGPIPE,
TARGET_SIGALRM,
TARGET_SIGTERM,
TARGET_SIGURG,
TARGET_SIGSTOP,
TARGET_SIGTSTP,
TARGET_SIGCONT,
TARGET_SIGCHLD,
TARGET_SIGTTIN,
TARGET_SIGTTOU,
TARGET_SIGIO,
TARGET_SIGXCPU,
TARGET_SIGXFSZ,
TARGET_SIGVTALRM,
TARGET_SIGPROF,
TARGET_SIGWINCH,
-1, /* SIGLOST */
TARGET_SIGUSR1,
TARGET_SIGUSR2,
#ifdef TARGET_SIGPWR
TARGET_SIGPWR,
#else
-1,
#endif
-1, /* SIGPOLL */
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
#ifdef __SIGRTMIN
__SIGRTMIN + 1,
__SIGRTMIN + 2,
__SIGRTMIN + 3,
__SIGRTMIN + 4,
__SIGRTMIN + 5,
__SIGRTMIN + 6,
__SIGRTMIN + 7,
__SIGRTMIN + 8,
__SIGRTMIN + 9,
__SIGRTMIN + 10,
__SIGRTMIN + 11,
__SIGRTMIN + 12,
__SIGRTMIN + 13,
__SIGRTMIN + 14,
__SIGRTMIN + 15,
__SIGRTMIN + 16,
__SIGRTMIN + 17,
__SIGRTMIN + 18,
__SIGRTMIN + 19,
__SIGRTMIN + 20,
__SIGRTMIN + 21,
__SIGRTMIN + 22,
__SIGRTMIN + 23,
__SIGRTMIN + 24,
__SIGRTMIN + 25,
__SIGRTMIN + 26,
__SIGRTMIN + 27,
__SIGRTMIN + 28,
__SIGRTMIN + 29,
__SIGRTMIN + 30,
__SIGRTMIN + 31,
-1, /* SIGCANCEL */
__SIGRTMIN,
__SIGRTMIN + 32,
__SIGRTMIN + 33,
__SIGRTMIN + 34,
__SIGRTMIN + 35,
__SIGRTMIN + 36,
__SIGRTMIN + 37,
__SIGRTMIN + 38,
__SIGRTMIN + 39,
__SIGRTMIN + 40,
__SIGRTMIN + 41,
__SIGRTMIN + 42,
__SIGRTMIN + 43,
__SIGRTMIN + 44,
__SIGRTMIN + 45,
__SIGRTMIN + 46,
__SIGRTMIN + 47,
__SIGRTMIN + 48,
__SIGRTMIN + 49,
__SIGRTMIN + 50,
__SIGRTMIN + 51,
__SIGRTMIN + 52,
__SIGRTMIN + 53,
__SIGRTMIN + 54,
__SIGRTMIN + 55,
__SIGRTMIN + 56,
__SIGRTMIN + 57,
__SIGRTMIN + 58,
__SIGRTMIN + 59,
__SIGRTMIN + 60,
__SIGRTMIN + 61,
__SIGRTMIN + 62,
__SIGRTMIN + 63,
__SIGRTMIN + 64,
__SIGRTMIN + 65,
__SIGRTMIN + 66,
__SIGRTMIN + 67,
__SIGRTMIN + 68,
__SIGRTMIN + 69,
__SIGRTMIN + 70,
__SIGRTMIN + 71,
__SIGRTMIN + 72,
__SIGRTMIN + 73,
__SIGRTMIN + 74,
__SIGRTMIN + 75,
__SIGRTMIN + 76,
__SIGRTMIN + 77,
__SIGRTMIN + 78,
__SIGRTMIN + 79,
__SIGRTMIN + 80,
__SIGRTMIN + 81,
__SIGRTMIN + 82,
__SIGRTMIN + 83,
__SIGRTMIN + 84,
__SIGRTMIN + 85,
__SIGRTMIN + 86,
__SIGRTMIN + 87,
__SIGRTMIN + 88,
__SIGRTMIN + 89,
__SIGRTMIN + 90,
__SIGRTMIN + 91,
__SIGRTMIN + 92,
__SIGRTMIN + 93,
__SIGRTMIN + 94,
__SIGRTMIN + 95,
-1, /* SIGINFO */
-1, /* UNKNOWN */
-1, /* DEFAULT */
-1,
-1,
-1,
-1,
-1,
-1
#endif
};
int gdb_signal_to_target(int sig)
{
if (sig < ARRAY_SIZE(gdb_signal_table)) {
return gdb_signal_table[sig];
} else {
return -1;
}
}
int gdb_target_signal_to_gdb(int sig)
{
int i;
for (i = 0; i < ARRAY_SIZE(gdb_signal_table); i++) {
if (gdb_signal_table[i] == sig) {
return i;
}
}
return GDB_SIGNAL_UNKNOWN;
}
int gdb_get_cpu_index(CPUState *cpu)
{
TaskState *ts = get_task_state(cpu);
return ts ? ts->ts_tid : -1;
}
/*
* User-mode specific command helpers
*/
void gdb_handle_query_offsets(GArray *params, void *user_ctx)
{
TaskState *ts;
ts = get_task_state(gdbserver_state.c_cpu);
g_string_printf(gdbserver_state.str_buf,
"Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
";Bss=" TARGET_ABI_FMT_lx,
ts->info->code_offset,
ts->info->data_offset,
ts->info->data_offset);
gdb_put_strbuf();
}
#if defined(CONFIG_LINUX)
/* Partial user only duplicate of helper in gdbstub.c */
static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
uint8_t *buf, int len, bool is_write)
{
if (cpu->cc->memory_rw_debug) {
return cpu->cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
void gdb_handle_query_xfer_auxv(GArray *params, void *user_ctx)
{
TaskState *ts;
unsigned long offset, len, saved_auxv, auxv_len;
if (params->len < 2) {
gdb_put_packet("E22");
return;
}
offset = gdb_get_cmd_param(params, 0)->val_ul;
len = gdb_get_cmd_param(params, 1)->val_ul;
ts = get_task_state(gdbserver_state.c_cpu);
saved_auxv = ts->info->saved_auxv;
auxv_len = ts->info->auxv_len;
if (offset >= auxv_len) {
gdb_put_packet("E00");
return;
}
if (len > (MAX_PACKET_LENGTH - 5) / 2) {
len = (MAX_PACKET_LENGTH - 5) / 2;
}
if (len < auxv_len - offset) {
g_string_assign(gdbserver_state.str_buf, "m");
} else {
g_string_assign(gdbserver_state.str_buf, "l");
len = auxv_len - offset;
}
g_byte_array_set_size(gdbserver_state.mem_buf, len);
if (target_memory_rw_debug(gdbserver_state.g_cpu, saved_auxv + offset,
gdbserver_state.mem_buf->data, len, false)) {
gdb_put_packet("E14");
return;
}
gdb_memtox(gdbserver_state.str_buf,
(const char *)gdbserver_state.mem_buf->data, len);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}
#endif
static const char *get_filename_param(GArray *params, int i)
{
const char *hex_filename = gdb_get_cmd_param(params, i)->data;
gdb_hextomem(gdbserver_state.mem_buf, hex_filename,
strlen(hex_filename) / 2);
g_byte_array_append(gdbserver_state.mem_buf, (const guint8 *)"", 1);
return (const char *)gdbserver_state.mem_buf->data;
}
static void hostio_reply_with_data(const void *buf, size_t n)
{
g_string_printf(gdbserver_state.str_buf, "F%zx;", n);
gdb_memtox(gdbserver_state.str_buf, buf, n);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}
void gdb_handle_v_file_open(GArray *params, void *user_ctx)
{
const char *filename = get_filename_param(params, 0);
uint64_t flags = gdb_get_cmd_param(params, 1)->val_ull;
uint64_t mode = gdb_get_cmd_param(params, 2)->val_ull;
#ifdef CONFIG_LINUX
int fd = do_guest_openat(cpu_env(gdbserver_state.g_cpu), 0, filename,
flags, mode, false);
#else
int fd = open(filename, flags, mode);
#endif
if (fd < 0) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
} else {
g_string_printf(gdbserver_state.str_buf, "F%x", fd);
}
gdb_put_strbuf();
}
void gdb_handle_v_file_close(GArray *params, void *user_ctx)
{
int fd = gdb_get_cmd_param(params, 0)->val_ul;
if (close(fd) == -1) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
gdb_put_strbuf();
return;
}
gdb_put_packet("F00");
}
void gdb_handle_v_file_pread(GArray *params, void *user_ctx)
{
int fd = gdb_get_cmd_param(params, 0)->val_ul;
size_t count = gdb_get_cmd_param(params, 1)->val_ull;
off_t offset = gdb_get_cmd_param(params, 2)->val_ull;
size_t bufsiz = MIN(count, BUFSIZ);
g_autofree char *buf = g_try_malloc(bufsiz);
if (buf == NULL) {
gdb_put_packet("E12");
return;
}
ssize_t n = pread(fd, buf, bufsiz, offset);
if (n < 0) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
gdb_put_strbuf();
return;
}
hostio_reply_with_data(buf, n);
}
void gdb_handle_v_file_readlink(GArray *params, void *user_ctx)
{
const char *filename = get_filename_param(params, 0);
g_autofree char *buf = g_try_malloc(BUFSIZ);
if (buf == NULL) {
gdb_put_packet("E12");
return;
}
#ifdef CONFIG_LINUX
ssize_t n = do_guest_readlink(filename, buf, BUFSIZ);
#else
ssize_t n = readlink(filename, buf, BUFSIZ);
#endif
if (n < 0) {
g_string_printf(gdbserver_state.str_buf, "F-1,%x", errno);
gdb_put_strbuf();
return;
}
hostio_reply_with_data(buf, n);
}
void gdb_handle_query_xfer_exec_file(GArray *params, void *user_ctx)
{
uint32_t pid = gdb_get_cmd_param(params, 0)->val_ul;
uint32_t offset = gdb_get_cmd_param(params, 1)->val_ul;
uint32_t length = gdb_get_cmd_param(params, 2)->val_ul;
GDBProcess *process = gdb_get_process(pid);
if (!process) {
gdb_put_packet("E00");
return;
}
CPUState *cpu = gdb_get_first_cpu_in_process(process);
if (!cpu) {
gdb_put_packet("E00");
return;
}
TaskState *ts = get_task_state(cpu);
if (!ts || !ts->bprm || !ts->bprm->filename) {
gdb_put_packet("E00");
return;
}
size_t total_length = strlen(ts->bprm->filename);
if (offset > total_length) {
gdb_put_packet("E00");
return;
}
if (offset + length > total_length) {
length = total_length - offset;
}
g_string_printf(gdbserver_state.str_buf, "l%.*s", length,
ts->bprm->filename + offset);
gdb_put_strbuf();
}
int gdb_target_sigtrap(void)
{
return TARGET_SIGTRAP;
}

View File

@ -1,955 +0,0 @@
/*
* gdbstub user-mode helper routines.
*
* We know for user-mode we are using TCG so we can call stuff directly.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/cutils.h"
#include "qemu/sockets.h"
#include "qapi/error.h"
#include "exec/hwaddr.h"
#include "exec/tb-flush.h"
#include "exec/gdbstub.h"
#include "gdbstub/commands.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/user.h"
#include "gdbstub/enums.h"
#include "hw/core/cpu.h"
#include "user/signal.h"
#include "trace.h"
#include "internals.h"
#define GDB_NR_SYSCALLS 1024
typedef unsigned long GDBSyscallsMask[BITS_TO_LONGS(GDB_NR_SYSCALLS)];
/*
* Forked child talks to its parent in order to let GDB enforce the
* follow-fork-mode. This happens inside a start_exclusive() section, so that
* the other threads, which may be forking too, do not interfere. The
* implementation relies on GDB not sending $vCont until it has detached
* either from the parent (follow-fork-mode child) or from the child
* (follow-fork-mode parent).
*
* The parent and the child share the GDB socket; at any given time only one
* of them is allowed to use it, as is reflected in the respective fork_state.
* This is negotiated via the fork_sockets pair as a reaction to $Hg.
*
* Below is a short summary of the possible state transitions:
*
* ENABLED : Terminal state.
* DISABLED : Terminal state.
* ACTIVE : Parent initial state.
* INACTIVE : Child initial state.
* ACTIVE -> DEACTIVATING: On $Hg.
* ACTIVE -> ENABLING : On $D.
* ACTIVE -> DISABLING : On $D.
* ACTIVE -> DISABLED : On communication error.
* DEACTIVATING -> INACTIVE : On gdb_read_byte() return.
* DEACTIVATING -> DISABLED : On communication error.
* INACTIVE -> ACTIVE : On $Hg in the peer.
* INACTIVE -> ENABLE : On $D in the peer.
* INACTIVE -> DISABLE : On $D in the peer.
* INACTIVE -> DISABLED : On communication error.
* ENABLING -> ENABLED : On gdb_read_byte() return.
* ENABLING -> DISABLED : On communication error.
* DISABLING -> DISABLED : On gdb_read_byte() return.
*/
enum GDBForkState {
/* Fully owning the GDB socket. */
GDB_FORK_ENABLED,
/* Working with the GDB socket; the peer is inactive. */
GDB_FORK_ACTIVE,
/* Handing off the GDB socket to the peer. */
GDB_FORK_DEACTIVATING,
/* The peer is working with the GDB socket. */
GDB_FORK_INACTIVE,
/* Asking the peer to close its GDB socket fd. */
GDB_FORK_ENABLING,
/* Asking the peer to take over, closing our GDB socket fd. */
GDB_FORK_DISABLING,
/* The peer has taken over, our GDB socket fd is closed. */
GDB_FORK_DISABLED,
};
enum GDBForkMessage {
GDB_FORK_ACTIVATE = 'a',
GDB_FORK_ENABLE = 'e',
GDB_FORK_DISABLE = 'd',
};
/* User-mode specific state */
typedef struct {
int fd;
char *socket_path;
int running_state;
/*
* Store syscalls mask without memory allocation in order to avoid
* implementing synchronization.
*/
bool catch_all_syscalls;
GDBSyscallsMask catch_syscalls_mask;
bool fork_events;
enum GDBForkState fork_state;
int fork_sockets[2];
pid_t fork_peer_pid, fork_peer_tid;
uint8_t siginfo[MAX_SIGINFO_LENGTH];
unsigned long siginfo_len;
} GDBUserState;
static GDBUserState gdbserver_user_state;
int gdb_get_char(void)
{
uint8_t ch;
int ret;
for (;;) {
ret = recv(gdbserver_user_state.fd, &ch, 1, 0);
if (ret < 0) {
if (errno == ECONNRESET) {
gdbserver_user_state.fd = -1;
}
if (errno != EINTR) {
return -1;
}
} else if (ret == 0) {
close(gdbserver_user_state.fd);
gdbserver_user_state.fd = -1;
return -1;
} else {
break;
}
}
return ch;
}
bool gdb_got_immediate_ack(void)
{
int i;
i = gdb_get_char();
if (i < 0) {
/* no response, continue anyway */
return true;
}
if (i == '+') {
/* received correctly, continue */
return true;
}
/* anything else, including '-' then try again */
return false;
}
void gdb_put_buffer(const uint8_t *buf, int len)
{
int ret;
while (len > 0) {
ret = send(gdbserver_user_state.fd, buf, len, 0);
if (ret < 0) {
if (errno != EINTR) {
return;
}
} else {
buf += ret;
len -= ret;
}
}
}
/* Tell the remote gdb that the process has exited. */
void gdb_exit(int code)
{
char buf[4];
if (!gdbserver_state.init) {
return;
}
if (gdbserver_user_state.socket_path) {
unlink(gdbserver_user_state.socket_path);
}
if (gdbserver_user_state.fd < 0) {
return;
}
trace_gdbstub_op_exiting((uint8_t)code);
if (gdbserver_state.allow_stop_reply) {
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
}
void gdb_qemu_exit(int code)
{
exit(code);
}
int gdb_handlesig(CPUState *cpu, int sig, const char *reason, void *siginfo,
int siginfo_len)
{
char buf[256];
int n;
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return sig;
}
if (siginfo) {
/*
* Save target-specific siginfo.
*
* siginfo size, i.e. siginfo_len, is asserted at compile-time to fit in
* gdbserver_user_state.siginfo, usually in the source file calling
* gdb_handlesig. See, for instance, {linux,bsd}-user/signal.c.
*/
memcpy(gdbserver_user_state.siginfo, siginfo, siginfo_len);
gdbserver_user_state.siginfo_len = siginfo_len;
}
/* disable single step if it was enabled */
cpu_single_step(cpu, 0);
tb_flush(cpu);
if (sig != 0) {
gdb_set_stop_cpu(cpu);
if (gdbserver_state.allow_stop_reply) {
g_string_printf(gdbserver_state.str_buf,
"T%02xthread:", gdb_target_signal_to_gdb(sig));
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
g_string_append_c(gdbserver_state.str_buf, ';');
if (reason) {
g_string_append(gdbserver_state.str_buf, reason);
}
gdb_put_strbuf();
gdbserver_state.allow_stop_reply = false;
}
}
/*
* gdb_put_packet() might have detected that the peer terminated the
* connection.
*/
if (gdbserver_user_state.fd < 0) {
return sig;
}
sig = 0;
gdbserver_state.state = RS_IDLE;
gdbserver_user_state.running_state = 0;
while (gdbserver_user_state.running_state == 0) {
n = read(gdbserver_user_state.fd, buf, 256);
if (n > 0) {
int i;
for (i = 0; i < n; i++) {
gdb_read_byte(buf[i]);
}
} else {
/*
* XXX: Connection closed. Should probably wait for another
* connection before continuing.
*/
if (n == 0) {
close(gdbserver_user_state.fd);
}
gdbserver_user_state.fd = -1;
return sig;
}
}
sig = gdbserver_state.signal;
gdbserver_state.signal = 0;
return sig;
}
/* Tell the remote gdb that the process has exited due to SIG. */
void gdb_signalled(CPUArchState *env, int sig)
{
char buf[4];
if (!gdbserver_state.init || gdbserver_user_state.fd < 0 ||
!gdbserver_state.allow_stop_reply) {
return;
}
snprintf(buf, sizeof(buf), "X%02x", gdb_target_signal_to_gdb(sig));
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
static void gdb_accept_init(int fd)
{
gdb_init_gdbserver_state();
gdb_create_default_process(&gdbserver_state);
gdbserver_state.processes[0].attached = true;
gdbserver_state.c_cpu = gdb_first_attached_cpu();
gdbserver_state.g_cpu = gdbserver_state.c_cpu;
gdbserver_user_state.fd = fd;
}
static bool gdb_accept_socket(int gdb_fd)
{
int fd;
for (;;) {
fd = accept(gdb_fd, NULL, NULL);
if (fd < 0 && errno != EINTR) {
perror("accept socket");
return false;
} else if (fd >= 0) {
qemu_set_cloexec(fd);
break;
}
}
gdb_accept_init(fd);
return true;
}
static int gdbserver_open_socket(const char *path, Error **errp)
{
g_autoptr(GString) buf = g_string_new("");
char *pid_placeholder;
pid_placeholder = strstr(path, "%d");
if (pid_placeholder != NULL) {
g_string_append_len(buf, path, pid_placeholder - path);
g_string_append_printf(buf, "%d", qemu_get_thread_id());
g_string_append(buf, pid_placeholder + 2);
path = buf->str;
}
return unix_listen(path, errp);
}
static bool gdb_accept_tcp(int gdb_fd)
{
struct sockaddr_in sockaddr = {};
socklen_t len;
int fd;
for (;;) {
len = sizeof(sockaddr);
fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
if (fd < 0 && errno != EINTR) {
perror("accept");
return false;
} else if (fd >= 0) {
qemu_set_cloexec(fd);
break;
}
}
/* set short latency */
if (socket_set_nodelay(fd)) {
perror("setsockopt");
close(fd);
return false;
}
gdb_accept_init(fd);
return true;
}
static int gdbserver_open_port(int port, Error **errp)
{
struct sockaddr_in sockaddr;
int fd, ret;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
qemu_set_cloexec(fd);
socket_set_fast_reuse(fd);
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(port);
sockaddr.sin_addr.s_addr = 0;
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
error_setg_errno(errp, errno, "Failed to bind socket");
close(fd);
return -1;
}
ret = listen(fd, 1);
if (ret < 0) {
error_setg_errno(errp, errno, "Failed to listen to socket");
close(fd);
return -1;
}
return fd;
}
static bool gdbserver_accept(int port, int gdb_fd, const char *path)
{
bool ret;
if (port > 0) {
ret = gdb_accept_tcp(gdb_fd);
} else {
ret = gdb_accept_socket(gdb_fd);
if (ret) {
gdbserver_user_state.socket_path = g_strdup(path);
}
}
if (!ret) {
close(gdb_fd);
}
return ret;
}
struct {
int port;
int gdb_fd;
char *path;
} gdbserver_args;
static void do_gdb_handlesig(CPUState *cs, run_on_cpu_data arg)
{
int sig;
sig = target_to_host_signal(gdb_handlesig(cs, 0, NULL, NULL, 0));
if (sig >= 1 && sig < NSIG) {
qemu_kill_thread(gdb_get_cpu_index(cs), sig);
}
}
static void *gdbserver_accept_thread(void *arg)
{
if (gdbserver_accept(gdbserver_args.port, gdbserver_args.gdb_fd,
gdbserver_args.path)) {
CPUState *cs = first_cpu;
async_safe_run_on_cpu(cs, do_gdb_handlesig, RUN_ON_CPU_NULL);
qemu_kill_thread(gdb_get_cpu_index(cs), host_interrupt_signal);
}
g_free(gdbserver_args.path);
gdbserver_args.path = NULL;
return NULL;
}
#define USAGE "\nUsage: -g {port|path}[,suspend={y|n}]"
bool gdbserver_start(const char *args, Error **errp)
{
g_auto(GStrv) argv = g_strsplit(args, ",", 0);
const char *port_or_path = NULL;
bool suspend = true;
int gdb_fd, port;
GStrv arg;
for (arg = argv; *arg; arg++) {
g_auto(GStrv) tokens = g_strsplit(*arg, "=", 2);
if (g_strcmp0(tokens[0], "suspend") == 0) {
if (tokens[1] == NULL) {
error_setg(errp,
"gdbstub: missing \"suspend\" option value" USAGE);
return false;
} else if (!qapi_bool_parse(tokens[0], tokens[1],
&suspend, errp)) {
return false;
}
} else {
if (port_or_path) {
error_setg(errp, "gdbstub: unknown option \"%s\"" USAGE, *arg);
return false;
}
port_or_path = *arg;
}
}
if (!port_or_path) {
error_setg(errp, "gdbstub: port or path not specified" USAGE);
return false;
}
port = g_ascii_strtoull(port_or_path, NULL, 10);
if (port > 0) {
gdb_fd = gdbserver_open_port(port, errp);
} else {
gdb_fd = gdbserver_open_socket(port_or_path, errp);
}
if (gdb_fd < 0) {
return false;
}
if (suspend) {
if (gdbserver_accept(port, gdb_fd, port_or_path)) {
gdb_handlesig(first_cpu, 0, NULL, NULL, 0);
return true;
} else {
error_setg(errp, "gdbstub: failed to accept connection");
return false;
}
} else {
QemuThread thread;
gdbserver_args.port = port;
gdbserver_args.gdb_fd = gdb_fd;
gdbserver_args.path = g_strdup(port_or_path);
qemu_thread_create(&thread, "gdb-accept",
&gdbserver_accept_thread, NULL,
QEMU_THREAD_DETACHED);
return true;
}
}
void gdbserver_fork_start(void)
{
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return;
}
if (!gdbserver_user_state.fork_events ||
qemu_socketpair(AF_UNIX, SOCK_STREAM, 0,
gdbserver_user_state.fork_sockets) < 0) {
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
return;
}
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
gdbserver_user_state.fork_peer_pid = getpid();
gdbserver_user_state.fork_peer_tid = qemu_get_thread_id();
}
static void disable_gdbstub(CPUState *thread_cpu)
{
CPUState *cpu;
close(gdbserver_user_state.fd);
gdbserver_user_state.fd = -1;
CPU_FOREACH(cpu) {
cpu_breakpoint_remove_all(cpu, BP_GDB);
/* no cpu_watchpoint_remove_all for user-mode */
cpu_single_step(cpu, 0);
}
tb_flush(thread_cpu);
}
void gdbserver_fork_end(CPUState *cpu, pid_t pid)
{
char b;
int fd;
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return;
}
if (pid == -1) {
if (gdbserver_user_state.fork_state != GDB_FORK_DISABLED) {
g_assert(gdbserver_user_state.fork_state == GDB_FORK_INACTIVE);
close(gdbserver_user_state.fork_sockets[0]);
close(gdbserver_user_state.fork_sockets[1]);
}
return;
}
if (gdbserver_user_state.fork_state == GDB_FORK_DISABLED) {
if (pid == 0) {
disable_gdbstub(cpu);
}
return;
}
if (pid == 0) {
close(gdbserver_user_state.fork_sockets[0]);
fd = gdbserver_user_state.fork_sockets[1];
g_assert(gdbserver_state.process_num == 1);
g_assert(gdbserver_state.processes[0].pid ==
gdbserver_user_state.fork_peer_pid);
g_assert(gdbserver_state.processes[0].attached);
gdbserver_state.processes[0].pid = getpid();
} else {
close(gdbserver_user_state.fork_sockets[1]);
fd = gdbserver_user_state.fork_sockets[0];
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
gdbserver_user_state.fork_peer_pid = pid;
gdbserver_user_state.fork_peer_tid = pid;
if (!gdbserver_state.allow_stop_reply) {
goto fail;
}
g_string_printf(gdbserver_state.str_buf,
"T%02xfork:p%02x.%02x;thread:p%02x.%02x;",
gdb_target_signal_to_gdb(gdb_target_sigtrap()),
pid, pid, (int)getpid(), qemu_get_thread_id());
gdb_put_strbuf();
}
gdbserver_state.state = RS_IDLE;
gdbserver_state.allow_stop_reply = false;
gdbserver_user_state.running_state = 0;
for (;;) {
switch (gdbserver_user_state.fork_state) {
case GDB_FORK_ENABLED:
if (gdbserver_user_state.running_state) {
close(fd);
return;
}
QEMU_FALLTHROUGH;
case GDB_FORK_ACTIVE:
if (read(gdbserver_user_state.fd, &b, 1) != 1) {
goto fail;
}
gdb_read_byte(b);
break;
case GDB_FORK_DEACTIVATING:
b = GDB_FORK_ACTIVATE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
break;
case GDB_FORK_INACTIVE:
if (read(fd, &b, 1) != 1) {
goto fail;
}
switch (b) {
case GDB_FORK_ACTIVATE:
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
break;
case GDB_FORK_ENABLE:
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
break;
case GDB_FORK_DISABLE:
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
break;
default:
g_assert_not_reached();
}
break;
case GDB_FORK_ENABLING:
b = GDB_FORK_DISABLE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
break;
case GDB_FORK_DISABLING:
b = GDB_FORK_ENABLE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
break;
case GDB_FORK_DISABLED:
close(fd);
disable_gdbstub(cpu);
return;
default:
g_assert_not_reached();
}
}
fail:
close(fd);
if (pid == 0) {
disable_gdbstub(cpu);
}
}
void gdb_handle_query_supported_user(const char *gdb_supported)
{
if (strstr(gdb_supported, "fork-events+")) {
gdbserver_user_state.fork_events = true;
}
g_string_append(gdbserver_state.str_buf, ";fork-events+");
}
bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid)
{
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE &&
pid == gdbserver_user_state.fork_peer_pid &&
tid == gdbserver_user_state.fork_peer_tid) {
gdbserver_user_state.fork_state = GDB_FORK_DEACTIVATING;
gdb_put_packet("OK");
return true;
}
return false;
}
bool gdb_handle_detach_user(uint32_t pid)
{
bool enable;
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE) {
enable = pid == gdbserver_user_state.fork_peer_pid;
if (enable || pid == getpid()) {
gdbserver_user_state.fork_state = enable ? GDB_FORK_ENABLING :
GDB_FORK_DISABLING;
gdb_put_packet("OK");
return true;
}
}
return false;
}
/*
* Execution state helpers
*/
void gdb_handle_query_attached(GArray *params, void *user_ctx)
{
gdb_put_packet("0");
}
void gdb_continue(void)
{
gdbserver_user_state.running_state = 1;
trace_gdbstub_op_continue();
}
/*
* Resume execution, for user-mode emulation it's equivalent to
* gdb_continue.
*/
int gdb_continue_partial(char *newstates)
{
CPUState *cpu;
int res = 0;
/*
* This is not exactly accurate, but it's an improvement compared to the
* previous situation, where only one CPU would be single-stepped.
*/
CPU_FOREACH(cpu) {
if (newstates[cpu->cpu_index] == 's') {
trace_gdbstub_op_stepping(cpu->cpu_index);
cpu_single_step(cpu, gdbserver_state.sstep_flags);
}
}
gdbserver_user_state.running_state = 1;
return res;
}
/*
* Memory access helpers
*/
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
uint8_t *buf, int len, bool is_write)
{
if (cpu->cc->memory_rw_debug) {
return cpu->cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
/*
* cpu helpers
*/
unsigned int gdb_get_max_cpus(void)
{
CPUState *cpu;
unsigned int max_cpus = 1;
CPU_FOREACH(cpu) {
max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
}
return max_cpus;
}
/* replay not supported for user-mode */
bool gdb_can_reverse(void)
{
return false;
}
/*
* Break/Watch point helpers
*/
bool gdb_supports_guest_debug(void)
{
/* user-mode == TCG == supported */
return true;
}
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
{
CPUState *cpu;
int err = 0;
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
CPU_FOREACH(cpu) {
err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
if (err) {
break;
}
}
return err;
default:
/* user-mode doesn't support watchpoints */
return -ENOSYS;
}
}
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
{
CPUState *cpu;
int err = 0;
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
CPU_FOREACH(cpu) {
err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
if (err) {
break;
}
}
return err;
default:
/* user-mode doesn't support watchpoints */
return -ENOSYS;
}
}
void gdb_breakpoint_remove_all(CPUState *cs)
{
cpu_breakpoint_remove_all(cs, BP_GDB);
}
/*
* For user-mode syscall support we send the system call immediately
* and then return control to gdb for it to process the syscall request.
* Since the protocol requires that gdb hands control back to us
* using a "here are the results" F packet, we don't need to check
* gdb_handlesig's return value (which is the signal to deliver if
* execution was resumed via a continue packet).
*/
void gdb_syscall_handling(const char *syscall_packet)
{
gdb_put_packet(syscall_packet);
gdb_handlesig(gdbserver_state.c_cpu, 0, NULL, NULL, 0);
}
static bool should_catch_syscall(int num)
{
if (gdbserver_user_state.catch_all_syscalls) {
return true;
}
if (num < 0 || num >= GDB_NR_SYSCALLS) {
return false;
}
return test_bit(num, gdbserver_user_state.catch_syscalls_mask);
}
void gdb_syscall_entry(CPUState *cs, int num)
{
if (should_catch_syscall(num)) {
g_autofree char *reason = g_strdup_printf("syscall_entry:%x;", num);
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
}
}
void gdb_syscall_return(CPUState *cs, int num)
{
if (should_catch_syscall(num)) {
g_autofree char *reason = g_strdup_printf("syscall_return:%x;", num);
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
}
}
void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx)
{
const char *param = gdb_get_cmd_param(params, 0)->data;
GDBSyscallsMask catch_syscalls_mask;
bool catch_all_syscalls;
unsigned int num;
const char *p;
/* "0" means not catching any syscalls. */
if (strcmp(param, "0") == 0) {
gdbserver_user_state.catch_all_syscalls = false;
memset(gdbserver_user_state.catch_syscalls_mask, 0,
sizeof(gdbserver_user_state.catch_syscalls_mask));
gdb_put_packet("OK");
return;
}
/* "1" means catching all syscalls. */
if (strcmp(param, "1") == 0) {
gdbserver_user_state.catch_all_syscalls = true;
gdb_put_packet("OK");
return;
}
/*
* "1;..." means catching only the specified syscalls.
* The syscall list must not be empty.
*/
if (param[0] == '1' && param[1] == ';') {
catch_all_syscalls = false;
memset(catch_syscalls_mask, 0, sizeof(catch_syscalls_mask));
for (p = &param[2];; p++) {
if (qemu_strtoui(p, &p, 16, &num) || (*p && *p != ';')) {
goto err;
}
if (num >= GDB_NR_SYSCALLS) {
/*
* Fall back to reporting all syscalls. Reporting extra
* syscalls is inefficient, but the spec explicitly allows it.
* Keep parsing in case there is a syntax error ahead.
*/
catch_all_syscalls = true;
} else {
set_bit(num, catch_syscalls_mask);
}
if (!*p) {
break;
}
}
gdbserver_user_state.catch_all_syscalls = catch_all_syscalls;
if (!catch_all_syscalls) {
memcpy(gdbserver_user_state.catch_syscalls_mask,
catch_syscalls_mask, sizeof(catch_syscalls_mask));
}
gdb_put_packet("OK");
return;
}
err:
gdb_put_packet("E00");
}
void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx)
{
unsigned long offset, len;
uint8_t *siginfo_offset;
offset = gdb_get_cmd_param(params, 0)->val_ul;
len = gdb_get_cmd_param(params, 1)->val_ul;
if (offset + len > gdbserver_user_state.siginfo_len) {
/* Invalid offset and/or requested length. */
gdb_put_packet("E01");
return;
}
siginfo_offset = (uint8_t *)gdbserver_user_state.siginfo + offset;
/* Reply */
g_string_assign(gdbserver_state.str_buf, "l");
gdb_memtox(gdbserver_state.str_buf, (const char *)siginfo_offset, len);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}

View File

@ -1,67 +0,0 @@
/*
* gdbstub user-mode only APIs
*
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#ifndef GDBSTUB_USER_H
#define GDBSTUB_USER_H
#define MAX_SIGINFO_LENGTH 128
/**
* gdb_handlesig() - yield control to gdb
* @cpu: CPU
* @sig: if non-zero, the signal number which caused us to stop
* @reason: stop reason for stop reply packet or NULL
* @siginfo: target-specific siginfo struct
* @siginfo_len: target-specific siginfo struct length
*
* This function yields control to gdb, when a user-mode-only target
* needs to stop execution. If @sig is non-zero, then we will send a
* stop packet to tell gdb that we have stopped because of this signal.
*
* This function will block (handling protocol requests from gdb)
* until gdb tells us to continue target execution. When it does
* return, the return value is a signal to deliver to the target,
* or 0 if no signal should be delivered, ie the signal that caused
* us to stop should be ignored.
*/
int gdb_handlesig(CPUState *, int, const char *, void *, int);
/**
* gdb_signalled() - inform remote gdb of sig exit
* @as: current CPUArchState
* @sig: signal number
*/
void gdb_signalled(CPUArchState *as, int sig);
/**
* gdbserver_fork_start() - inform gdb of the upcoming fork()
*/
void gdbserver_fork_start(void);
/**
* gdbserver_fork_end() - inform gdb of the completed fork()
* @cs: CPU
* @pid: 0 if in child process, -1 if fork failed, child process pid otherwise
*/
void gdbserver_fork_end(CPUState *cs, pid_t pid);
/**
* gdb_syscall_entry() - inform gdb of syscall entry and yield control to it
* @cs: CPU
* @num: syscall number
*/
void gdb_syscall_entry(CPUState *cs, int num);
/**
* gdb_syscall_entry() - inform gdb of syscall return and yield control to it
* @cs: CPU
* @num: syscall number
*/
void gdb_syscall_return(CPUState *cs, int num);
#endif /* GDBSTUB_USER_H */

View File

@ -68,12 +68,6 @@ typedef struct GdbCmdParseEntry {
bool need_cpu_context;
} GdbCmdParseEntry;
/**
* gdb_put_packet() - put string into gdb server's buffer so it is sent
* to the client
*/
int gdb_put_packet(const char *buf);
/**
* gdb_extend_query_table() - Extend query table.
* @table: GPtrArray of GdbCmdParseEntry entries.

View File

@ -20,23 +20,6 @@
#ifndef QEMU_CPU_H
#define QEMU_CPU_H
// #include "disas/dis-asm.h"
// #include "exec/breakpoint.h"
// #include "exec/hwaddr.h"
// #include "exec/memattrs.h"
// #include "exec/mmu-access-type.h"
// #include "exec/tlb-common.h"
// #include "exec/vaddr.h"
// #include "hw/qdev-core.h"
// #include "qapi/qapi-types-machine.h"
// #include "qapi/qapi-types-run-state.h"
// #include "qemu/bitmap.h"
// #include "qemu/lockcnt.h"
// #include "qemu/queue.h"
// #include "qemu/rcu_queue.h"
// #include "qemu/thread.h"
// #include "qom/object.h"
#include <glib.h>
#include "breakpoint.h"
@ -486,7 +469,8 @@ struct CPUState {
struct QemuThread *thread;
int thread_id;
bool running, has_waiter;
bool running;
bool has_waiter;
struct QemuCond *halt_cond;
bool thread_kicked;
bool created;

View File

@ -30,24 +30,24 @@
#include "enums.h"
#include "internals.h"
GDBState gdbserver_state;
GDBState gdb_state;
void gdb_init_gdbserver_state(void) {
g_assert(!gdbserver_state.init);
memset(&gdbserver_state, 0, sizeof(GDBState));
gdbserver_state.init = true;
gdbserver_state.str_buf = g_string_new(NULL);
gdbserver_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH);
gdbserver_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4);
void gdb_init_gdb_state(void) {
g_assert(!gdb_state.init);
memset(&gdb_state, 0, sizeof(GDBState));
gdb_state.init = true;
gdb_state.str_buf = g_string_new(NULL);
gdb_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH);
gdb_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4);
/*
* What single-step modes are supported is accelerator dependent.
* By default try to use no IRQs and no timers while single
* stepping so as to make single stepping like a typical ICE HW step.
*/
gdbserver_state.supported_sstep_flags = 0;
gdbserver_state.sstep_flags = SSTEP_ENABLE | SSTEP_NOIRQ | SSTEP_NOTIMER;
gdbserver_state.sstep_flags &= gdbserver_state.supported_sstep_flags;
gdb_state.supported_sstep_flags = 0;
gdb_state.sstep_flags = SSTEP_ENABLE | SSTEP_NOIRQ | SSTEP_NOTIMER;
gdb_state.sstep_flags &= gdb_state.supported_sstep_flags;
}
/* writes 2*len+1 bytes in buf */
@ -76,9 +76,9 @@ int gdb_put_packet_binary(const char *buf, int len, bool dump) {
uint8_t footer[3];
for (;;) {
g_byte_array_set_size(gdbserver_state.last_packet, 0);
g_byte_array_append(gdbserver_state.last_packet, (const uint8_t *)"$", 1);
g_byte_array_append(gdbserver_state.last_packet, (const uint8_t *)buf, len);
g_byte_array_set_size(gdb_state.last_packet, 0);
g_byte_array_append(gdb_state.last_packet, (const uint8_t *)"$", 1);
g_byte_array_append(gdb_state.last_packet, (const uint8_t *)buf, len);
csum = 0;
for (i = 0; i < len; i++) {
csum += buf[i];
@ -86,9 +86,9 @@ int gdb_put_packet_binary(const char *buf, int len, bool dump) {
footer[0] = '#';
footer[1] = tohex((csum >> 4) & 0xf);
footer[2] = tohex((csum) & 0xf);
g_byte_array_append(gdbserver_state.last_packet, footer, 3);
g_byte_array_append(gdb_state.last_packet, footer, 3);
gdb_put_buffer(gdbserver_state.last_packet->data, gdbserver_state.last_packet->len);
gdb_put_buffer(gdb_state.last_packet->data, gdb_state.last_packet->len);
if (gdb_got_immediate_ack()) {
break;
@ -99,7 +99,7 @@ int gdb_put_packet_binary(const char *buf, int len, bool dump) {
int gdb_put_packet(const char *buf) { return gdb_put_packet_binary(buf, strlen(buf), false); }
void gdb_put_strbuf(void) { gdb_put_packet(gdbserver_state.str_buf->str); }
void gdb_put_strbuf(void) { gdb_put_packet(gdb_state.str_buf->str); }
void gdb_memtox(GString *buf, const char *mem, int len) {
char c;
@ -227,20 +227,16 @@ int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg) {
static void gdb_process_breakpoint_remove_all() {
CPUState *cpu = get_cpu();
while (cpu) {
gdb_breakpoint_remove_all(cpu);
cpu = gdb_next_cpu_in_process(cpu);
}
gdb_breakpoint_remove_all(cpu);
}
static void gdb_set_cpu_pc(vaddr pc) {
CPUState *cpu = gdbserver_state.c_cpu;
CPUState *cpu = get_cpu();
cpu_synchronize_state(cpu);
cpu_set_pc(cpu, pc);
}
void gdb_append_thread_id(CPUState *cpu, GString *buf) { g_string_append_printf(buf, "%02x", gdb_get_cpu_index(cpu)); }
void gdb_append_thread_id(CPUState *cpu, GString *buf) { g_string_append_printf(buf, "%02x", 1); }
static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf, uint32_t *pid, uint32_t *tid) {
unsigned long p, t;
@ -354,16 +350,13 @@ static int gdb_handle_vcont(const char *p) {
return -EINVAL;
case GDB_ALL_PROCESSES:
cpu = gdb_first_attached_cpu();
while (cpu) {
cpu = get_cpu();
if (cpu) {
if (newstates[cpu->cpu_index] == 1) {
newstates[cpu->cpu_index] = cur_action;
target_count++;
last_target = cpu;
}
cpu = gdb_next_attached_cpu(cpu);
}
break;
@ -383,7 +376,7 @@ static int gdb_handle_vcont(const char *p) {
break;
case GDB_ONE_THREAD:
cpu = gdb_get_cpu();
cpu = get_cpu();
/* invalid CPU/thread specified */
if (!cpu) {
@ -409,10 +402,10 @@ static int gdb_handle_vcont(const char *p) {
* the ones we resumed/single stepped here.
*/
if (target_count > 0) {
gdbserver_state.c_cpu = last_target;
gdb_state.c_cpu = last_target;
}
gdbserver_state.signal = signal;
gdb_state.signal = signal;
gdb_continue_partial(newstates);
return res;
}
@ -522,10 +515,10 @@ static bool process_string_cmd(const char *data, const GdbCmdParseEntry *cmds, i
}
if (cmd->need_cpu_context) {
user_ctx = (void *)gdbserver_state.g_cpu;
user_ctx = (void *)gdb_state.c_cpu;
}
gdbserver_state.allow_stop_reply = cmd->allow_stop_reply;
gdb_state.allow_stop_reply = cmd->allow_stop_reply;
cmd->handler(params, user_ctx);
return true;
}
@ -538,8 +531,8 @@ static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd) {
return;
}
g_string_set_size(gdbserver_state.str_buf, 0);
g_byte_array_set_size(gdbserver_state.mem_buf, 0);
g_string_set_size(gdb_state.str_buf, 0);
g_byte_array_set_size(gdb_state.mem_buf, 0);
/* In case there was an error during the command parsing we must
* send a NULL packet to indicate the command is not supported */
@ -550,17 +543,10 @@ static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd) {
static void handle_detach(GArray *params, void *user_ctx) {
GDBProcess *process;
uint32_t pid = 1;
process = gdb_get_process();
gdb_process_breakpoint_remove_all();
process->attached = false;
if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) {
gdbserver_state.c_cpu = gdb_first_attached_cpu();
}
if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) {
gdbserver_state.g_cpu = gdb_first_attached_cpu();
}
if (!gdbserver_state.c_cpu) {
if (!get_cpu()) {
gdb_disable_syscalls();
gdb_continue();
}
@ -577,7 +563,7 @@ static void handle_thread_alive(GArray *params, void *user_ctx) {
gdb_put_packet("E22");
return;
}
cpu = gdb_get_cpu();
cpu = get_cpu();
if (!cpu) {
gdb_put_packet("E22");
return;
@ -589,7 +575,7 @@ static void handle_continue(GArray *params, void *user_ctx) {
if (params->len) {
gdb_set_cpu_pc(gdb_get_cmd_param(params, 0)->val_ull);
}
gdbserver_state.signal = 0;
gdb_state.signal = 0;
gdb_continue();
}
@ -602,15 +588,14 @@ static void handle_cont_with_sig(GArray *params, void *user_ctx) {
if (params->len) {
signal = gdb_get_cmd_param(params, 0)->val_ul;
}
gdbserver_state.signal = gdb_signal_to_target(signal);
if (gdbserver_state.signal == -1) {
gdbserver_state.signal = 0;
gdb_state.signal = gdb_signal_to_target(signal);
if (gdb_state.signal == -1) {
gdb_state.signal = 0;
}
gdb_continue();
}
static void handle_set_thread(GArray *params, void *user_ctx) {
uint32_t pid, tid;
CPUState *cpu;
if (params->len != 2) {
gdb_put_packet("E22");
@ -624,9 +609,7 @@ static void handle_set_thread(GArray *params, void *user_ctx) {
gdb_put_packet("OK");
return;
}
pid = gdb_get_cmd_param(params, 1)->thread_id.pid;
tid = gdb_get_cmd_param(params, 1)->thread_id.tid;
cpu = gdb_get_cpu();
cpu = get_cpu();
if (!cpu) {
gdb_put_packet("E22");
return;
@ -637,11 +620,11 @@ static void handle_set_thread(GArray *params, void *user_ctx) {
*/
switch (gdb_get_cmd_param(params, 0)->opcode) {
case 'c':
gdbserver_state.c_cpu = cpu;
gdb_state.c_cpu = cpu;
gdb_put_packet("OK");
break;
case 'g':
gdbserver_state.g_cpu = cpu;
gdb_state.c_cpu = cpu;
gdb_put_packet("OK");
break;
default:
@ -658,7 +641,7 @@ static void handle_insert_bp(GArray *params, void *user_ctx) {
return;
}
res = gdb_breakpoint_insert(gdbserver_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ul,
res = gdb_breakpoint_insert(gdb_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ul,
gdb_get_cmd_param(params, 1)->val_ull, gdb_get_cmd_param(params, 2)->val_ull);
if (res >= 0) {
gdb_put_packet("OK");
@ -679,7 +662,7 @@ static void handle_remove_bp(GArray *params, void *user_ctx) {
return;
}
res = gdb_breakpoint_remove(gdbserver_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ul,
res = gdb_breakpoint_remove(gdb_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ul,
gdb_get_cmd_param(params, 1)->val_ull, gdb_get_cmd_param(params, 2)->val_ull);
if (res >= 0) {
gdb_put_packet("OK");
@ -701,8 +684,8 @@ static void handle_set_reg(GArray *params, void *user_ctx) {
}
reg_size = strlen(gdb_get_cmd_param(params, 1)->data) / 2;
gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 1)->data, reg_size);
gdb_write_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf->data, gdb_get_cmd_param(params, 0)->val_ull);
gdb_hextomem(gdb_state.mem_buf, gdb_get_cmd_param(params, 1)->data, reg_size);
gdb_write_register(gdb_state.c_cpu, gdb_state.mem_buf->data, gdb_get_cmd_param(params, 0)->val_ull);
gdb_put_packet("OK");
}
@ -714,15 +697,15 @@ static void handle_get_reg(GArray *params, void *user_ctx) {
return;
}
reg_size = gdb_read_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->val_ull);
reg_size = gdb_read_register(gdb_state.c_cpu, gdb_state.mem_buf, gdb_get_cmd_param(params, 0)->val_ull);
if (!reg_size) {
gdb_put_packet("E14");
return;
} else {
g_byte_array_set_size(gdbserver_state.mem_buf, reg_size);
g_byte_array_set_size(gdb_state.mem_buf, reg_size);
}
gdb_memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, reg_size);
gdb_memtohex(gdb_state.str_buf, gdb_state.mem_buf->data, reg_size);
gdb_put_strbuf();
}
@ -738,9 +721,9 @@ static void handle_write_mem(GArray *params, void *user_ctx) {
return;
}
gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 2)->data, gdb_get_cmd_param(params, 1)->val_ull);
if (gdb_target_memory_rw_debug(gdbserver_state.g_cpu, gdb_get_cmd_param(params, 0)->val_ull,
gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len, true)) {
gdb_hextomem(gdb_state.mem_buf, gdb_get_cmd_param(params, 2)->data, gdb_get_cmd_param(params, 1)->val_ull);
if (gdb_target_memory_rw_debug(gdb_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ull, gdb_state.mem_buf->data,
gdb_state.mem_buf->len, true)) {
gdb_put_packet("E14");
return;
}
@ -760,15 +743,15 @@ static void handle_read_mem(GArray *params, void *user_ctx) {
return;
}
g_byte_array_set_size(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 1)->val_ull);
g_byte_array_set_size(gdb_state.mem_buf, gdb_get_cmd_param(params, 1)->val_ull);
if (gdb_target_memory_rw_debug(gdbserver_state.g_cpu, gdb_get_cmd_param(params, 0)->val_ull,
gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len, false)) {
if (gdb_target_memory_rw_debug(gdb_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ull, gdb_state.mem_buf->data,
gdb_state.mem_buf->len, false)) {
gdb_put_packet("E14");
return;
}
gdb_memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len);
gdb_memtohex(gdb_state.str_buf, gdb_state.mem_buf->data, gdb_state.mem_buf->len);
gdb_put_strbuf();
}
@ -782,12 +765,12 @@ static void handle_write_all_regs(GArray *params, void *user_ctx) {
return;
}
cpu_synchronize_state(gdbserver_state.g_cpu);
cpu_synchronize_state(gdb_state.c_cpu);
len = strlen(gdb_get_cmd_param(params, 0)->data) / 2;
gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len);
registers = gdbserver_state.mem_buf->data;
for (reg_id = 0; reg_id < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0; reg_id++) {
reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, reg_id);
gdb_hextomem(gdb_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len);
registers = gdb_state.mem_buf->data;
for (reg_id = 0; reg_id < gdb_state.c_cpu->gdb_num_g_regs && len > 0; reg_id++) {
reg_size = gdb_write_register(gdb_state.c_cpu, registers, reg_id);
len -= reg_size;
registers += reg_size;
}
@ -798,15 +781,15 @@ static void handle_read_all_regs(GArray *params, void *user_ctx) {
int reg_id;
size_t len;
cpu_synchronize_state(gdbserver_state.g_cpu);
g_byte_array_set_size(gdbserver_state.mem_buf, 0);
cpu_synchronize_state(gdb_state.c_cpu);
g_byte_array_set_size(gdb_state.mem_buf, 0);
len = 0;
for (reg_id = 0; reg_id < gdbserver_state.g_cpu->gdb_num_g_regs; reg_id++) {
len += gdb_read_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf, reg_id);
g_assert(len == gdbserver_state.mem_buf->len);
for (reg_id = 0; reg_id < gdb_state.c_cpu->gdb_num_g_regs; reg_id++) {
len += gdb_read_register(gdb_state.c_cpu, gdb_state.mem_buf, reg_id);
g_assert(len == gdb_state.mem_buf->len);
}
gdb_memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, len);
gdb_memtohex(gdb_state.str_buf, gdb_state.mem_buf->data, len);
gdb_put_strbuf();
}
@ -814,7 +797,7 @@ static void handle_step(GArray *params, void *user_ctx) {
if (params->len) {
gdb_set_cpu_pc(gdb_get_cmd_param(params, 0)->val_ull);
}
cpu_single_step(gdbserver_state.c_cpu, gdbserver_state.sstep_flags);
cpu_single_step(gdb_state.c_cpu, gdb_state.sstep_flags);
gdb_continue();
}
@ -841,7 +824,7 @@ static void handle_v_attach(GArray *params, void *user_ctx) {
GDBProcess *process;
CPUState *cpu;
g_string_assign(gdbserver_state.str_buf, "E22");
g_string_assign(gdb_state.str_buf, "E22");
if (!params->len) {
goto cleanup;
}
@ -857,14 +840,13 @@ static void handle_v_attach(GArray *params, void *user_ctx) {
}
process->attached = true;
gdbserver_state.g_cpu = cpu;
gdbserver_state.c_cpu = cpu;
gdb_state.c_cpu = cpu;
if (gdbserver_state.allow_stop_reply) {
g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
g_string_append_c(gdbserver_state.str_buf, ';');
gdbserver_state.allow_stop_reply = false;
if (gdb_state.allow_stop_reply) {
g_string_printf(gdb_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
gdb_append_thread_id(cpu, gdb_state.str_buf);
g_string_append_c(gdb_state.str_buf, ';');
gdb_state.allow_stop_reply = false;
cleanup:
gdb_put_strbuf();
}
@ -897,14 +879,14 @@ static void handle_v_commands(GArray *params, void *user_ctx) {
}
static void handle_query_qemu_sstepbits(GArray *params, void *user_ctx) {
g_string_printf(gdbserver_state.str_buf, "ENABLE=%x", SSTEP_ENABLE);
g_string_printf(gdb_state.str_buf, "ENABLE=%x", SSTEP_ENABLE);
if (gdbserver_state.supported_sstep_flags & SSTEP_NOIRQ) {
g_string_append_printf(gdbserver_state.str_buf, ",NOIRQ=%x", SSTEP_NOIRQ);
if (gdb_state.supported_sstep_flags & SSTEP_NOIRQ) {
g_string_append_printf(gdb_state.str_buf, ",NOIRQ=%x", SSTEP_NOIRQ);
}
if (gdbserver_state.supported_sstep_flags & SSTEP_NOTIMER) {
g_string_append_printf(gdbserver_state.str_buf, ",NOTIMER=%x", SSTEP_NOTIMER);
if (gdb_state.supported_sstep_flags & SSTEP_NOTIMER) {
g_string_append_printf(gdb_state.str_buf, ",NOTIMER=%x", SSTEP_NOTIMER);
}
gdb_put_strbuf();
@ -919,17 +901,17 @@ static void handle_set_qemu_sstep(GArray *params, void *user_ctx) {
new_sstep_flags = gdb_get_cmd_param(params, 0)->val_ul;
if (new_sstep_flags & ~gdbserver_state.supported_sstep_flags) {
if (new_sstep_flags & ~gdb_state.supported_sstep_flags) {
gdb_put_packet("E22");
return;
}
gdbserver_state.sstep_flags = new_sstep_flags;
gdb_state.sstep_flags = new_sstep_flags;
gdb_put_packet("OK");
}
static void handle_query_qemu_sstep(GArray *params, void *user_ctx) {
g_string_printf(gdbserver_state.str_buf, "0x%x", gdbserver_state.sstep_flags);
g_string_printf(gdb_state.str_buf, "0x%x", gdb_state.sstep_flags);
gdb_put_strbuf();
}
@ -944,30 +926,28 @@ static void handle_query_curr_tid(GArray *params, void *user_ctx) {
*/
process = gdb_get_process();
cpu = get_cpu();
g_string_assign(gdbserver_state.str_buf, "QC");
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
g_string_assign(gdb_state.str_buf, "QC");
gdb_append_thread_id(cpu, gdb_state.str_buf);
gdb_put_strbuf();
}
static void handle_query_threads(GArray *params, void *user_ctx) {
if (!gdbserver_state.query_cpu) {
if (!gdb_state.query_cpu) {
gdb_put_packet("l");
return;
}
g_string_assign(gdbserver_state.str_buf, "m");
gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf);
g_string_assign(gdb_state.str_buf, "m");
gdb_append_thread_id(gdb_state.query_cpu, gdb_state.str_buf);
gdb_put_strbuf();
gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu);
gdb_state.query_cpu = 0;
}
static void handle_query_gdb_server_version(GArray *params, void *user_ctx) {
g_string_printf(gdbserver_state.str_buf, "name:qemu-system-riscv;version:1.9;");
g_string_printf(gdb_state.str_buf, "name:qemu-system-riscv;version:1.9;");
gdb_put_strbuf();
}
static void handle_query_first_threads(GArray *params, void *user_ctx) {
gdbserver_state.query_cpu = gdb_first_attached_cpu();
gdb_state.query_cpu = get_cpu();
handle_query_threads(params, user_ctx);
}
@ -978,13 +958,13 @@ static void handle_query_thread_extra(GArray *params, void *user_ctx) {
gdb_put_packet("E22");
return;
}
cpu = gdb_get_cpu();
cpu = get_cpu();
if (!cpu) {
return;
}
cpu_synchronize_state(cpu);
g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index, cpu->halted ? "halted " : "running");
gdb_memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len);
gdb_memtohex(gdb_state.str_buf, (uint8_t *)rs->str, rs->len);
gdb_put_strbuf();
}
@ -1002,17 +982,17 @@ void gdb_extend_qsupported_features(char *qflags) {
}
static void handle_query_supported(GArray *params, void *user_ctx) {
g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH);
g_string_printf(gdb_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH);
if (gdb_get_core_xml_file(get_cpu())) {
g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+");
g_string_append(gdb_state.str_buf, ";qXfer:features:read+");
}
g_string_append(gdb_state.str_buf, ";vContSupported+;multiprocess+");
if (extra_query_flags) {
int extras = g_strv_length(extra_query_flags);
for (int i = 0; i < extras; i++) {
g_string_append(gdbserver_state.str_buf, extra_query_flags[i]);
g_string_append(gdb_state.str_buf, extra_query_flags[i]);
}
}
gdb_put_strbuf();
}
@ -1028,7 +1008,7 @@ static void handle_query_xfer_features(GArray *params, void *user_ctx) {
}
process = gdb_get_process();
if (!gdb_get_core_xml_file(gdbserver_state.g_cpu)) {
if (!gdb_get_core_xml_file(gdb_state.c_cpu)) {
gdb_put_packet("");
return;
}
@ -1053,19 +1033,19 @@ static void handle_query_xfer_features(GArray *params, void *user_ctx) {
}
if (len < total_len - addr) {
g_string_assign(gdbserver_state.str_buf, "m");
gdb_memtox(gdbserver_state.str_buf, xml + addr, len);
g_string_assign(gdb_state.str_buf, "m");
gdb_memtox(gdb_state.str_buf, xml + addr, len);
} else {
g_string_assign(gdbserver_state.str_buf, "l");
gdb_memtox(gdbserver_state.str_buf, xml + addr, total_len - addr);
g_string_assign(gdb_state.str_buf, "l");
gdb_memtox(gdb_state.str_buf, xml + addr, total_len - addr);
}
gdb_put_packet_binary(gdbserver_state.str_buf->str, gdbserver_state.str_buf->len, true);
gdb_put_packet_binary(gdb_state.str_buf->str, gdb_state.str_buf->len, true);
}
static void handle_query_qemu_supported(GArray *params, void *user_ctx) {
g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep");
g_string_append(gdbserver_state.str_buf, ";PhyMemMode");
g_string_printf(gdb_state.str_buf, "sstepbits;sstep");
g_string_append(gdb_state.str_buf, ";PhyMemMode");
gdb_put_strbuf();
}
@ -1211,26 +1191,24 @@ static void handle_gen_set(GArray *params, void *user_ctx) {
}
static void handle_target_halt(GArray *params, void *user_ctx) {
if (gdbserver_state.allow_stop_reply) {
g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf);
g_string_append_c(gdbserver_state.str_buf, ';');
if (gdb_state.allow_stop_reply) {
g_string_printf(gdb_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
gdb_append_thread_id(gdb_state.c_cpu, gdb_state.str_buf);
g_string_append_c(gdb_state.str_buf, ';');
gdb_put_strbuf();
gdbserver_state.allow_stop_reply = false;
gdb_state.allow_stop_reply = false;
}
/*
* Remove all the breakpoints when this query is issued,
* because gdb is doing an initial connect and the state
* should be cleaned up.
*/
gdb_breakpoint_remove_all(gdbserver_state.c_cpu);
gdb_breakpoint_remove_all(gdb_state.c_cpu);
}
static RSState gdb_handle_packet(const char *line_buf) {
const GdbCmdParseEntry *cmd_parser = NULL;
// trace_gdbstub_io_command(line_buf);
switch (line_buf[0]) {
case '!':
gdb_put_packet("OK");
@ -1364,13 +1342,13 @@ static RSState gdb_handle_packet(const char *line_buf) {
void gdb_read_byte(uint8_t ch) {
uint8_t reply;
gdbserver_state.allow_stop_reply = false;
if (gdbserver_state.last_packet->len) {
gdb_state.allow_stop_reply = false;
if (gdb_state.last_packet->len) {
/* Waiting for a response to the last packet. If we see the start
of a new command then abandon the previous response. */
if (ch == '-') {
// trace_gdbstub_err_got_nack();
gdb_put_buffer(gdbserver_state.last_packet->data, gdbserver_state.last_packet->len);
gdb_put_buffer(gdb_state.last_packet->data, gdb_state.last_packet->len);
} else if (ch == '+') {
// trace_gdbstub_io_got_ack();
} else {
@ -1378,7 +1356,7 @@ void gdb_read_byte(uint8_t ch) {
}
if (ch == '+' || ch == '$') {
g_byte_array_set_size(gdbserver_state.last_packet, 0);
g_byte_array_set_size(gdb_state.last_packet, 0);
}
if (ch != '$') return;
}
@ -1393,17 +1371,17 @@ void gdb_read_byte(uint8_t ch) {
if (ch != 0x03) {
// trace_gdbstub_err_unexpected_runpkt(ch);
} else {
gdbserver_state.allow_stop_reply = true;
gdb_state.allow_stop_reply = true;
}
vm_stop(RUN_STATE_PAUSED);
vm_stop();
} else {
switch (gdbserver_state.state) {
switch (gdb_state.state) {
case RS_IDLE:
if (ch == '$') {
/* start of command packet */
gdbserver_state.line_buf_index = 0;
gdbserver_state.line_sum = 0;
gdbserver_state.state = RS_GETLINE;
gdb_state.line_buf_index = 0;
gdb_state.line_sum = 0;
gdb_state.state = RS_GETLINE;
} else if (ch == '+') {
/*
* do nothing, gdb may preemptively send out ACKs on
@ -1416,37 +1394,37 @@ void gdb_read_byte(uint8_t ch) {
case RS_GETLINE:
if (ch == '}') {
/* start escape sequence */
gdbserver_state.state = RS_GETLINE_ESC;
gdbserver_state.line_sum += ch;
gdb_state.state = RS_GETLINE_ESC;
gdb_state.line_sum += ch;
} else if (ch == '*') {
/* start run length encoding sequence */
gdbserver_state.state = RS_GETLINE_RLE;
gdbserver_state.line_sum += ch;
gdb_state.state = RS_GETLINE_RLE;
gdb_state.line_sum += ch;
} else if (ch == '#') {
/* end of command, start of checksum*/
gdbserver_state.state = RS_CHKSUM1;
} else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
gdb_state.state = RS_CHKSUM1;
} else if (gdb_state.line_buf_index >= sizeof(gdb_state.line_buf) - 1) {
// trace_gdbstub_err_overrun();
gdbserver_state.state = RS_IDLE;
gdb_state.state = RS_IDLE;
} else {
/* unescaped command character */
gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch;
gdbserver_state.line_sum += ch;
gdb_state.line_buf[gdb_state.line_buf_index++] = ch;
gdb_state.line_sum += ch;
}
break;
case RS_GETLINE_ESC:
if (ch == '#') {
/* unexpected end of command in escape sequence */
gdbserver_state.state = RS_CHKSUM1;
} else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
gdb_state.state = RS_CHKSUM1;
} else if (gdb_state.line_buf_index >= sizeof(gdb_state.line_buf) - 1) {
/* command buffer overrun */
// trace_gdbstub_err_overrun();
gdbserver_state.state = RS_IDLE;
gdb_state.state = RS_IDLE;
} else {
/* parse escaped character and leave escape state */
gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20;
gdbserver_state.line_sum += ch;
gdbserver_state.state = RS_GETLINE;
gdb_state.line_buf[gdb_state.line_buf_index++] = ch ^ 0x20;
gdb_state.line_sum += ch;
gdb_state.state = RS_GETLINE;
}
break;
case RS_GETLINE_RLE:
@ -1457,25 +1435,25 @@ void gdb_read_byte(uint8_t ch) {
if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
/* invalid RLE count encoding */
// trace_gdbstub_err_invalid_repeat(ch);
gdbserver_state.state = RS_GETLINE;
gdb_state.state = RS_GETLINE;
} else {
/* decode repeat length */
int repeat = ch - ' ' + 3;
if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) {
if (gdb_state.line_buf_index + repeat >= sizeof(gdb_state.line_buf) - 1) {
/* that many repeats would overrun the command buffer */
// trace_gdbstub_err_overrun();
gdbserver_state.state = RS_IDLE;
} else if (gdbserver_state.line_buf_index < 1) {
gdb_state.state = RS_IDLE;
} else if (gdb_state.line_buf_index < 1) {
/* got a repeat but we have nothing to repeat */
// trace_gdbstub_err_invalid_rle();
gdbserver_state.state = RS_GETLINE;
gdb_state.state = RS_GETLINE;
} else {
/* repeat the last character */
memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index,
gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat);
gdbserver_state.line_buf_index += repeat;
gdbserver_state.line_sum += ch;
gdbserver_state.state = RS_GETLINE;
memset(gdb_state.line_buf + gdb_state.line_buf_index, gdb_state.line_buf[gdb_state.line_buf_index - 1],
repeat);
gdb_state.line_buf_index += repeat;
gdb_state.line_sum += ch;
gdb_state.state = RS_GETLINE;
}
}
break;
@ -1483,33 +1461,33 @@ void gdb_read_byte(uint8_t ch) {
/* get high hex digit of checksum */
if (!isxdigit(ch)) {
// trace_gdbstub_err_checksum_invalid(ch);
gdbserver_state.state = RS_GETLINE;
gdb_state.state = RS_GETLINE;
break;
}
gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0';
gdbserver_state.line_csum = fromhex(ch) << 4;
gdbserver_state.state = RS_CHKSUM2;
gdb_state.line_buf[gdb_state.line_buf_index] = '\0';
gdb_state.line_csum = fromhex(ch) << 4;
gdb_state.state = RS_CHKSUM2;
break;
case RS_CHKSUM2:
/* get low hex digit of checksum */
if (!isxdigit(ch)) {
// trace_gdbstub_err_checksum_invalid(ch);
gdbserver_state.state = RS_GETLINE;
gdb_state.state = RS_GETLINE;
break;
}
gdbserver_state.line_csum |= fromhex(ch);
gdb_state.line_csum |= fromhex(ch);
if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) {
// trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum);
if (gdb_state.line_csum != (gdb_state.line_sum & 0xff)) {
// trace_gdbstub_err_checksum_incorrect(gdb_state.line_sum, gdb_state.line_csum);
/* send NAK reply */
reply = '-';
gdb_put_buffer(&reply, 1);
gdbserver_state.state = RS_IDLE;
gdb_state.state = RS_IDLE;
} else {
/* send ACK reply */
reply = '+';
gdb_put_buffer(&reply, 1);
gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf);
gdb_state.state = gdb_handle_packet(gdb_state.line_buf);
}
break;
default:

View File

@ -10,6 +10,7 @@
#define GDBSTUB_INTERNALS_H
#include "cpu.h"
#include "utils/conn.h"
#define MAX_PACKET_LENGTH 131104
@ -69,11 +70,10 @@ typedef struct GDBRegisterState {
} GDBRegisterState;
typedef struct GDBState {
bool init; /* have we been initialised? */
CPUState *c_cpu; /* current CPU for step/continue ops */
CPUState *g_cpu; /* current CPU for other ops */
CPUState *query_cpu; /* for q{f|s}ThreadInfo */
enum RSState state; /* parsing state */
bool init; /* have we been initialised? */
CPUState *c_cpu;
CPUState *query_cpu;
enum RSState state; /* parsing state */
char line_buf[MAX_PACKET_LENGTH];
int line_buf_index;
int line_sum; /* running checksum */
@ -86,6 +86,7 @@ typedef struct GDBState {
GByteArray *mem_buf;
int sstep_flags;
int supported_sstep_flags;
conn_t *conn;
/*
* Whether we are allowed to send a stop reply packet at this moment.
* Must be set off after sending the stop reply itself.
@ -94,7 +95,7 @@ typedef struct GDBState {
} GDBState;
/* lives in main gdbstub.c */
extern GDBState gdbserver_state;
extern GDBState gdb_state;
/*
* Inline utility function, convert from int to hex and back
@ -128,15 +129,13 @@ void gdb_put_strbuf(void);
void gdb_hextomem(GByteArray *mem, const char *buf, int len);
void gdb_read_byte(uint8_t ch);
void gdb_init_cpu(CPUState *cpu);
void gdb_init_cpu();
void gdb_register_coprocessor(CPUState *cpu, gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, const GDBFeature *feature,
int g_pos);
void gdb_unregister_coprocessor_all(CPUState *cpu);
bool gdbserver_start(const char *port_or_device, Error **errp);
/**
* gdb_feature_builder_append_tag() - Append a tag.
* @builder: The builder.
@ -179,10 +178,11 @@ extern const GDBFeature gdb_static_features[];
void gdb_chr_receive(const uint8_t *buf, int size);
bool gdb_got_immediate_ack(void);
int gdb_put_packet(const char *buf);
/* utility helpers */
GDBProcess *gdb_get_process();
void gdb_append_thread_id(CPUState *cpu, GString *buf);
int gdb_get_cpu_index(CPUState *cpu);
unsigned int gdb_get_max_cpus(void); /* both */
void gdb_create_default_process(GDBState *s);
@ -193,7 +193,7 @@ void gdb_continue(void);
int gdb_continue_partial(char *newstates);
void gdb_init_gdbserver_state(void);
void gdb_init_gdb_state(void);
void gdb_handle_query_rcmd(GArray *params, void *ctx); /* system */
@ -209,13 +209,13 @@ void gdb_disable_syscalls(void);
// TODO
bool runstate_is_running();
void vm_stop(RunState rs);
void vm_stop();
void vm_start();
void cpu_synchronize_state(CPUState *cpu);
void gdb_exit(int i);
void gdb_qemu_exit(int i);
CPUState *get_cpu();
CPUState *cpu_next(CPUState *cpu);
void gdb_breakpoint_remove_all(CPUState *cs);
bool gdb_supports_guest_debug(void);
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len);
@ -223,33 +223,23 @@ int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len);
void gdb_put_buffer(const uint8_t *buf, int len);
bool gdbserver_start(const char *device, Error **errp);
static inline void cpu_physical_memory_write(hwaddr addr, const void *buf, hwaddr len);
static inline void cpu_physical_memory_read(hwaddr addr, const void *buf, hwaddr len);
bool runstate_needs_reset(void);
void vm_start();
bool vm_prepare_start(bool step_requested);
void qemu_clock_enable();
uint32_t gdb_get_cpu_pid(CPUState *cpu);
#define CPU_FOREACH(cpu) for (auto c = get_cpu(); false;)
int gdb_target_memory_rw_debug(CPUState *cs, hwaddr addr, uint8_t *buf, int len, bool is_write);
CPUState *find_cpu(uint32_t thread_id);
CPUState *gdb_next_cpu_in_process(CPUState *cpu);
CPUState *gdb_next_attached_cpu(CPUState *cpu);
CPUState *gdb_first_attached_cpu(void);
CPUState *gdb_get_cpu();
const char *get_feature_xml(const char *p, const char **newp, GDBProcess *process);
void gdb_register_coprocessor(CPUState *cpu, gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, const GDBFeature *feature,
int g_pos);
void gdb_unregister_coprocessor_all(CPUState *cpu);
const char *gdb_get_core_xml_file(CPUState *cpu);
void cpu_register_gdb_commands();
int cpu_common_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int cpu_common_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
#endif /* GDBSTUB_INTERNALS_H */

View File

@ -1,17 +1,27 @@
#include <iostream>
#include "conn.h"
#include "internals.h"
#include "utils/conn.h"
int main(int argc, char *argv[]) {
cpu_register_gdb_commands();
gdb_init_gdb_state();
gdb_init_cpu();
vm_stop();
gdb_state.state = RS_IDLE;
conn_t conn;
if (!conn_init(&conn, "127.0.0.1", 1234)) std::cout << "conn_init error" << std::endl;
if (!conn_init(&conn, "127.0.0.1", 1234)) {
std::cout << "conn_init error" << std::endl;
return -1;
}
gdb_state.conn = &conn;
while (1) {
conn_recv_packet(&conn);
packet_t *pkt = conn_pop_packet(&conn);
printf("packet = %s\n", pkt->data);
if (pkt) gdb_chr_receive(pkt->data, pkt->end_pos + 1);
}
return 0;

View File

@ -17,17 +17,13 @@
#include "enums.h"
#include "internals.h"
static void reset_gdbserver_state(void) {
g_free(gdbserver_state.processes);
gdbserver_state.processes = NULL;
gdbserver_state.process_num = 0;
gdbserver_state.allow_stop_reply = false;
static void reset_gdb_state(void) {
g_free(gdb_state.processes);
gdb_state.processes = NULL;
gdb_state.process_num = 0;
gdb_state.allow_stop_reply = false;
}
int gdb_get_cpu_index(CPUState *cpu) { return 0; }
bool gdb_got_immediate_ack(void) { return true; }
void gdb_chr_receive(const uint8_t *buf, int size) {
for (int i = 0; i < size; i++) {
gdb_read_byte(buf[i]);
@ -46,7 +42,7 @@ int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr, uint8_t *buf, int len
unsigned int gdb_get_max_cpus(void) { return 1; }
void gdb_handle_query_qemu_phy_mem_mode(GArray *params, void *ctx) {
g_string_printf(gdbserver_state.str_buf, "%d", 1);
g_string_printf(gdb_state.str_buf, "%d", 1);
gdb_put_strbuf();
}
@ -73,13 +69,13 @@ void gdb_handle_query_rcmd(GArray *params, void *ctx) {
return;
}
g_assert(gdbserver_state.mem_buf->len == 0);
g_assert(gdb_state.mem_buf->len == 0);
len = len / 2;
gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len);
g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
gdb_hextomem(gdb_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len);
g_byte_array_append(gdb_state.mem_buf, &zero, 1);
// qemu_chr_be_write(gdbserver_system_state.mon_chr, gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len);
gdb_put_buffer(gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len);
// qemu_chr_be_write(gdbserver_system_state.mon_chr, gdb_state.mem_buf->data, gdb_state.mem_buf->len);
gdb_put_buffer(gdb_state.mem_buf->data, gdb_state.mem_buf->len);
gdb_put_packet("OK");
}
@ -114,7 +110,7 @@ int gdb_continue_partial(char *newstates) {
break; /* nothing to do here */
case 's':
// trace_gdbstub_op_stepping(c->cpu_index);
cpu_single_step(c, gdbserver_state.sstep_flags);
cpu_single_step(c, gdb_state.sstep_flags);
cpu_resume(c);
flag = 1;
break;
@ -147,33 +143,40 @@ int gdb_signal_to_target(int sig) {
}
}
bool runstate_is_running() { return true; }
void vm_stop(RunState rs) {}
bool runstate_is_running() {
auto c = get_cpu();
return c->running;
}
void vm_stop() { get_cpu()->running = false; }
void vm_start() { get_cpu()->running = true; }
void cpu_synchronize_state(CPUState *cpu) {}
void gdb_exit(int i) {};
void gdb_qemu_exit(int i) {};
CPUState *get_cpu() { return (CPUState *)1; }
CPUState *cpu_next(CPUState *cpu) {
if (cpu)
return (CPUState *)0;
else
return (CPUState *)1;
}
CPUState *get_cpu() { return gdb_state.c_cpu; }
void gdb_breakpoint_remove_all(CPUState *cs) {}
bool gdb_supports_guest_debug(void) { return false; }
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len) { return 0; }
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len) { return 0; }
void gdb_put_buffer(const uint8_t *buf, int len) {}
void gdb_put_buffer(const uint8_t *buf, int len) { conn_send_str(gdb_state.conn, (char *)buf, len); }
bool gdbserver_start(const char *device, Error **errp) { return false; }
bool gdb_got_immediate_ack(void) {
int i = conn_get_char(gdb_state.conn);
if (i < 0) {
return true; /* no response, continue anyway */
}
if (i == '+') {
return true; /* received correctly, continue */
}
return false; /* anything else, including '-' then try again */
}
static inline void cpu_physical_memory_write(hwaddr addr, const void *buf, hwaddr len) {}
static inline void cpu_physical_memory_read(hwaddr addr, const void *buf, hwaddr len) {}
bool runstate_needs_reset(void) { return false; }
void vm_start() {}
bool vm_prepare_start(bool step_requested) { return true; }
void qemu_clock_enable() {}
@ -182,62 +185,6 @@ void gdb_disable_syscalls(void) {}
void cpu_single_step(CPUState *cpu, int enabled) {}
uint32_t gdb_get_cpu_pid(CPUState *cpu) {
if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
/* Return the default process' PID */
int index = gdbserver_state.process_num - 1;
return gdbserver_state.processes[index].pid;
}
return cpu->cluster_index + 1;
}
CPUState *find_cpu(uint32_t thread_id) {
auto cpu = get_cpu();
if (gdb_get_cpu_index(cpu) == thread_id) {
return cpu;
}
return NULL;
}
CPUState *gdb_next_cpu_in_process(CPUState *cpu) {
uint32_t pid = gdb_get_cpu_pid(cpu);
cpu = cpu_next(cpu);
while (cpu) {
if (gdb_get_cpu_pid(cpu) == pid) {
break;
}
cpu = cpu_next(cpu);
}
return cpu;
}
/* Return the cpu following @cpu, while ignoring unattached processes. */
CPUState *gdb_next_attached_cpu(CPUState *cpu) {
cpu = cpu_next(cpu);
while (cpu) {
if (gdb_get_process()->attached) {
break;
}
cpu = cpu_next(cpu);
}
return cpu;
}
/* Return the first attached cpu */
CPUState *gdb_first_attached_cpu(void) {
CPUState *cpu = get_cpu();
GDBProcess *process = gdb_get_process();
if (!process->attached) {
return gdb_next_attached_cpu(cpu);
}
return cpu;
}
CPUState *gdb_get_cpu() { return gdb_first_attached_cpu(); }
const char *get_feature_xml(const char *p, const char **newp, GDBProcess *process) {
CPUState *cpu = get_cpu();
GDBRegisterState *r;
@ -280,7 +227,7 @@ const char *get_feature_xml(const char *p, const char **newp, GDBProcess *proces
return NULL;
}
GDBProcess *gdb_get_process() { return gdbserver_state.processes; }
GDBProcess *gdb_get_process() { return gdb_state.processes; }
void gdb_create_default_process(GDBState *s) {
GDBProcess *process;
@ -298,22 +245,34 @@ static void gdb_register_feature(CPUState *cpu, int base_reg, gdb_get_reg_cb get
g_array_append_val(cpu->gdb_regs, s);
}
void gdb_init_cpu(CPUState *cpu) {
CPUClass *cc = cpu->cc;
void gdb_init_cpu() {
// CPUState c;
CPUState *cpu = new CPUState;
memset(cpu, 0, sizeof(CPUState));
gdb_state.c_cpu = cpu;
CPUClass *cc = new CPUClass;
memset(cc, 0, sizeof(CPUClass));
cc->gdb_read_register = cpu_common_gdb_read_register;
cc->gdb_write_register = cpu_common_gdb_write_register;
cc->gdb_num_core_regs = 33;
cpu->cc = cc;
const GDBFeature *feature;
const char *xmlfile = gdb_get_core_xml_file(cpu);
cpu->gdb_regs = g_array_new(false, false, sizeof(GDBRegisterState));
cpu->gdb_num_regs = cpu->gdb_num_g_regs = 33;
if (xmlfile) {
feature = gdb_find_static_feature(xmlfile);
gdb_register_feature(cpu, 0, cc->gdb_read_register, cc->gdb_write_register, feature);
cpu->gdb_num_regs = cpu->gdb_num_g_regs = feature->num_regs;
}
// if (xmlfile) {
// feature = gdb_find_static_feature(xmlfile);
// gdb_register_feature(cpu, 0, cc->gdb_read_register, cc->gdb_write_register, feature);
// cpu->gdb_num_regs = cpu->gdb_num_g_regs = feature->num_regs;
// }
if (cc->gdb_num_core_regs) {
cpu->gdb_num_regs = cpu->gdb_num_g_regs = cc->gdb_num_core_regs;
}
// if (cc->gdb_num_core_regs) {
// cpu->gdb_num_regs = cpu->gdb_num_g_regs = cc->gdb_num_core_regs;
// }
}
void gdb_register_coprocessor(CPUState *cpu, gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, const GDBFeature *feature,
@ -358,7 +317,6 @@ void gdb_unregister_coprocessor_all(CPUState *cpu) {
const char *gdb_get_core_xml_file(CPUState *cpu) {
CPUClass *cc = cpu->cc;
/*
* The CPU class can provide the XML filename via a method,
* or as a simple fixed string field.
@ -373,4 +331,33 @@ void cpu_resume(CPUState *cpu) {
cpu->stop = false;
cpu->stopped = false;
// qemu_cpu_kick(cpu);
}
}
void cpu_register_gdb_commands() {
g_autoptr(GPtrArray) query_table = g_ptr_array_new();
g_autoptr(GPtrArray) set_table = g_ptr_array_new();
g_autoptr(GString) qsupported_features = g_string_new(NULL);
/* Set arch-specific handlers for 'q' commands. */
if (query_table->len) {
gdb_extend_query_table(query_table);
}
/* Set arch-specific handlers for 'Q' commands. */
if (set_table->len) {
gdb_extend_set_table(set_table);
}
/* Set arch-specific qSupported feature. */
if (qsupported_features->len) {
gdb_extend_qsupported_features(qsupported_features->str);
}
}
int cpu_common_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg) {
uint32_t val = 0;
g_byte_array_append(buf, (uint8_t *)&val, 4);
return 4;
}
int cpu_common_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg) { return 0; }

View File

@ -1,4 +1,5 @@
#include "conn.h"
#include <arpa/inet.h>
#include <assert.h>
#include <netinet/in.h>
@ -8,170 +9,165 @@
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include "utils/csum.h"
#include "utils/log.h"
static bool socket_poll(int socket_fd, int timeout, int events)
{
struct pollfd pfd = (struct pollfd){
.fd = socket_fd,
.events = events,
};
static bool socket_poll(int socket_fd, int timeout, int events) {
struct pollfd pfd = (struct pollfd){
.fd = socket_fd,
.events = events,
};
return (poll(&pfd, 1, timeout) > 0) && (pfd.revents & events);
return (poll(&pfd, 1, timeout) > 0) && (pfd.revents & events);
}
static bool socket_readable(int socket_fd, int timeout)
{
return socket_poll(socket_fd, timeout, POLLIN);
}
static bool socket_readable(int socket_fd, int timeout) { return socket_poll(socket_fd, timeout, POLLIN); }
static bool socket_writable(int socket_fd, int timeout)
{
return socket_poll(socket_fd, timeout, POLLOUT);
}
static bool socket_writable(int socket_fd, int timeout) { return socket_poll(socket_fd, timeout, POLLOUT); }
bool conn_init(conn_t *conn, char *addr_str, int port)
{
if (!pktbuf_init(&conn->pktbuf))
return false;
bool conn_init(conn_t *conn, char *addr_str, int port) {
if (!pktbuf_init(&conn->pktbuf)) return false;
struct in_addr addr_ip;
if (inet_aton(addr_str, &addr_ip) != 0) {
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = addr_ip.s_addr;
addr.sin_port = htons(port);
conn->listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (conn->listen_fd < 0)
return false;
struct in_addr addr_ip;
if (inet_aton(addr_str, &addr_ip) != 0) {
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = addr_ip.s_addr;
addr.sin_port = htons(port);
conn->listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (conn->listen_fd < 0) return false;
int optval = 1;
if (setsockopt(conn->listen_fd, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof(optval)) < 0) {
warn("Set sockopt fail.\n");
goto fail;
}
if (bind(conn->listen_fd, (struct sockaddr *) &addr, sizeof(addr)) <
0) {
warn("Bind fail.\n");
goto fail;
}
} else {
struct sockaddr_un addr;
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, addr_str, sizeof(addr.sun_path) - 1);
unlink(addr_str);
conn->listen_fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (conn->listen_fd < 0)
return false;
if (bind(conn->listen_fd, (struct sockaddr *) &addr, sizeof(addr)) <
0) {
warn("Bind fail.\n");
goto fail;
}
int optval = 1;
if (setsockopt(conn->listen_fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0) {
warn("Set sockopt fail.\n");
goto fail;
}
if (listen(conn->listen_fd, 1) < 0) {
warn("Listen fail.\n");
goto fail;
if (bind(conn->listen_fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
warn("Bind fail.\n");
goto fail;
}
} else {
struct sockaddr_un addr;
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, addr_str, sizeof(addr.sun_path) - 1);
unlink(addr_str);
conn->listen_fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (conn->listen_fd < 0) return false;
conn->socket_fd = accept(conn->listen_fd, NULL, NULL);
if (conn->socket_fd < 0) {
warn("Accept fail.\n");
goto fail;
if (bind(conn->listen_fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
warn("Bind fail.\n");
goto fail;
}
}
return true;
if (listen(conn->listen_fd, 1) < 0) {
warn("Listen fail.\n");
goto fail;
}
conn->socket_fd = accept(conn->listen_fd, NULL, NULL);
if (conn->socket_fd < 0) {
warn("Accept fail.\n");
goto fail;
}
return true;
fail:
close(conn->listen_fd);
return false;
close(conn->listen_fd);
return false;
}
void conn_recv_packet(conn_t *conn)
{
while (!pktbuf_is_complete(&conn->pktbuf) &&
socket_readable(conn->socket_fd, -1)) {
ssize_t nread = pktbuf_fill_from_file(&conn->pktbuf, conn->socket_fd);
if (nread == -1)
break;
}
conn_send_str(conn, STR_ACK);
void conn_recv_packet(conn_t *conn) {
while (!pktbuf_is_complete(&conn->pktbuf) && socket_readable(conn->socket_fd, -1)) {
ssize_t nread = pktbuf_fill_from_file(&conn->pktbuf, conn->socket_fd);
if (nread == -1) break;
}
// conn_send_str(conn, STR_ACK);
}
packet_t *conn_pop_packet(conn_t *conn)
{
packet_t *pkt = pktbuf_pop_packet(&conn->pktbuf);
return pkt;
packet_t *conn_pop_packet(conn_t *conn) {
packet_t *pkt = pktbuf_pop_packet(&conn->pktbuf);
if (pkt) printf("packet = %s\n", pkt->data);
return pkt;
}
bool conn_try_recv_intr(conn_t *conn)
{
char ch;
if (!socket_readable(conn->socket_fd, 0))
return false;
ssize_t nread = read(conn->socket_fd, &ch, 1);
if (nread != 1)
return false;
/* FIXME: The character must be INTR_CHAR, otherwise the library
* may work incorrectly. However, I'm not sure if this implementation
* can always meet our expectation (concurrent is so hard QAQ). */
assert(ch == INTR_CHAR);
return true;
int conn_get_char(conn_t *conn) {
if (socket_readable(conn->socket_fd, -1)) {
uint8_t ch;
int ret;
read(conn->socket_fd, &ch, 1);
return ch;
}
return -1;
}
void conn_send_str(conn_t *conn, char *str)
{
size_t len = strlen(str);
bool conn_try_recv_intr(conn_t *conn) {
char ch;
while (len > 0 && socket_writable(conn->socket_fd, -1)) {
ssize_t nwrite = write(conn->socket_fd, str, len);
if (nwrite == -1)
break;
len -= nwrite;
}
if (!socket_readable(conn->socket_fd, 0)) return false;
ssize_t nread = read(conn->socket_fd, &ch, 1);
if (nread != 1) return false;
/* FIXME: The character must be INTR_CHAR, otherwise the library
* may work incorrectly. However, I'm not sure if this implementation
* can always meet our expectation (concurrent is so hard QAQ). */
assert(ch == INTR_CHAR);
return true;
}
void conn_send_pktstr(conn_t *conn, char *pktstr)
{
char packet[MAX_SEND_PACKET_SIZE];
size_t len = strlen(pktstr);
void conn_send_str(conn_t *conn, char *str) {
size_t len = strlen(str);
while (len > 0 && socket_writable(conn->socket_fd, -1)) {
ssize_t nwrite = write(conn->socket_fd, str, len);
if (nwrite == -1) break;
len -= nwrite;
}
}
/* 2: '$' + '#'
* 2: checksum digits(maximum)
* 1: '\0' */
assert(len + 2 + CSUM_SIZE + 1 < MAX_SEND_PACKET_SIZE);
void conn_send_str(conn_t *conn, char *str, int len) {
int ori = len;
while (len > 0 && socket_writable(conn->socket_fd, -1)) {
ssize_t nwrite = write(conn->socket_fd, str, len);
if (nwrite == -1) break;
len -= nwrite;
}
str[ori] = 0;
printf("send = %s\n", str);
}
packet[0] = '$';
memcpy(packet + 1, pktstr, len);
packet[len + 1] = '#';
void conn_send_pktstr(conn_t *conn, char *pktstr) {
char packet[MAX_SEND_PACKET_SIZE];
size_t len = strlen(pktstr);
char csum_str[4];
uint8_t csum = compute_checksum(pktstr, len);
size_t csum_len = snprintf(csum_str, sizeof(csum_str) - 1, "%02x", csum);
assert(csum_len == CSUM_SIZE);
memcpy(packet + len + 2, csum_str, csum_len);
packet[len + 2 + csum_len] = '\0';
/* 2: '$' + '#'
* 2: checksum digits(maximum)
* 1: '\0' */
assert(len + 2 + CSUM_SIZE + 1 < MAX_SEND_PACKET_SIZE);
packet[0] = '$';
memcpy(packet + 1, pktstr, len);
packet[len + 1] = '#';
char csum_str[4];
uint8_t csum = compute_checksum(pktstr, len);
size_t csum_len = snprintf(csum_str, sizeof(csum_str) - 1, "%02x", csum);
assert(csum_len == CSUM_SIZE);
memcpy(packet + len + 2, csum_str, csum_len);
packet[len + 2 + csum_len] = '\0';
#ifdef DEBUG
printf("send packet = %s,", packet);
printf(" checksum = %d\n", csum);
printf("send packet = %s,", packet);
printf(" checksum = %d\n", csum);
#endif
conn_send_str(conn, packet);
conn_send_str(conn, packet);
}
void conn_close(conn_t *conn)
{
close(conn->socket_fd);
close(conn->listen_fd);
pktbuf_destroy(&conn->pktbuf);
void conn_close(conn_t *conn) {
close(conn->socket_fd);
close(conn->listen_fd);
pktbuf_destroy(&conn->pktbuf);
}

View File

@ -20,7 +20,9 @@ bool conn_init(conn_t *conn, char *addr_str, int port);
void conn_recv_packet(conn_t *conn);
packet_t *conn_pop_packet(conn_t *conn);
bool conn_try_recv_intr(conn_t *conn);
int conn_get_char(conn_t *conn);
void conn_send_str(conn_t *conn, char *str);
void conn_send_str(conn_t *conn, char *str, int len);
void conn_send_pktstr(conn_t *conn, char *pktstr);
void conn_close(conn_t *conn);
#endif